Entanglement Distribution with Separable States

Vahid Karimipour,
Sharif University of Technology
Tehran, Iran
KIAS-2017

$$
\rho_{A B}=\sum_{i} p_{i} \rho_{A}^{i} \otimes \rho_{B}^{i}
$$

A and B are separable

T. S. Cubitt, F. Verstraete, W. Dür, and J. I. Cirac,

Phys. Rev. Lett. 91, 037902 (2003).

The point is that the messenger remains separable at all stages.

M

$$
\rho_{A B M}=\sum_{i} p_{i} \rho_{A}^{i} \otimes \rho_{B}^{i} \otimes \rho_{M}^{i}
$$

But the initial state should be very peculiar.

$$
\rho_{A B M}=\frac{1}{6} \sum_{k=0}^{3}\left|\psi_{k}\right\rangle\left\langle\psi_{k}\right| \otimes\left|\psi_{-k}\right\rangle\left\langle\psi_{-k}\right| \otimes|0\rangle\langle 0|+\frac{1}{6} \sum_{i=0}^{1}|i, i, 1\rangle\langle i, i, 1|
$$

$$
\left|\psi_{k}\right\rangle=\frac{1}{\sqrt{2}}\left(|0\rangle+e^{\frac{i \pi}{2} k}|1\rangle\right)
$$

Our Goal:

To understand this result

Generalization to d-level states

Generalization to GHZ states

Let us start from the very beginning:

$\left|\psi_{k}\right\rangle=\frac{1}{\sqrt{2}}\left(|0\rangle+\alpha_{k}|1\rangle\right)$

|0)

$$
\left|\phi_{k}\right\rangle=\frac{1}{\sqrt{2}}\left(|0\rangle+\beta_{k}|1\rangle\right)
$$ B

After Alice CNOT

$$
\left|\Psi_{k}\right\rangle_{A M}=\frac{1}{\sqrt{2}}\left(|00\rangle+\alpha_{k} \mid 11\right)
$$

$$
\left|\Psi_{k}^{1}\right\rangle_{A M B}=\frac{1}{2}\left(|00\rangle+\alpha_{k} \mid 11\right)\left(|0\rangle+\beta_{k}|1\rangle\right)
$$

The messenger is sent to Bob:

$$
\left|\Psi_{k}^{1}\right\rangle_{A M B}=\frac{1}{2}\left(|000\rangle+\alpha_{k}|110\rangle+\beta_{k}|001\rangle+\alpha_{k} \beta_{k}|111\rangle\right)
$$

We rearrange the indices for simplicity

$$
\left|\Psi_{k}^{1}\right\rangle_{A B M}=\frac{1}{2}\left(|000\rangle+\alpha_{k}|101\rangle+\beta_{k}|010\rangle+\alpha_{k} \beta_{k}|111\rangle\right)
$$

From the previous page:

$$
\left|\Psi_{k}^{1}\right\rangle_{A B M}=\frac{1}{2}\left(|000\rangle+\alpha_{k}|101\rangle+\beta_{k}|010\rangle+\alpha_{k} \beta_{k}|111\rangle\right)
$$

After Bob CNOT operation, the state is:

$$
\begin{aligned}
\left|\Psi_{k}^{2}\right\rangle_{A B M} & =\frac{1}{2}\left(|000\rangle+\alpha_{k}|101\rangle+\beta_{k}|011\rangle+|110\rangle\right) \\
= & \frac{1}{\sqrt{2}}\left(\left|\phi_{+}\right\rangle|0\rangle_{M}+\left|\chi_{k}\right\rangle|1\rangle_{M}\right) \\
& \left|\chi_{k}\right\rangle=\frac{1}{\sqrt{2}}\left(\alpha_{k}|10\rangle+\beta_{k}|01\rangle\right)
\end{aligned}
$$

However the particle M has entangled itself

with A and B

in both stages of the process.

In stage 1: After Alice operation:

In stage 2: After Bob's Operation

$$
\left|\Psi_{k}^{2}\right\rangle_{A M B}=\frac{1}{\sqrt{2}}\left(\left|\phi_{+}\right\rangle|0\rangle_{M}+\left|x_{k}\right\rangle|1\rangle_{M}\right)
$$

How to remove the entanglement?

For (1) we use Symmetrization
For (2) we use Mixing

Mixing

$$
\left|\phi_{+}\right\rangle=\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle) \quad\left|\phi_{-}\right\rangle=\frac{1}{\sqrt{2}}(|00\rangle-|11\rangle)
$$

$$
\frac{1}{2}\left(\left|\phi_{+}\right\rangle\left\langle\phi_{+}\right|+\left|\phi_{-}\right\rangle\left\langle\phi_{-}\right|\right)=\frac{1}{2}(|00\rangle\langle 00|+|11\rangle\langle 11|)
$$

(2)

$$
\left|\Psi_{k}^{2}\right\rangle_{A B M}=\frac{1}{\sqrt{2}}\left(\left|\phi_{+}\right\rangle|0\rangle+\left|\chi_{k}\right\rangle|1\rangle\right)
$$

$$
\rho_{A B M}^{2}=\sum_{k}\left|\Psi_{k}^{2}\right\rangle\left\langle\Psi_{k}^{2}\right|
$$

$$
\begin{array}{r}
\rho_{A B M}^{2}=\sum_{k} \frac{1}{2}\left(\left|\phi_{+}\right\rangle\left\langle\phi_{+}\right| \otimes|0\rangle\langle 0|+\left|\chi_{k}\right\rangle\left\langle\chi_{k}\right| \otimes|1\rangle\langle 1|\right) \\
+\frac{1}{2}\left(\left|\phi_{+}\right\rangle\left\langle\chi_{k}\right| \otimes|0\rangle\langle 1|+\left|\chi_{k}\right\rangle\left\langle\phi_{+}\right| \otimes|1\rangle\langle 0|\right)
\end{array}
$$

We demand that;

$$
\sum_{\lambda}\left|x_{i}\right\rangle=0
$$

$$
\left|x_{i}\right\rangle=\frac{1}{\sqrt{2}}\left(\alpha_{i}|10\rangle+\beta_{1} \mid 01\right)
$$

$$
\sum_{1} a=0
$$

So after Bob's operation we have this:

$$
\rho_{A B M}^{2}=\sum_{k} \frac{1}{2}\left(\left|\phi_{+}\right\rangle\left\langle\phi_{+}\right| \otimes|0\rangle\langle 0|+\left|\chi_{k}\right\rangle\left\langle\chi_{k}\right| \otimes|1\rangle\langle 1|\right)
$$

(1): Removing entanglement in the first stage

$$
\begin{aligned}
\left|\Psi_{k}^{1}\right\rangle_{A M B} & =\frac{1}{2}\left(|00\rangle+\alpha_{k}|11\rangle\right)\left(|0\rangle+\beta_{k}|1\rangle\right) \\
\left|\Psi_{k}^{1}\right\rangle_{A M B} & =\frac{1}{2}\left(|000\rangle+\alpha_{k}|110\rangle+\beta_{k}|001\rangle+|111\rangle\right) \\
\left|\Psi_{k}^{1}\right\rangle_{A M B} & =\frac{1}{2}\left(\sqrt{2}|G H Z\rangle+\alpha_{k}|110\rangle+\beta_{k}|001\rangle\right)
\end{aligned}
$$

B
B is obviously separate from A and M.
So If we make the state symmetric with respect to B and M, then M will be separate from A and B.

$$
\left|\Psi_{k}^{1}\right\rangle_{A M B}=\frac{1}{2}\left(\sqrt{2}|G H Z\rangle+\alpha_{k}|110\rangle+\beta_{k}|001\rangle\right)
$$

We want this to be symmetric:

$$
\rho_{A M B}=\sum_{k}\left|\Psi_{k}^{1}\right\rangle\left\langle\Psi_{k}^{1}\right|
$$

\{
The Term $|G H Z><110|$ vanishes due to :
The Term $|G H Z><001|$ vanishes due to :

$$
\sum_{k} \alpha_{k}=0
$$

The Term |110><001| vanishes if we assume that:

$$
\sum_{i} \alpha_{i}^{2}=0
$$

$$
\left|\Psi_{k}^{1}\right\rangle_{A M B}=\frac{1}{2}\left(\sqrt{2}|G H Z\rangle+\alpha_{k}|110\rangle+\beta_{k}|001\rangle\right)
$$

But two terms remain which are not symmetric::

$$
\pi_{110}+\pi_{001}
$$

So we add the terms

$$
\pi_{101}+\pi_{010}
$$

This addition does not affect the process?

The Solutions

$$
\begin{aligned}
& \sum_{k} \alpha_{k}=0 \\
& \sum_{k} \alpha_{k}^{2}=0
\end{aligned}
$$

$$
\rho_{A B M}=\frac{1}{6} \sum_{k=0}^{3}\left|\psi_{k}\right\rangle\left\langle\psi_{k}\right| \otimes\left|\psi_{-k}\right\rangle\left\langle\psi_{-k}\right| \otimes|0\rangle\langle 0|+\frac{1}{6} \sum_{i=0}^{1}|i, i, 1\rangle\langle i, i, 1|
$$

$$
\left|\psi_{k}\right\rangle=\frac{1}{\sqrt{2}}\left(|0\rangle+e^{\frac{i \pi}{2} k}|1\rangle\right)
$$

T. S. Cubitt, F. Verstraete, W. Dür, and J. I. Cirac,

Phys. Rev. Lett. 91, 037902 (2003).

Distribution of d-level Bell States

CNOT

$$
C N O T|i, j\rangle=|i, i+j\rangle
$$

Distribution of d-level Bell States

$$
|\psi\rangle_{k}=\frac{1}{\sqrt{d}}\left(|0\rangle+\alpha_{k}|1\rangle+\beta_{k}|2\rangle+\cdots \xi_{k}|d-1\rangle\right)
$$

How many states we need?
What are the form of these states?

Distribution of d-level Bell States

$$
\begin{array}{r}
\left|\psi_{k}\right\rangle=\frac{1}{\sqrt{d}} \sum_{j=0}^{d-1} \omega^{k s_{j}}|j\rangle \\
\omega= \\
\left|\psi_{k}\right\rangle=\frac{1}{\sqrt{d}}\left(\omega^{s_{0} k}|0\rangle+\omega^{s_{1} k}|1\rangle+\omega^{s_{2} k}|2\rangle+\cdots\right)
\end{array}
$$

The number of states $=\mathrm{K}$

Distribution of d-level Bell States

$$
\left|\psi_{k}\right\rangle_{A}=\frac{1}{\sqrt{d}} \sum_{j} \omega^{k s_{j}}|j\rangle \quad\left|\psi_{k}\right\rangle_{B}=\frac{1}{\sqrt{d}} \sum_{j} \omega^{-k s_{j}}|j\rangle
$$

\bigcirc

$$
\omega=e^{\frac{2 \pi i}{K}}
$$

$$
\begin{aligned}
& \left|\Psi_{k}^{1}\right\rangle_{A M}=\frac{1}{\sqrt{d}} \sum_{j=0}^{d-1} \omega^{k s_{j}}|j, j\rangle \\
& \left|\Psi_{k}^{1}\right\rangle_{A M B}=\frac{1}{\sqrt{d}} \sum_{j, j^{\prime}} \omega^{\left(s_{j}-s_{j^{\prime}}\right) k}\left|j, j, j^{\prime}\right\rangle \\
& \left|\Psi_{k}^{2}\right\rangle_{A M B}=\frac{1}{\sqrt{d}} \sum_{j, j^{\prime}} \omega^{\left(s_{j}-s_{j^{\prime}}\right) k}\left|j, j-j^{\prime}, j^{\prime}\right\rangle
\end{aligned}
$$

$$
\mathrm{a}: s_{j}<\frac{K}{2}
$$

$$
\mathrm{b}: s_{i}=s_{j} \quad \longrightarrow \quad i=j
$$

$$
\mathrm{c}: s_{i}+s_{j}=s_{k}+s_{l} \longrightarrow\left\{\begin{array}{l}
(i, j)=(k, l) \\
(i, j)=(l, k)
\end{array}\right.
$$

0
 $0 \quad \begin{gathered}d-1 \\ 0\end{gathered}$
S_{0}
S_{1}
s_{2}
S3
\mathcal{S}_{d-1}

$$
s_{i}+s_{j} \neq s_{k}+s_{l}
$$

For d=3 (Qutrits)

$$
\begin{array}{cccc}
s_{i} & 0 & 1 & 2 \\
& 0 & 1 & 3
\end{array}
$$

$$
s_{i}+s_{j} \neq s_{k}+s_{l}
$$

$$
\begin{gathered}
s_{i} \quad 1 \quad 3 \\
\left|\psi^{k}\right\rangle_{A}=\frac{1}{\sqrt{3}}\left(|0\rangle+\omega^{k}|1\rangle+\omega^{3 k}|2\rangle\right) \\
K=7 \quad \omega \text { is the } 7 \text { th root of unity. }
\end{gathered}
$$

$$
\begin{array}{llll}
0 & 1 & 2 & 3 \\
0 & 0 & 0 & 0 \\
0 & 1 & 3 & 4 \\
0 & 1 & 3 & 5 \\
0 & 1 & 3 & 6 \\
0 & 1 & 3 & 7 \\
& & & \\
& s_{i}+s_{j} \neq s_{k}+s_{l}
\end{array}
$$

Distribution of GHZ states

$\alpha_{k} \beta_{k} \gamma_{k}=1$

$\left|\Psi_{k}^{1}\right\rangle_{A M_{1} M_{2} B C}=\left(|000\rangle+\alpha_{k}|111\rangle\right)\left(|0\rangle+\beta_{k}|1\rangle\right)\left(|0\rangle+\gamma_{k}|1\rangle\right)$
(B)
$|0\rangle+\gamma_{k}|1\rangle$
©
$|0\rangle+\beta_{k}|1\rangle$

©

$$
\left|\Psi_{k}^{2}\right\rangle=\frac{1}{2}\left(|00\rangle|G H Z\rangle+|01\rangle\left|\chi_{k}^{01}\right\rangle+|10\rangle\left|\chi_{k}^{10}\right\rangle+|11\rangle\left|\chi_{k}^{11}\right\rangle\right)
$$

c

$$
\begin{aligned}
& \left|\chi_{k}^{01}\right\rangle=\frac{1}{\sqrt{2}}\left(\gamma_{k}|000\rangle+\gamma_{k}^{-1}|11\rangle\right) \\
& \left|\chi_{k}^{10}\right\rangle=\frac{1}{\sqrt{2}}\left(\beta_{k}|000\rangle+\beta_{k}^{-1}|111\rangle\right) \\
& \left|\chi_{k}^{11}\right\rangle=\frac{1}{\sqrt{2}}\left(\alpha_{k}|000\rangle+\alpha_{k}^{-1}|111\rangle\right)
\end{aligned}
$$

The results of measurement of the messengers determine the type of GHZ state obtained!

Removing the entanglement after stage 2 by mixing:

$$
\begin{aligned}
& \sum_{k} \alpha_{k}=0 \\
& \sum_{k} \beta_{k}=0
\end{aligned}
$$

$$
\sum_{k} \gamma_{k}=0
$$

$$
\sum_{k} \frac{\alpha_{k}}{\beta_{k}}=\sum_{k} \frac{\alpha_{k}}{\gamma_{k}}=\sum_{k} \frac{\beta_{k}}{\gamma_{k}}=0
$$

Symmetrization

All local operations are done by A on the messengers Messengers are separate from B and C
(C)

We make this state symmetric with respect to

$$
\left(\mathrm{M}_{1} \longleftrightarrow \mathrm{~B}\right) \text { and }\left(\mathrm{M}_{2} \longleftrightarrow \mathrm{C}\right)
$$

Removing the entanglement after stage 1 by symmetrization

$$
\sum_{k} \alpha_{k}^{2}=\sum_{k} \beta_{k}^{2}=\sum_{k} \gamma_{k}^{2}=0
$$

Removing the entanglement after stage 1 by symmetrization

$$
\sum_{k} \alpha_{k}^{2}=\sum_{k}\left\{_{k}^{2}=\right\rangle_{k} \gamma_{k}^{2}=0
$$

Solution

$$
\begin{aligned}
& \sum_{k} \alpha_{k}=0 \\
& \sum_{k} \alpha_{k}^{2}=0 \\
& \sum, Q_{i}=0 \text { • } \\
& \sum \sum_{1}^{2}=0 \\
& \sum_{1} \mathrm{q}_{\mathrm{i}}=0 \\
& \sum \beta_{1}=0 \\
& \sum_{\sum_{\bar{\beta}}^{\alpha}=0}^{\alpha_{1}}
\end{aligned}
$$

$$
\begin{aligned}
& \beta_{k}=\alpha_{k}^{2} \quad \gamma_{k}=\alpha_{k}^{-3} \\
& \alpha_{k} \beta_{k} \gamma_{k}=1
\end{aligned}
$$

Solution

$$
\sum_{k} \alpha_{k}=0
$$

$$
\sum_{k} \alpha_{k}^{2}=0
$$

$$
\sum_{k} \alpha_{k}^{4}=0
$$

$$
\sum_{k} \alpha_{k}^{3}=0
$$

$$
\sum_{k} \alpha_{k}^{6}=0
$$

$$
\sum_{k} \alpha_{k}^{5}=0
$$

$\alpha_{k}=\omega^{k}$

$$
\begin{aligned}
& 1+\omega^{1}+\omega^{2}+\omega^{3}+\omega^{4}+\omega^{5}+\omega^{6}=0 \\
& 1+\omega^{2}+\omega^{4}+\omega^{6}+\omega^{1}+\omega^{3}+\omega^{5}=0 \\
& 1+\omega^{3}+\omega^{6}+\omega^{2}+\omega^{5}+\omega^{1}+\omega^{4}=0
\end{aligned}
$$

$$
\omega=e^{\frac{2 \pi i}{7}}
$$

We can distribute GHZ states with probability
7

Summary:

There is a systematic way to produce Bell states and GHZ GHZ(n) states in any dimension, by using only separable messengers.

Thanks for your attention

