Secure alignment of coordinate systems

Asia-Pacific Conference and Workshop in Quantum Information Science

Vabid Karimipour,
Sharif University of Technology,
Tehran, Iran.

Many QI tasks need a

Common Reference Frame

Teleportation

Even sending classical information through a quantum channel needs a Common Reference Frame

0001110001110001

The Goal:
 To set up a shared reference frame

Unspeakable Information

Unspeakable Information

How do you define "Left"

in a dictionary?

sharing a direction with a single spin

1
Alice

Random Guess

$$
\begin{aligned}
F(\mathbf{m}) & =P(\mathbf{n} \mid \mathbf{m})|\langle\mathbf{n} \mid \mathbf{m}\rangle|^{2}+P(-\mathbf{n} \mid \mathbf{m})|\langle-\mathbf{n} \mathbf{m}\rangle|^{2} \\
& =|\langle\mathbf{n} \mid \mathbf{m}\rangle|^{4}+|\langle-\mathbf{n} \mid \mathbf{m}\rangle|^{4}
\end{aligned}
$$

$$
\bar{F}=\int d \mathbf{m} F(\mathbf{m})=\frac{2}{3}
$$

Using N spins

Optimal measurement

Massar and Popescu, PRL (1995).

An interesting question

IT
 OR

Which pair is better?

Gisin and Popescu, PRL(1999).

$$
\begin{aligned}
& |m\rangle \\
& \left|\psi_{m}\right\rangle \\
& F=\int d n \int d m \mathrm{P}(\mathrm{n} \mid \mathrm{m}) F(n, m) \quad F(n, m)=\frac{1+n \cdot m}{2}
\end{aligned}
$$

$$
\left|\theta_{i}\right\rangle=\alpha\left|\mathbf{n}_{i},-\mathbf{n}_{i}\right\rangle+\beta|\omega\rangle
$$

II

There is no universal NOT

4

$$
\bar{F}=\frac{N+1}{N+2}
$$

N

Massar and Popescu, PRL (1995).
Existence of Continuous Optimal measurement

Derka, Buzek, and Ekert, PRL (1998)
Construction of finite Optimal measurement

Latorre, Pascual, and Tarrach (1998)
Construction of minimal Optimal measurement for $\mathbf{N}<7$

The problem of security

Eve can do measurement on half of the spins

Using entanglement

$$
|\psi\rangle=\frac{1}{\sqrt{2}}(|01\rangle-|10\rangle)
$$

F. Rezazadeh, A. Mani, V. Karimipour Phys. Rev. A, 96, 022310 (2017)

The idea of QKD:

Alice
QKD: Publicly announce bases

Keep the results for yourself.

The idea of Direction Sharing

And use the correlations to align the bases

$a_{i}=1 \quad|\psi\rangle=\frac{1}{\sqrt{2}}(|01\rangle-|10\rangle)$
 $$
a_{i}=-1
$$
 $$
b_{i}=1
$$

Perfect Correlation

$$
q_{N}=\frac{1}{N} \sum_{i} a_{i} b_{i}=1
$$

$$
\begin{aligned}
& a_{i}=1 \\
& |\psi\rangle=\frac{1}{\sqrt{2}}(|01\rangle-|10\rangle) \\
& \text { Some Correlation } \quad b_{i}=-1
\end{aligned}
$$

$$
q_{N}=\frac{1}{N} \sum_{i} a_{i} b_{i}
$$

When we have infinite pairs

$$
\begin{gathered}
q_{N}=\frac{1}{N} \sum_{i} a_{i} b_{i} \\
N \rightarrow \infty \\
q_{\infty}=P_{++}+P_{--}-P_{+-}-P_{-+} \\
q_{\infty}=\cos \alpha
\end{gathered}
$$

A naive method: Brute force search

One measurement is not enough!

With three measurements:

However

The number of pairs is not infinite!

So we have to estimate the angle
from a correlation which has fluctuations.

The probability that the correlation is q_{N} if the angle is α

$$
\left\langle q_{N}\right\rangle=\cos \alpha
$$

$$
\left\langle q_{N}^{2}\right\rangle=\cos ^{2} \alpha+\frac{1}{N} \sin ^{2} \alpha
$$

The Baeysian Approach

$$
P\left(\alpha \mid q_{N}\right)
$$

What is the probability that the angle is α if the correlation is q_{N}

$$
P\left(\mathbf{m} \mid q_{N}\right)
$$

$$
\begin{gathered}
P\left(\mathbf{m} \mid q_{N}\right)=\frac{P\left(q_{N} \mid \mathbf{m}\right) P(\mathbf{m})}{P\left(q_{N}\right)} \\
P\left(q_{N}\right)=\int P\left(q_{N} \mid \mathbf{m}\right) P(\mathbf{m}) d \mathbf{m} \\
\mathbf{m}_{e}=\int \mathbf{m} P\left(\mathbf{m} \mid q_{N}\right) d \mathbf{m} \\
\cos \alpha_{e}=\frac{N}{N+2} q_{N}
\end{gathered}
$$

A first estimate

$$
\mathbf{m}_{e}=\cos \alpha_{e} \mathbf{x}+\cos \beta_{e} \mathbf{y}+\cos \gamma_{e} \mathbf{z}
$$

However the vector is not normalized:

$$
\cos ^{2} \alpha_{e}+\cos ^{2} \beta_{e}+\cos ^{2} \gamma_{e} \neq 1
$$

$$
\operatorname{Pr}(\text { inadmissible })<\left(\frac{N}{N+2}\right)^{2}\left(\frac{2}{3}+\frac{4}{3 N}\right)
$$

A rough estimate $\quad \operatorname{Pr}($ inadmissible $)<\frac{2}{3}$

Exact calculation

$$
\operatorname{Pr}(\text { inadmissible }) \approx \frac{1}{3}
$$

A good estimate with three measurements

$$
\mathbf{m}_{e}=\frac{1}{\sqrt{q_{x}^{2}+q_{y}^{2}+q_{z}^{2}}}\left(q_{x} \mathbf{x}+q_{y} \mathbf{y}+q_{z} \mathbf{z}\right)
$$

Comparison with previous methods

Our method

- Other methods

$$
\bar{F}_{N}=\frac{3 N+1}{3 N+2}
$$

Advantages of our method-1

N -qubit measurement

Alice

Bob

1-qubit
measurement

2- The problem of security

Eve cannot unravel the shared direction, since only unspeakable information is being communicated.

Thank you for your attention

