Secure alignment of coordinate systems

Asia-Pacific Conference and Workshop in Quantum Information Science

Vahid Karimipour, Sharif University of Technology, Tehran, Iran. Many QI tasks need a Common Reference Frame

Teleportation

Even sending classical information through a quantum channel needs a Common Reference Frame

Alice

The Goal: To set up a shared reference frame

Ζ

y

X

X

Unspeakable Information

Unspeakable Information

[troo] adj. real; genuine; loyal; sincere; faithful; not false; a true friend. How do you define "Left" in a dictionary?

sharing a direction with a single spin

Alice

Bob

Random Guess

 $|{f m}
angle$

 $P(\mathbf{n}|\mathbf{m}) = |\langle \mathbf{n}|\mathbf{m}\rangle|^2$

 $|{f n}
angle$

 $-\mathbf{n}\rangle$

 $P(-\mathbf{n}|\mathbf{m}) = |\langle -\mathbf{n}|\mathbf{m}\rangle|^2$

 $F(\mathbf{m}) = P(\mathbf{n}|\mathbf{m})|\langle \mathbf{n}|\mathbf{m}\rangle|^2 + P(-\mathbf{n}|\mathbf{m})|\langle -\mathbf{n}\mathbf{m}\rangle|^2$ $= |\langle \mathbf{n}|\mathbf{m}\rangle|^4 + |\langle -\mathbf{n}|\mathbf{m}\rangle|^4$

$$\overline{F} = \int d\mathbf{m} F(\mathbf{m}) = \frac{2}{3}$$

Optimal measurement

N

Massar and Popescu, PRL (1995).

An interesting question

11

Gisin and Popescu, PRL(1999).

 $|m\rangle$

 $|\phi_1
angle$ $|\phi_2\rangle$ $|\phi_4\rangle$ $|\phi_3|$

 E_n

 $P(n \mid m) = \left\langle \boldsymbol{\psi}_{m} \middle| \boldsymbol{E}_{n} \middle| \boldsymbol{\psi}_{m} \right\rangle$

 $F(n,m) = \frac{1+n \cdot m}{2}$

 $F = \int dn \int dm \ P(n|m) \ F(n,m)$

$|\phi_1\rangle$ $|\phi_3\rangle$ $|\phi_4\rangle$ $|\phi_2\rangle$

There is no universal NOT

 $\overline{F} = \frac{N+1}{N+2}$

Massar and Popescu, PRL (1995). Existence of Continuous Optimal measurement

Derka, Buzek, and Ekert, PRL (1998) Construction of finite Optimal measurement

Latorre, Pascual, and Tarrach (1998) Construction of minimal Optimal measurement for N<7

The problem of security

Bob

Eve

Eve can do measurement on half of the spins

$$|\psi\rangle = \frac{1}{\sqrt{2}}(|01\rangle - |10\rangle)$$

F. Rezazadeh, A. Mani, V. Karimipour Phys. Rev. A, 96, 022310 (2017)

The idea of QKD:

Alice

QKD: Publicly announce bases

Bob

Keep the results for yourself.

The idea of Direction Sharing

Alice

Publicly announce the results

Bob

And use the correlations to align the bases

 $b_i = -1$ $|\psi\rangle = \frac{1}{\sqrt{2}}(|01\rangle - |10\rangle)$ $a_i = 1$ $b_{i} = 1$ $a_i = -1$ **Perfect Correlation** $q_N = \frac{1}{N} \sum_i a_i b_i = 1$

 $|\psi\rangle = \frac{1}{\sqrt{2}}(|01\rangle - |10\rangle)$

 $b_i = 1$

 α

 $b_i = -1$

Some Correlation

$$q_N = \frac{1}{N} \sum_i a_i b_i$$

When we have infinite pairs

$$q_N = \frac{1}{N} \sum_i a_i b_i$$

 $N \longrightarrow \infty$

 $q_{\infty} = P_{++} + P_{--} - P_{+-} - P_{-+}$

 $q_{\infty} = \cos \alpha$

A naive method: Brute force search

 α

One measurement is not enough!

With three measurements:

X

Ζ

 $q_x = \cos \alpha$

$$q_y = \cos\beta$$

 $q_z = \cos \gamma$

 $\mathbf{m} = q_x \mathbf{x} + q_y \mathbf{y} + q_z \mathbf{z}$

V

However

The number of pairs is not infinite!

So we have to estimate the angle from a correlation which has fluctuations.

$P(q_N|\alpha)$

 α

The probability that the correlation is q_N if the angle is α

$P(q_N|\alpha)$

 α

 $\langle q_N \rangle = \cos \alpha$

$$\langle q_N^2 \rangle = \cos^2 \alpha + \frac{1}{N} \sin^2 \alpha$$

The Baeysian Approach

 $P(\alpha|q_N)$

What is the probability that the angle is α if the correlation is q_N

 $P(\mathbf{m} \mid q_N)$

$$P(\mathbf{m}|q_N) = \frac{P(q_N|\mathbf{m})P(\mathbf{m})}{P(q_N)}$$

$$P(q_N) = \int P(q_N | \mathbf{m}) P(\mathbf{m}) d\mathbf{m}$$

$$\mathbf{m}_e = \int \mathbf{m} P(\mathbf{m} \mid q_N) d\mathbf{m}$$

$$\cos \alpha_e = \frac{N}{N+2}q_N$$

A first estimate

 $\mathbf{m}_e = \cos \alpha_e \, \mathbf{x} + \cos \beta_e \, \mathbf{y} + \cos \gamma_e \, \mathbf{z}$

However the vector is not normalized:

$$\cos^2 \alpha_e + \cos^2 \beta_e + \cos^2 \gamma_e \neq 1$$

 $Pr(inadmissible) < \left(\frac{N}{N+2}\right)^2 \left(\frac{2}{3} + \frac{4}{3N}\right)$

A rough estimate

Exact calculation

 $Pr(inadmissible) \approx \frac{1}{3}$

A good estimate with three measurements

 $\mathbf{m}_e = \frac{1}{\sqrt{q_x^2 + q_y^2 + q_z^2}} \left(q_x \mathbf{x} + q_y \mathbf{y} + q_z \mathbf{z} \right)$

Comparison with previous methods

Our method

Other methods

 $\overline{F}_N = \frac{3N+1}{3N+2}$

Advantages of our method-1

N-qubit measurement

Bob

1-qubit measurement

Alice

2- The problem of security

Eve cannot unravel the shared direction, since only

unspeakable

information is being communicated.

Thank you for your attention