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Objectives
• To understand the basic ideas of:

Topological Qubit

Topological Order

Kitaev Model

Topological Quantum Computation
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Classical Bits



Quantum Bits

= a +b
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The early computers and computes of today

Intel Broadwell-EP Xeon

7.2 Billion Transistors



16 Giga Bytes

3.8 GHz

1300 US dollars

1 Kilo byte

1 KHz

10s of millions of dollars

Computers of today and those of 
tomorrow
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Classical Bits Have 
  

Four  

Very Good Properties



1- Bits are Macroscopic Objects

0 1
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2- Bits can be cloned

0 000



3- Errors are discrete

0  ———————>  1

1  ———————>  0



4- Bits can be observed

010 000

And corrected



Qubits have exactly the 
opposite properties



They are microscopic

Bit Qubit



They cannot be 
cloned
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ψ ⊗ 0 → ψ ⊗ ψ



Quantum Errors are 
continuous
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= a +b = a ' +b '



They cannot be 
observed
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= a +b



Topological Qubits

Merging the good features of both



a 0 + b 1

0 1



Ising Model
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H = − ziz j
<i, j>
∑

0 = ↑↑↑ ....↑↑↑ 1 = ↓↓↓ ....↓↓↓



00000000 11111111

H = − ziz j
<i, j>
∑

Symmetry Breaking
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σ z = 1

0

Local Order
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σ z = −1

1



But local order cannot 
produce a topological 

qubit!
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GHZ = 1
2
0000 + 1111( )

0000 1111

Local order is extremely fragile

1
2

1
2



W = 1
2
1000 + 0100 + 0010 + 0001( )

W0 = 1
3
100 + 010 + 001( )

3
4

1
4

W1 = 000



GHZ = 1
2
00......00 + 11......11( )

1
2

00......00

1
2

11......11



W = 1
N

100....000 + 010....000 + 001....000 + .....+ 00....001( )

W0 = 1
N −1

100....00 + 010....00 + 001....00 + .....+ 00....01( )

N −1
N



1-Degenerate ground state

2-Existence of Gap

3-Not locally distinguishable

What we want?

4-Robust to perturbations

= a +b



A system with degenerate ground state

ψ 0 K ψ 0 = ψ 1 K ψ 1

ψ 0 ψ 1

which cannot be distinguished,  
by any local observable!



The Stabilizer Formalism
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GHZ = 000 + 111

X1X2X3 GHZ = GHZ

Z1Z2 GHZ = GHZ

S = {I ,Z1Z2,Z1Z3,X1X2X3}



The Stabilizer Formalism
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S1

+1

−1



The Stabilizer Formalism
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S1 S2
+1,+1

+1,−1
−1,+1

−1,−1



The Stabilizer Formalism
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S1 S2 S3

2N

2*2*2



The Stabilizer Formalism
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S1 S2

2N

2kSk…….



The Hamiltonian

A ground state

All the local operators

H = −S1 − S2 − .....− Sk

H ψ = −k ψ



The order of 
degeneracy
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2N

2k
= 2 N−k



The Kitaev Model

42



43

x = 0 1
1 0

⎛
⎝⎜

⎞
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z = 1 0
0 −1

⎛
⎝⎜

⎞
⎠⎟

z + = −

z − = +

Notations

0
1

+
−{ {

x 0 = 1

x 1 = 0



As = x1x2x3x4

As
2 = I

Number of vertices=N 

Number of links=2N

Number of independent A’s = N-1

As = I
s
∏

Degeneracy = 2
2N

2N−1 = 2
N+1

Dimension  of   Hilbert  Space = 22N



Number of faces = N

Bp = z1z2z3z4

Number of Independent B’s = N-1

Bp = I
p
∏

Bp
2 = I



As ,Bp⎡⎣ ⎤⎦ = 0

Degeneracy = 22N

22N−2 = 4

H = − As
s
∑ − Bp

p
∑
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H = − As
s
∑ − Bp

p
∑

The ground state

As φ = φ Bp φ = φ



Ω = + ⊗N

As Ω = Ω

z + = −

Bp Ω ≠ Ω

The ground state?



Bp (1+ Bp ) = Bp +1

φ = (1+ Bp ) Ω

As φ = φ

Bp φ = φ

ϕ0 = (1+ Bp )
p
∏ Ω



What the ground state looks like?



Z1 = zi
i∈C1
∏

Where is the degeneracy?

Z1  ,  H[ ]= 0



The line can be deformed

Z1 = zi
i∈C1
∏



Where is the degeneracy?

≠



Z2 = zi
i∈C2
∏

Z2  ,  H[ ]= 0



φ00 φ01 = Z1 φ00 φ10 = Z2 φ00 φ11 = Z1Z2 φ00

Four ground states
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We achieved goal no. 1

Degenerate Ground States.
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We also achieved goal no. 2

There is a finite Gap

H = − As
s
∑ − Bp

p
∑

ΔE = 2



Can we distinguish the ground states  
by local observation?

Z1O =OZ1
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Can we distinguish the ground states  
by local observation?

φ O φ = φ ' O φ '

φ ' O φ ' = φ Z1OZ1 φ = φ Z1Z1O φ = φ O φ
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So we have also achieved goal 3:

The states are not distinguishable locally.
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What about goal 4?

What happens if I perturb the Hamiltonian?
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ΔEα = ψα Oi ψα
i
∑

ΔEα = ΔEβ

ΔEα ΔEβ

H → H + Oi
i
∑
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So we have also achieved goal 4:

The states are robust under perturbations.

We have two topological qubits.



More Qubits
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What we have left out:

Anyonic Excitations

Moving anyons and performing gates

Non-Abelian Anyons and Universal quantum 
computation
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Thank you for your attention



String operators which distinguish the 
states!

X1 = xi
i=1

N

∏

X1Z1 = −Z1X1

[X1,H ]= 0



Excited States: 1- Electric Anyons.

Each Anyon has an energy of  

2 units.

Anyons are created in pairs.

The energy of the pair doesn’t  
depend on the path connecting them.



Another interpretation of String Operators



So by creating two electric Anyons, 

Moving them across the Torus,

And annihilating them in the end,

We can implement a X gate on either of the qubits. 
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ψ 00

1

1

ψ 10 = Z1 ψ 00

−1

1

ψ 01 = Z2 ψ 00

1

−1

ψ 11 = Z2Z1 ψ 00

−1

−1

X1
X2



Excited States: Magnetic Anyons



Another interoperation of string operators



So by creating two Magnetic Anyons, 

Moving them across the Torus,

And annihilating them in the end,

We can implement a Z gate on either of the qubits. 



Electric excitations behave as Bosons with respect to each other.

Magnetic excitations behave as Bosons with respect to each other.

But Electric and Magnetic excitations behave as Fermions 
 with respect to each other.



Why These are Anyons?



So we can do simple, 

 X, Z and Y gates  

in a fault-tolerant way. 



Unfortunately 
the Abelian Models 
are not Universal.

We have to consider  
Non-Abelian Models.
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Non-Abelian Anyons

ψ i →Uij ψ j
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Thank you for your attention


