Sharif Quantum Information Group

Topological Quantum Computation

Vahid Karimipour, Sharif University of Technology, Tehran, Iran.

New Advances in Condensed Matter Physics:
Quantum transport, topological effects and energy conversion in low-dimensional systems
Khiva, Uzbekistan, 2017

Objectives

- To understand the basic ideas of:

Topological Qubit

Topological Order
Kitaev Model

Topological Quantum Computation

Classical Bits

Quantum Bits

The early computers and computes of today

Intel Broadwell-EP Xeon
7.2 Billion Transistors

Computers of today and those of tomorrow

16 Giga Bytes

1 Kilo byte

1 KHz

10s of millions of dollars

Classical Bits Have

Four

Very Good Properties

1- Bits are Macroscopic Objects

0

2- Bits can be cloned

3- Errors are discrete

4- Bits can be observed

$010 \longrightarrow 000$

And corrected

Qubits have exactly the opposite properties

They are microscopic

Bit
Qubit

They cannot be cloned

$$
|0\rangle\rangle \longrightarrow-| 0\rangle|0\rangle
$$

Quantum Errors are continuous

They cannot be observed

$$
\left.\begin{array}{l}
|0\rangle=a|0\rangle+b|0\rangle \\
|0\rangle
\end{array}\right\rangle|0\rangle
$$

Topological Qubits

Merging the good features of both

$$
a|\overline{0}\rangle+b|\overline{1}\rangle
$$

Ising Model

$$
H=-\sum_{\langle, j,\rangle} z_{i} z_{j}
$$

$$
|\overline{0}\rangle=|\uparrow \uparrow \uparrow \ldots \uparrow \uparrow \uparrow\rangle \quad|\overline{1}\rangle=|\downarrow \downarrow \downarrow \ldots . \downarrow \downarrow \downarrow\rangle
$$

Symmetry Breaking

$$
H=-\sum_{\langle i, j\rangle} z_{i} z_{j}
$$

Local Order

But local order cannot produce a topological qubit!

Local order is extremely fragile

$$
|G H Z\rangle=\frac{1}{\sqrt{2}}(|0000\rangle+|1111\rangle)
$$

$|0000\rangle \quad|1111\rangle$

$$
|W\rangle=\frac{1}{2}(|1000\rangle+|0100\rangle+|0010\rangle+|0001\rangle)
$$

$$
\left.\left|W_{1}\right\rangle=|000\rangle \quad\left|W_{0}\right\rangle=\frac{1}{\sqrt{3}}(100\rangle+|010\rangle+|001\rangle\right)
$$

$$
|G H Z\rangle=\frac{1}{\sqrt{2}}(|00 . \ldots . .00\rangle+|11 \ldots . . .11\rangle)
$$

$|0000\rangle \quad|11 \ldots . . .11\rangle$

$$
|W\rangle=\frac{1}{\sqrt{N}}(|100 \ldots .000\rangle+|010 \ldots . .000\rangle+|001 \ldots . .000\rangle+\ldots \ldots+|00 \ldots .001\rangle)
$$

$$
\frac{N-1}{N}
$$

$$
\left|W_{0}\right\rangle=\frac{1}{\sqrt{N-1}}(|100 \ldots . \ldots 0\rangle+|010 \ldots . \ldots 0\rangle+|001 \ldots . \ldots 0\rangle+\ldots . .+|00 \ldots . .01\rangle)
$$

What we want?

$$
|仓\rangle=a|\boldsymbol{\bullet}\rangle+b|\boldsymbol{\bullet}\rangle
$$

1-Degenerate ground state
2-Existence of Gap
3-Not locally distinguishable
4-Robust to perturbations

A system with degenerate ground state

$$
\left|\psi_{0}\right\rangle
$$

which cannot be distinguished, by any local observable!

$$
\left\langle\psi_{0}\right| K\left|\psi_{0}\right\rangle=\left\langle\psi_{1}\right| K\left|\psi_{1}\right\rangle
$$

The Stabilizer Formalism

$$
\begin{gathered}
|G H Z\rangle=|000\rangle+|111\rangle \\
X_{1} X_{2} X_{3}|G H Z\rangle=|G H Z\rangle \\
Z_{1} Z_{2}|G H Z\rangle=|G H Z\rangle \\
S=\left\{I, Z_{1} Z_{2}, Z_{1} Z_{3}, X_{1} X_{2} X_{3}\right\}
\end{gathered}
$$

The Stabilizer Formalism
S_{1}

The Stabilizer Formalism

$S_{1} S_{2}$

The Stabilizer Formalism

$S_{1} S_{2} S_{3}$

The Stabilizer Formalism $\quad 2^{N}$
$S_{1} S_{2} \ldots \ldots S_{k}$

The Hamiltonian

$$
H=-S_{1}-S_{2}-\ldots . .-S_{k}
$$

All the local operators

$$
H|\psi\rangle=-k|\psi\rangle
$$

A ground state

The order of degeneracy

$$
\frac{2^{N}}{2^{k}}=2^{N-k}
$$

The Kitaev Model

Notations

$A_{s}^{2}=I$
$\prod A_{s}=I$

Number of vertices=N

Number of links=2N

Dimension of Hilbert Space $=2^{2 N}$
Number of independent A's $=\mathrm{N}-1$

Degeneracy $=\frac{2^{2 N}}{2^{N-1}}=2^{N+1}$

$$
\begin{aligned}
& B_{p}^{2}=I \\
& \prod_{n} B_{p}=I
\end{aligned}
$$

Number of faces $=\mathrm{N}$
Number of Independent B's = N-1

$$
\begin{gathered}
{\left[A_{s}, B_{p}\right]=0} \\
H=-\sum_{s} A_{s}-\sum_{p} B_{p}
\end{gathered}
$$

$$
\text { Degeneracy }=\frac{2^{2 N}}{2^{2 N-2}}=4
$$

The ground state

$$
H=-\sum_{s} A_{s}-\sum_{p} B_{p}
$$

$$
A_{s}|\phi\rangle=|\phi\rangle \quad B_{p}|\phi\rangle=|\phi\rangle
$$

The ground state?

$$
\begin{aligned}
& |\Omega\rangle=\mid+)^{e v} \\
& A_{\Delta}|\Omega\rangle=|\Omega\rangle
\end{aligned}
$$

$$
\begin{aligned}
& B_{p}\left(1+B_{p}\right)=B_{p}+1 \\
& |\phi\rangle=\left(1+B_{p}\right)|\Omega\rangle \\
& A_{s}|\phi\rangle=|\phi\rangle \\
& B_{p}|\phi\rangle=|\phi\rangle \\
& \left|\varphi_{o}\right\rangle=\prod_{p}\left(1+B_{p}\right)|\Omega\rangle
\end{aligned}
$$

What the ground state looks like?

Where is the degeneracy?

The line can be deformed

Where is the degeneracy?

Four ground states

$$
\left|\phi_{00}\right\rangle \quad\left|\phi_{01}\right\rangle=Z_{1}\left|\phi_{00}\right\rangle \quad\left|\phi_{00}\right\rangle=Z_{2}\left|\phi_{00}\right\rangle \quad\left|\phi_{11}\right\rangle=z_{1} z_{2}\left|\phi_{00}\right\rangle
$$

We achieved goal no. 1

Degenerate Ground States.

We also achieved goal no. 2

There is a finite Gap

$$
H=-\sum_{s} A_{s}-\sum_{p} B_{p}
$$

Can we distinguish the ground states by local observation?

$$
Z_{1} O=O Z_{1}
$$

Can we distinguish the ground states by local observation?

$$
\langle\phi| O|\phi\rangle=\langle\phi| O\left|\phi^{\prime}\right\rangle
$$

$$
\left\langle\phi^{\prime}\right| O\left|\phi^{\prime}\right\rangle=\langle\phi| Z_{1} O Z_{1}|\phi\rangle=\langle\phi| Z_{i} Z_{1} O|\phi\rangle=\langle\phi| O|\phi\rangle
$$

So we have also achieved goal 3:

The states are not distinguishable locally.

What about goal 4?

What happens if I perturb the Hamiltonian?

$$
H \rightarrow H+\sum_{i} O_{i}
$$

$$
\Delta E_{\alpha}=\left\langle\psi_{\alpha}\right| \sum_{i} O_{i}\left|\psi_{\alpha}\right\rangle
$$

$$
\Delta E_{\alpha}=\Delta E_{\beta}
$$

So we have also achieved goal 4:

The states are robust under perturbations.

We have two topological qubits.

More Qubits

What we have left out:

Anyonic Excitations

Moving anyons and performing gates

Non-Abelian Anyons and Universal quantum computation

Thank you for your attention

String operators which distinguish the states!

$$
X_{1} Z_{1}=-Z_{1} X_{1}
$$

$$
\left[X_{1}, H\right]=0
$$

Excited States: 1- Electric Anyons.

Each Anyon has an energy of
2 units.

Anyons are created in pairs.

The energy of the pair doesn't depend on the path connecting them.

Another interpretation of String Operators

So by creating two electric Anyons,

Moving them across the Torus,

And annihilating them in the end,

We can implement a X gate on either of the qubits.

	$\left\|\psi_{00}\right\rangle$	$\left\|\psi_{10}\right\rangle=Z_{1}\left\|\psi_{00}\right\rangle$	$\left\|\psi_{01}\right\rangle=Z_{2}\left\|\psi_{00}\right\rangle$	$\left\|\psi_{11}\right\rangle=Z_{2} Z_{1}\left\|\psi_{00}\right\rangle$
X_{1}	1	-1	1	-1
X_{2}	1	1	-1	-1

Excited States: Magnetic Anyons

Another interoperation of string operators

So by creating two Magnetic Anyons,

Moving them across the Torus,

And annihilating them in the end,

We can implement a Z gate on either of the qubits.

Electric excitations behave as Bosons with respect to each other.

Magnetic excitations behave as Bosons with respect to each other.

But Electric and Magnetic excitations behave as Fermions with respect to each other.

Why These are Anyons?

So we can do simple,

X, Z and Y gates

in a fault-tolerant way.

Unfortunately
 the Abelian Models are not Universal.

We have to consider Non-Abelian Models.

Non-Abelian Anyons

Thank you for your attention

