

$$
\begin{equation*}
\rho=\frac{\lambda}{2}(|\psi\rangle\langle\psi|+|\phi\rangle\langle\phi|)+\frac{1-\lambda}{d} I_{d} \tag{1}
\end{equation*}
$$

كه در آن و و حساب كنيد. و صحت نامساوى زير رادر مورد آن تحقيق كنيد:

$$
\begin{equation*}
\left(\frac{\lambda}{2} S\left(\rho_{1}\right)+\frac{\lambda}{2} S\left(\rho_{2}\right)+(1-\lambda) S\left(\frac{I_{d}}{d}\right)\right) \leq S(\rho) \tag{r}
\end{equation*}
$$

without loss of generality we can take the bassi vectors $|0\rangle$ and 11> such that.

$$
\begin{gathered}
|\psi\rangle=\cos \frac{\theta}{2}|\theta\rangle+\sin \frac{\theta}{2}|1\rangle \\
|\varphi\rangle=\sin \frac{\theta}{2}|\cdot\rangle+\cos \frac{\theta}{2}|1\rangle \quad \rightarrow\langle\varphi \mid \psi\rangle=\sin \theta \\
\rightarrow \rho=\frac{\lambda}{2}\left[\begin{array}{cc}
1 & \sin \theta \\
\sin \theta & 1
\end{array}\right]+\frac{1-\lambda}{d} I_{d}=\left[\begin{array}{cc}
\frac{\lambda}{2}+\frac{1-\lambda}{d} & \frac{\lambda}{2} \sin \theta \\
\frac{\lambda}{2} \sin \theta & \frac{\lambda}{2}+\frac{1-\lambda}{d}
\end{array}\right] \oplus \frac{1-\lambda}{d} I_{d-2}
\end{gathered}
$$

The eigenvalues of the two dimensional matrix are:

$$
\lambda_{ \pm}=\frac{1-\lambda}{d}+\frac{\lambda}{2}(1 \pm \sin \theta)
$$

there arealso $(d-2)$ eigenvalues equal to:: $\lambda=\frac{1-\lambda}{d}$
$S_{0} \rightarrow \rho(\rho)=-(d-2) \frac{1-\lambda}{d} \log \frac{1-\lambda}{d}-\lambda_{+} \log \lambda+-\lambda \operatorname{l} \lambda$

مسئله >وم : يک كانال پاوولى متقارن به صورت زير در نظر بغيريد:

$$
\mathcal{E}(\rho)=\left(1-2 P_{0}-P_{1}\right) \rho+P_{0} X \rho X+P_{1} Y \rho Y+P_{0} Z \rho Z
$$

كه در آن X, Y, Z ماتريس هاى پاوولى هستند. از ميان تمام حالت هاى خالص ورودى ، حالتى را پيدا كنيد كه آنتروبى حالت خروجى اين كانال را كمينه كند.

Since $P_{x}=P_{z}$, eve have rotation symmetry in the $x-z$ plane \rightarrow this channel has covariance: $\left.\quad \varepsilon\left(u \rho u^{t}\right)=u \varepsilon c \rho\right) u^{t}$ for $u=e^{i \frac{\theta}{2} \sigma_{d}}$.

so if $|\psi\rangle$ is the minimum output entropy (MOE) state $\rightarrow e^{i \frac{\theta}{2} \sigma_{y}}|\psi\rangle$ is also an

MOEE state. \rightarrow Equivalently, we cam choose $l l$ so that $\delta=14 \times 41$ always ties in the $x-y$ plane. $\rightarrow \quad \rho=\frac{1}{2}\left(1+x \sigma_{n}+y \sigma_{y}\right)$ where $x^{2}+y^{2}=1$ (since the state is pure). \rightarrow
$S_{0} \rightarrow \varepsilon(\rho)=\left(1-2 p_{0}-p_{i}\right) \rho+p_{0}(x \rho x+z \rho z)+p_{1}$ yey this corresponds to the bloch vectois:

$$
\left(\begin{array}{l}
x \\
y \\
0
\end{array}\right) \quad\left(\begin{array}{c}
x \\
-y \\
0
\end{array}\right)+\left(\begin{array}{c}
-x \\
-y \\
0
\end{array}\right) \quad\left(\begin{array}{c}
-x \\
y \\
0
\end{array}\right)
$$

$$
\varepsilon(\rho)=\frac{1}{2}(1+\vec{r} \cdot \overrightarrow{6}) \text { where } \vec{r}=\left(1-2 \rho_{0}-p_{1}\right)\left[\begin{array}{l}
x \\
y \\
0
\end{array}\right]+p_{0}\left[\begin{array}{c}
0 \\
-2 y \\
0
\end{array}\right]+p_{1}\left[\begin{array}{c}
-x \\
y \\
0
\end{array}\right]
$$

$$
\begin{aligned}
& \left.\rightarrow \vec{r}=\left\lvert\, \begin{array}{c}
\left(1-2 p_{0}-2 p_{1}\right) x \\
\left(1-4 p_{0}\right) y \\
0
\end{array}\right.\right] \rightarrow \vec{r} \mid=\left(1-2 p_{0}-2 p_{1}\right)^{2} x^{2}+\left(1-4 p_{0}\right)^{2} y^{2} \\
& =\left(1-2 p_{0}-2 p_{1}\right)^{2} x^{2}+\left(1-4 p_{0}\right)^{2}\left(1-x^{2}\right) \\
& \rightarrow|\vec{r}|=\left(1-4 p_{0}\right)^{2}+\left[\left(1-2 p_{0}-2 p_{1}\right)^{2}-\left(1-4 p_{0}\right)^{2}\right] x^{2}
\end{aligned}
$$

A minimum output entropy state has a maximum $|\vec{F}|$. So if

$$
\text { if }\left\{\begin{array}{l}
\left(1-2 p_{0}-2 p_{1}\right)^{2}>\left(1-4 p_{0}\right)^{2} \rightarrow x=1 \quad \rightarrow \quad|\psi\rangle=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right) \\
\left(1-2 p_{0}-2 p_{1}\right)^{2} \leq\left(1-4 p_{0}\right)^{2} \rightarrow x=0 \quad \rightarrow \quad|\psi\rangle=\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)
\end{array}\right.
$$

We can simplify (visualize) the conditions as follows:
if $x^{2}=y^{2} \rightarrow \quad x= \pm y \rightarrow$ so let us find the curves:

$$
1-2 p_{0}-2 p_{1}= \pm\left(1-4 p_{0}\right) \rightarrow\left\{\begin{array} { l }
{ 1 - 2 p _ { 0 } - 2 p _ { 1 } = 1 - 4 p _ { 0 } } \\
{ 1 - 2 p _ { 0 } - 2 p _ { 1 } = 4 p _ { 0 } - 1 }
\end{array} \rightarrow \left\{\begin{array}{l}
p_{1}=p_{0} \\
1-p_{1}=3 p_{0}
\end{array}\right.\right.
$$

مسئله سوم: آليس آنزامبلى از حالت ها را با احتمالات داده شده در زير براى باب مى فرستد:

$$
\begin{equation*}
\mathcal{E}=\left\{|0\rangle\langle 0|\left(\frac{1}{2}\right), \quad,|+\rangle\langle+|\left(\frac{1}{2}\right)\right\} . \tag{F}
\end{equation*}
$$

باب يكى اندازه گيرى متعامد و دو حالته با تصويرگرهاى
 شود. تحقيق كنيد كه آيا اين اطلاعات از كميت هوله و كمتر است؟
11)

Method A
1)

By symmetry, we only need to consider two Methods, shown in the above figures.
lel $X=\{+, 0\}$ for Alice $Y=\{+, 0\}$ for Bob..

$$
P(y=0 \mid x=0)=\langle n-\mid 0\rangle\langle 0 \mid n-\rangle=1
$$

In Method $A: \rightarrow$

$$
\begin{aligned}
& P(y=+\mid x=0)=\langle n+\mid 0\rangle\langle 0 \mid n+\rangle=0 \\
& P(y=0 \mid x=+)=\langle n-\mid+\rangle\langle+\mid n-\rangle=\frac{1}{2} \\
& P(y=+\mid x=+)=\langle n+\mid+\rangle\langle+\mid n+\rangle=\frac{1}{2}
\end{aligned}
$$

$$
\begin{aligned}
& P(y=0 \mid x=0)=\langle n-\mid 0\rangle\langle 0 \mid n-\rangle=\operatorname{con}^{2} \frac{n}{8}=\frac{1}{2}\left(1+\frac{1}{\sqrt{2}}\right) \\
& p(y=+\mid a=0)=\langle n+\mid 0\rangle\langle 0 \mid n+\rangle=\sin ^{2} \frac{n}{8}=\frac{1}{2}\left(1-\frac{1}{\sqrt{2}}\right)
\end{aligned}
$$

In Method $B \rightarrow P(y=0 \mid x=+)=\langle n-1+\rangle\langle+\mid n-\rangle=\sin ^{2} \frac{n}{8}=\frac{1}{2}\left(1-\frac{1}{\sqrt{2}}\right)$

$$
P(y=+\mid x=+)=\langle n+\mid+\rangle\langle+\mid n+\rangle=C_{0}^{2} \frac{n}{8}=\frac{1}{2}\left(1+\frac{1}{\sqrt{2}}\right)
$$

we now calculate $I(X: Y)$ in both methools and compare them. we need $\quad P(x \mid y)$ in both cases.

$$
P(a \mid y)=\frac{P(x, y)}{P(y)}=\frac{P(y \mid x) P(x)}{P(y)}=\frac{P(y \mid x)}{P(y \mid 0)+P(y \mid H)}
$$

$$
p(x=0 \mid y=0)=\frac{1}{3 / 2}=\frac{2}{3}
$$

In Method $A: \rightarrow p(x=01 y=+)=0$

$$
\begin{aligned}
& P(x=+1 y=0)=\frac{1 / 2}{3 / 2}=\frac{1}{3} \\
& P(x=+1 y=+)=1
\end{aligned}
$$

$$
p(x=0 \mid y=0)=c_{0}^{2} \frac{\pi}{8}
$$

In Method $B: \rightarrow p(x=01 y=+)=\sin ^{n} \frac{\pi}{8}$

$$
\begin{aligned}
& P(x=+\mid y=0)=\sin ^{2} \frac{\pi}{8} \\
& P(x=+\mid y=+)=\cos ^{2} \frac{\pi}{8}
\end{aligned}
$$

We calculate $I(x: y)=H(x)-H(x \mid y)=1-H(x \mid y)$

In Method $A: \quad H(x \mid y)=-\sum_{x, y} P(x, y) \log P(x \mid y)$

$$
\begin{aligned}
\rightarrow H(X \mid Y) & =-\left\{\frac{1}{3} \log \frac{2}{3}+0+\frac{1}{6} \log \frac{1}{3}+\frac{1}{2} \log 1\right\} \\
& =\frac{-1}{3} \log \frac{2}{3}-\frac{1}{6} \log \frac{1}{3}=\frac{-1}{3}[1-\log 3]-\frac{1}{6}[-\log 3] \\
& =\frac{1}{2} \log _{2} 3-\frac{1}{3}=0.459 \rightarrow I(x: y)=0.541
\end{aligned}
$$

In Method B. $H(X \mid Y)=-\left\{\cos ^{2} \frac{\pi}{8} \log _{2} \cos ^{2} \frac{\pi}{8}+\sin ^{2} \frac{\pi}{8} \log _{2} \sin ^{2} \frac{\pi}{8}\right\}$

$$
\rightarrow H(X \mid Y)=-\left\{0.853 \log _{2} 0.853+0.147 \log _{2} 0.147\right\}=0.602
$$

$\rightarrow\{I(X: Y)=0.398$ So Method A yield more

مسئله حهارم: يك كد كادسيك از نوع [2,n, 3 = $=$
we use one of the following bounds:
(1) Hamming bound: $2^{k} \times \sum_{k=0}^{1}\binom{n}{k} \leq 2^{n}$ in our case $k=2$

$$
\text { or } \rightarrow \quad 4(1+n) \leq 2^{n}
$$

(2) Singleton bound $k \leq n-d+1 \rightarrow 2 \leq n-3+1 \rightarrow 2 \leq n-2$
the smallest n is: $5 \leq n$. Let us take $n=5 \rightarrow$

$$
\text { trial and error: } \rightarrow \quad \begin{array}{ll}
x & y \\
00 & \longrightarrow 00000 \\
01 & \longrightarrow 11100 \\
10 & \longrightarrow 00111 \\
& \\
& \\
& 11011
\end{array}
$$

