Sigma 2-16P from serial no. 120756 # **Operating Manual** Please retain for later use! | In case of inquiries, please state the following numbers | | In case of | of inc | uiries, | please | state | the | following | numbers | |--|--|------------|--------|---------|--------|-------|-----|-----------|---------| |--|--|------------|--------|---------|--------|-------|-----|-----------|---------| Order number: Serial number: © Copyright by Sigma Laborzentrifugen GmbH An der Unteren Söse 50 37520 Osterode am Harz Germany Tel.: +49 (0) 5522 / 5007-0 Fax: +49 (0) 5522 / 5007-12 Web: www.sigma-zentrifugen.de E-mail: info@sigma-zentrifugen.de | 1 | Ge | eneral information | 9 | | | |--|------------------------------------|--|----|--|--| | | 1.1 | 1 Importance of the operating manual | | | | | | 1.2 | Intended use | 9 | | | | | 1.3 | Warranty and liability | 9 | | | | | 1.4 | Copyright | 10 | | | | | 1.5 | Standards and regulations | 10 | | | | | 1.6 | Scope of supply | 10 | | | | 2 | La | ayout and mode of operation | 11 | | | | | 2.1 | Layout of the centrifuge | 11 | | | | | 2.1.1 | .1 Functional and operating elements | 11 | | | | | 2.1.2 | .2 Name plate | 12 | | | | | 2.2 | Mode of operation | 13 | | | | | 2.2.1 | .1 Centrifugation principle | 13 | | | | | 2.2.2 | .2 Area of application | 13 | | | | | 2.2 | .2.2.1 Speed, radius, and relative centrifugal force | 14 | | | | | 2.2 | .2.2.2 Density | 14 | | | | 3 | Sa | afety | 15 | | | | | 3.1 | Marking of the unit | 15 | | | | | 3.2 | Explanation of the symbols and notes | 16 | | | | | 3.3 Responsibility of the operator | | | | | | | 3.4 Operating personnel | | | | | | | 3.5 | Informal safety instructions | 17 | | | | | 3.6 | Safety instructions | 18 | | | | 3.6.1 Electrical safety | | | 18 | | | | | | | 18 | | | | | 3.6.3 | • | | | | | | 3.6.4 | | | | | | | 3.6.5 | | | | | | | 3.6.6 | • | | | | | 3.6.7 Safety of rotors and accessories | | | | | | | | | .6.7.1 Service life | | | | | | | Safety devices | | | | | | 3.7.1 | | | | | | | 3.7.2 | 3 - , | | | | | | 3.7.3 | , | | | | | | 3.7.4
3.7.5 | | | | | | 3.8 Measures in the event of hazards and accidents | | | | | | | | | Remaining hazards | 00 | | | ### **Table of contents** | 4 | | Storage a | nd transport | . 24 | |---|-----|------------|--|------| | | 4.1 | Dimens | ions and weight | . 24 | | | 4.2 | Storage | conditions | .24 | | | 4.3 | Notes o | n transport | 24 | | | 4.4 | Packag | ing | . 25 | | | 4.5 | Transpo | ort safety device | . 25 | | 5 | | Set-up and | d connection | . 26 | | | 5.1 | - | ion site | | | | 5.2 | | supply | | | | _ | | e of connection | | | | 5 | | tomer-provided fuses | | | 6 | | | centrifuge | | | | 6.1 | • | art-up | | | | 6.2 | | ng the centrifuge on | | | | _ | | ning and closing the lid | | | | 6 | • | allation of rotors and accessories | | | | | 6.2.2.1 | Installation of a rotor | | | | | 6.2.2.2 | Installation of an angle rotor with a hermetic lid | . 29 | | | | 6.2.2.3 | Installation of the microhaematocrit rotor | 30 | | | | 6.2.2.4 | Installation of accessories | .31 | | | | 6.2.2.5 | Adapters | .32 | | | | 6.2.2.6 | Vessels | .32 | | | 6.3 | Control | system "Spincontrol Universal" | .33 | | | 6 | .3.1 Use | r interface | .33 | | | 6 | .3.2 Man | ual mode | .34 | | | | 6.3.2.1 | Starting a centrifugation run | .34 | | | | 6.3.2.2 | Interrupting a centrifugation run | .34 | | | | 6.3.2.3 | , , | . 34 | | | | 6.3.2.4 | Selection, display, and modification of data | | | | | 6.3.2.5 | Runtime | | | | | 6.3.2.6 | Speed | | | | | 6.3.2.7 | Relative centrifugal force (RCF) | | | | | 6.3.2.8 | Rotor selection | | | | | 6.3.2.9 | Softstart and softstop function | | | | | 6.3.2.10 | Automatic lid opening function ("Auto-Lid-Open") | | | | | 6.3.2.11 | Sound signal ("Buzzer") | | | | ^ | 6.3.2.12 | Input lock | | | | б | _ | grams | | | | | 6.3.3.1 | Saving the current settings | | | | C 4 | 6.3.3.2 | Calling up stored programs | | | | 6.4 | Switchir | ng the centrifuge off | 40 | ### **Table of contents** | 7 M | alfunctions and error correction | 41 | |-------|---|----| | 7.1 | General malfunctions | 41 | | 7.1. | 1 Emergency lid release | 42 | | 7.2 | Table of error codes | 43 | | 7.3 | Service contact | 44 | | 8 M | aintenance and service | 45 | | 8.1 | Maintenance | 45 | | 8.1. | 1 Centrifuge | 45 | | 8.1. | 2 Accessories | 46 | | 8. | 1.2.1 Plastic accessories | 46 | | 8.1. | 3 Rotors, buckets and carriers | 47 | | 8.1. | | | | 8.1. | 3 | | | 8.1. | 6 Glass breakage | 49 | | 8.2 | Sterilisation and disinfection of the rotor chamber and accessories | | | 8.2. | 3 | | | 8.3 | Service | 51 | | 8.4 | Return of defective centrifuges or parts | 52 | | 9 Di | sposal | 54 | | 9.1 | Disposal of the centrifuge | 54 | | 9.2 | Disposal of the packaging | 54 | | 10 Te | echnical data | 55 | | 10.1 | Ambient conditions | 55 | | 10.2 | Technical documentation | 56 | | 11 Aı | opendix | 57 | | 11.1 | Range of accessories | | | 11.1 | 1.1 Rotor radii | | | 11.2 | Speed-gravitational-field-diagram | 59 | | 11.3 | Table of the service life of rotors and accessories | | | 11.4 | Resistance data | | | 11.5 | EC declaration of conformity | | | 11.6 | Declaration of conformity – China RoHS 2 | | | | dex | | ## 1 General information # 1.1 Importance of the operating manual A fundamental requirement for the safe and trouble-free operation of the centrifuge is to be familiar with the fundamental safety instructions and all possible hazards. The operating manual includes important information concerning the safe operation of the centrifuge. This operating manual and, in particular, the notes on safety and hazards must be observed by all persons operating the centrifuge. In addition, the local rules and regulations for the prevention of accidents must be complied with. ### 1.2 Intended use Centrifuges are power-driven machines that separate liquids from solid matter, liquid mixtures, or solid mixtures by centrifugal force. They are solely intended for this purpose. Any other use beyond this area of application is regarded as improper use. Sigma Laborzentrifugen GmbH cannot be held liable for any damage resulting from such improper use. The intended use also includes - observation of all the notes and instructions included in the operating manual and - compliance with the care, cleaning, and maintenance instructions. # 1.3 Warranty and liability The warranty and liability are subject to our "General Conditions" that were distributed to the operator upon the conclusion of the contract. Warranty and liability claims are excluded if they are due to: - improper use. - non-compliance with the safety instructions and hazard warnings in the operating manual. - improper installation, start-up, operation, or maintenance of the centrifuge. # 1.4 Copyright The copyright concerning the operating manual remains with Sigma Laborzentrifugen GmbH. The operating manual is solely intended for the operator and their personnel. It includes instructions and information that must not be - · duplicated, - · distributed, or - communicated in any other way. Non-compliance may be prosecuted under criminal law. # 1.5 Standards and regulations EC declaration of conformity (see chapter 11.5 - "EC declaration of conformity") # 1.6 Scope of supply ### The centrifuge comprises: 1 power cord with an IEC C13 connector depending on the voltage variant • 1 rotor wrench Part no. 930 100 1 tube (30 g) heavy-duty grease for loadbearing bolts ### **Documentation** Operating manual incl. EC declaration of conformity (see chapter 11.5 - "EC declaration of conformity") #### **Accessories** According to your order, our order confirmation, and your delivery note. # 2 Layout and mode of operation # 2.1 Layout of the centrifuge ## 2.1.1 Functional and operating elements - 1 Lid - 2 User interface (see chapter 6.3.1 "User interface") - 3 Mains switch Fig. 1: Total view of the centrifuge - 4 Name plate (see chapter 2.1.2 -"Name plate") - 5 Equipotential bonding screw - 6 Mains power input Fig. 2: Rear view of the centrifuge ### 2 Layout and mode of operation ### 2.1.2 Name plate - Manufacturer and registered office - 2 Type - 3 Serial number - 4 Max. density - 5 Nominal voltage - 6 Input fuse - 7 Symbol for special disposal (see chapter 9 "Disposal") - 8 CE-mark in compliance with the directive 2006/42/EG - 9 Part number - 10 Year of manufacture - 11 Max. speed - 12 Max. kinetic energy - 13 Power consumption Fig. 3: Example of a name plate ## 2.2 Mode of operation ### 2.2.1 Centrifugation principle Centrifugation is a process for the separation of heterogeneous mixtures of substances (suspensions, emulsions, or gas mixtures) into their components. The mixture of substances, which rotates on a circular path, is subject to centripetal acceleration that is several times greater than the gravitational acceleration. Centrifuges use the mass inertia inside the rotor chamber for separating the substances. Due to their higher inertia, particles or media with a higher density travel outwards. In doing so, they displace the components with a lower density, which in turn travel towards the centre. The centripetal acceleration of an object inside a centrifuge, as the effect of centripetal force, depends on the distance between the object and the axis of rotation as well as on the angular velocity. It increases linearly as a function of the distance with regard to the axis of rotation and quadratically as a function of the angular velocity. The bigger the radius in the rotor chamber is and the higher the speed is, the higher the centripetal acceleration is. However, the forces acting on the rotor also increase. ### 2.2.2 Area of
application Depending on the area of application of the centrifuge and also on the particle size, solids content, and volume throughput of the mixture of substances that is to be centrifuged, there are different types of centrifuges. The areas of application go from household use as a salad spinner or honey separator up to specialised technical applications in the clinical, biological, or biochemical context: - For numerous clinical examinations, cellular material must be separated from the liquid to be analysed. The normal separation process can be sped up considerably by using laboratory centrifuges. - In the metal-working industry, centrifuges are used for separating oil from metal cuttings. Dairies use centrifuges in order to separate cow's milk into cream and low-fat milk. - Particularly big centrifuges are used in the sugar industry for separating the syrup from the crystalline sugar. - Ultracentrifuges are predominantly used in biology and biochemistry in order to isolate particles, e.g. viruses. They are specifically designed for high speeds up to 500,000 rpm. The rotor moves in a vacuum in order to avoid air friction. ### 2 Layout and mode of operation ### 2.2.2.1 Speed, radius, and relative centrifugal force The acceleration g, which the samples are subject to, can be increased by increasing the radius in the rotor chamber and by increasing the speed. These three parameters are interdependent and linked with each other via the following formula: Relative centrifugal force RCF = $11.18 \times 10^{-6} \times r \times n^2$ r = radius in cm n = speed in rpm RCF without any dimension If two values are entered, the third value is determined by way of the stated formula. If, afterwards, the speed or the radius is changed, the resulting relative centrifugal force will be recalculated automatically by the control unit. If the RCF is changed, the speed will be adapted while the specified radius is maintained. The speed-gravitational-field-diagram provides an overview of the relationship between speed, radius, and RCF (see chapter 11.2 - "Speed-gravitational-field-diagram"). ### 2.2.2.2 **Density** The laboratory centrifuge is suitable for the separation of constituents of different densities in mixtures with a maximum density of 1.2 g/cm³. All information concerning the speed of rotors and accessories refers to liquids with a density corresponding to this specification. If the density is above this value, the maximum permissible speed of the centrifuge must be reduced based on the following formula: $$n = n_{max} x \sqrt{(1,2/Rho)}$$ Rho = density in g/cm³ # 3 Safety # 3.1 Marking of the unit The following symbols are used for all types of centrifuges manufactured by Sigma: ### 3 Safety # 3.2 Explanation of the symbols and notes In this operating manual, the following names and symbols to indicate hazards are used: This symbol stands for a **direct** hazard to the life and health of persons. Non-observance of these symbols <u>causes</u> serious health problems up to life-endangering injuries. This symbol stands for a <u>direct</u> hazard to the life and health of persons due to electrical voltage. Non-observance of these symbols <u>causes</u> serious health problems up to life-endangering injuries. This symbol stands for a **potential** hazard to the life and health of persons. Non-observance of these symbols **can** cause serious health problems up to life-endangering injuries. This symbol indicates a potentially hazardous situation Non-observance of these notes can cause minor injuries or damage to property. This symbol indicates important information. ## 3.3 Responsibility of the operator The operator is responsible for authorising only qualified personnel to work on the centrifuge (see chapter 3.4 - "Operating personnel"). The areas of responsibility of the personnel concerning the operation, maintenance, and care of the unit must be clearly defined. The safety-conscious work of the personnel in compliance with the operating manual and the relevant EC and national health and safety regulations as well as with the accident prevention regulations must be checked at regular intervals (e.g. every month). Under the international rules for health and safety at work, the operator is obliged to: - take measures in order to prevent all danger to life or health during work. - ensure that centrifuges are operated properly and entirely as intended (see chapter 1.2 "Intended use"). - take protective measures against fire and explosion when working with hazardous substances. - take measures for the safe opening of centrifuges. # 3.4 Operating personnel Persons operating the unit must - be familiar with the fundamental regulations concerning workplace safety and accident prevention - have read and understood this operating manual (and in particular the safety sections and warning notes) and confirmed this with their signature. # 3.5 Informal safety instructions - This operating manual is a part of the product. - The operating manual must be kept at the location of use of the centrifuge. Ensure that it is accessible at all times. - The operating manual must be handed over to any subsequent owner or operator of the centrifuge. - Any changes, additions or updates received must be added to the operating manual. - In addition to the operating manual, the general and local rules and regulations concerning the prevention of accidents and the protection of the environment must also be supplied. - Safety and danger indications on the centrifuge must be kept readable at all times. If necessary, they must be replaced. ## 3.6 Safety instructions ### 3.6.1 Electrical safety To reduce the risk of electrical shock, the centrifuge uses a three-wire electrical cord and plug to connect the equipment to earth-ground. To preserve this safety feature: - Ensure that the wall socket is properly wired and grounded. - Check that the mains voltage agrees with the nominal voltage listed on the name plate. - Do not place vessels containing liquid on the centrifuge lid or within the safety distance of 30 cm around the centrifuge. Spilled liquids may get into the centrifuge and damage electrical or mechanical components. - Work on the power supply system must only be performed by certified electricians. - Inspect the electrical equipment of the unit regularly. Defects such as loose or burnt cables must be eliminated immediately. ### 3.6.2 Mechanical safety In order to ensure the safe operation of the centrifuge, observe the following: - Do not open the lid when the rotor is in motion! - Do not reach into the rotor chamber when the rotor is in motion! - Do not use the centrifuge if it was installed incorrectly. - Do not use the centrifuge without panels. - Do not use the centrifuge if the rotors and inserts show signs of corrosion or other defects. - Only use the centrifuge with rotors and accessories that have been approved by the manufacturer. In case of doubt, contact the manufacturer (see chapter 7.3 - "Service contact"). - Do not hold your fingers between the lid and the housing when closing the lid. Risk of crushing! - Defective lid relieving devices could cause the centrifuge lid to fall (contact the service department, if necessary). Risk of crushing! - Do not hit or move the centrifuge during its operation. - Do not lean against or rest on the centrifuge during its operation. - Do not spin any substances that could damage the material of the rotors and buckets of the centrifuge in any way. Highly corrosive substances, for example, damage the material and affect the mechanical strength of the rotors and buckets. - Stop the centrifuge immediately in the event of a malfunction. Eliminate the malfunction (see chapter 7 "Malfunctions and error correction") or inform the service department of the manufacturer (see chapter 7.3 "Service contact"). - Ensure that all repairs are performed only by authorised and specialised personnel. - Prior to any start-up, check the centrifuge, rotor, and accessories for signs of damage that can be discerned from the outside. Special attention must be paid to all of the rubber parts (e.g. motor cover, lid seal, and adapters) in terms of visible structural changes. Defective parts must be replaced immediately. - Open the centrifuge when it is not in use so that moisture can evaporate. #### 3.6.3 Fire prevention - Do not spin explosive or inflammable substances. - Do not use the centrifuge within hazardous locations. #### 3.6.4 Chemical and biological safety If pathogenic, toxic, or radioactive samples are intended to be used in the centrifuge, it is in the responsibility of the user to ensure that all necessary safety regulations, guidelines, precautions, and practices are adhered to accordingly. - **DANGER** - Infectious, toxic, pathogenic, and radioactive substances may only be used in special, certified containment systems with a bio-seal in order to prevent the material from being released. - Take suitable precautions for your own safety if there is a risk of toxic, radioactive, or pathogenic contamination - Materials that chemically react with each other with a high level of energy are prohibited. - Keep informed about local measures to avoid harmful emissions (depending on the substances to be centrifuged). - Protective clothing is not required for the operation of the centrifuge. The materials to be centrifuged may, however, require special safety measures (e.g. centrifugation of infectious, toxic, radioactive, or pathogenic substances). ### 3.6.5 Safety instructions for centrifugation For safe operation, observe the following before starting the centrifuge: - Ensure that the centrifuge was set up properly (see chapter 5 "Set-up and connection"). - Maintain a safety distance of at least 30 cm (12 inches) around the centrifuge. - Do not store any dangerous goods in the centrifuge area. - Do not stay in the safety area longer than what is absolutely necessary for the operation of the centrifuge. - Only use the
centrifuge with rotors and accessories that have been approved by the manufacturer. We explicitly warn against the use of equipment of poor quality. Breaking glass or bursting vessels can cause dangerous imbalances at high speeds - Ensure that rotor and buckets are correctly fitted (see chapter 6.2.2.1 "Installation of a rotor"). - Observe the instructions on the installation of accessories (see chapter 6.2.2.4 "Installation of accessories"). - The rotor must be loaded in a rotationally symmetrical manner at equal weights. - If liquids with a density > 1.2 g/cm³ are used, reduce the speed (see chapter 2.2.2.2 "Density"). - Do not use the centrifuge if the rotor is loaded asymmetrically. - Do not use the centrifuge with tubes that are excessively long. ### 3.6.6 Resistance of plastics Chemical influences have a strong effect on the polymeric chains of plastics, and, therefore, on their physical properties. Plastic parts can be damaged if solvents, acids, or alkaline solutions are used. Refer to the resistance data (see chapter 11.4 - "Resistance data")! ### 3.6.7 Safety of rotors and accessories #### 3.6.7.1 Service life The rotors and accessories have a limited service life. - Perform regular checks (at least once per month) for safety reasons! - Pay special attention to changes, such as corrosion, cracks, material abrasion, etc. - After 10 years, they must be inspected by the manufacturer. - After 50,000 cycles, the rotor must be scrapped for reasons of safety. - If other data concerning the service life are engraved on the rotor or bucket, these data shall apply accordingly. For example, a bucket with the engraving "max. cycles = 10,000" has a service life of 10,000 cycles, and a rotor with the engraving "Exp. date 02/20" must be scrapped in February 2020 at the latest (see figure). - If a specification concerning the maximum number of cycles **and** a specification concerning the service life (i.e. a date) are provided, the specification that occurs first shall apply. Fig. 4: Different service life - engraving on the bucket/rotor Refer to the table of rotors and accessories with a different service life (see chapter 11.3 - " Table of the service life of rotors and accessories ")! # 3.7 Safety devices #### 3.7.1 Lid lock device The centrifuge can only be started when the lid is properly closed. The electrical lock must be locked. The lid can only be opened when the rotor has stopped. If the lid is opened by way of the emergency release system during operation, the centrifuge will immediately switch off and decelerate brakeless. If the lid is open, the drive is completely separated from the mains power supply, i.e. the centrifuge cannot be started (see chapter 7.1.1 - "Emergency lid release"). ### 3.7.2 Standstill monitoring system Opening of the centrifuge lid is only possible if the rotor is at a standstill. This standstill is checked by the microprocessor. ### 3.7.3 System check An internal system check monitors the data transfer and sensor signals with regard to plausibility. The system continuously performs a self-check and identifies malfunctions. Malfunctions are indicated by error messages with a number in the speed/rcf display (see chapter 7.2 - "Table of error codes"). #### 3.7.4 Earth conductor check For the earth conductor check, there is an equipotential bonding screw on the rear panel of the centrifuge (see chapter 2.1.1 - "Functional and operating elements"). An earth conductor check can be carried out by authorized and specialized personnel using a suitable measuring instrument. Please contact the service department (see chapter 7.3 - "Service contact"). ### 3.7.5 Imbalance monitoring system The indication "Imbalance" in the rotor field and, in some cases, also a sound signal indicate that the centrifuge is in the impermissible imbalance range. The drive will be switched off in the acceleration phase or during the run. ### 3.8 Measures in the event of hazards and accidents - If an emergency arises, switch off the centrifuge immediately! - · If in doubt, call the emergency doctor! # 3.9 Remaining hazards The centrifuge was built in accordance with the state of the art and in compliance with the generally recognized safety rules. However, danger to life and limb of the operator, or of third parties, or impairments of the unit or other material assets cannot be completely excluded when the unit is being used. - Use the unit only for the purpose that it was originally intended for (see chapter 1.2 "Intended use"). - Use the unit only if it is in a perfect running state. - Immediately eliminate any problems that can affect safety. # 4 Storage and transport # 4.1 Dimensions and weight | | Sigma 2-16P | |-----------------------|-------------| | Height: | 300 mm | | Height with open lid: | 610 mm | | Width: | 365 mm | | Depth: | 452 mm | | Weight: | 32 kg | # 4.2 Storage conditions The centrifuge can be stored in its original packaging for up to a year. - Store the centrifuge only in dry rooms. - The permissible storage temperature is between -20°C and +60°C. - If you would like to store it for more than one year, or if you intend to ship it overseas, please contact the manufacturer. # 4.3 Notes on transport - Install the transport safety device (see chapter 4.5 "Transport safety device") - Always lift the centrifuge with a lifting device or with a sufficient number of people helping you. - When lifting the centrifuge, always reach under the centrifuge from the side. The centrifuge weighs approx. 32 kg! • For transport use suitable packaging and, if at all possible, the original packaging (see chapter 4.4 - "Packaging"). # 4.4 Packaging The centrifuge is packaged in a threepart slip-lid box. - Take off the lid. - Remove the box containing the accessories and the packaging material. - Remove the ring of the slip-lid box. - Lift the centrifuge upwards with a lifting device or with a sufficient number of people to lift it safely. When lifting the centrifuge, always reach under the centrifuge from the side. The centrifuge weighs approx. 32 kg! Retain the packaging for any possible future transport of the centrifuge. # 4.5 Transport safety device The transport safety device consists of a foamed plastic piece in the rotor chamber. The transport safety device must be removed prior to start-up! #### Removal - Open the lid by pressing the lid key. If the centrifuge is not connected to the power supply, use the emergency release of the lid (see chapter 7.1.1 - "Emergency lid release"). - Unscrew the rotor tie-down screw. - Remove the foamed plastic piece from the rotor chamber, by lifting it carefully on one side. - Retain the transport safety device for the possibility of the return of the centrifuge. # 5 Set-up and connection ### 5.1 Installation site Operate the centrifuge only in closed and dry rooms. All the energy supplied to the centrifuge is converted into heat and emitted to the ambient air. - Ensure sufficient ventilation. - Keep a safety distance of at least 30 cm around the centrifuge so that the vents in the centrifuge remain fully effective. - Do not subject the centrifuge to thermal stress, e.g. by positioning it near heat generators. - · Avoid direct sunlight (UV radiation). - The table must be stable and have a solid, even surface. - Attention: During transport from cold to warmer places, condensational water will collect inside the centrifuge. It is important to allow sufficient time for drying (min. 24 h) before the centrifuge can be used again. # 5.2 Power supply ### 5.2.1 Type of connection The operating voltage on the name plate must correspond to the local supply voltage! Sigma centrifuges are units of protection class I. The centrifuges of this model series have a three-wire power cord with an IEC C13 connector. ### 5.2.2 Customer-provided fuses Typically, the centrifuge must be protected with 16 Amp L or B fuses that are to be provided by the customer. # 6 Using the centrifuge ### 6.1 Initial start-up • Before the initial start-up, please ensure that your centrifuge is properly set up and installed (see chapter 5 - "Set-up and connection"). # 6.2 Switching the centrifuge on Press the mains power switch. The display then illuminates. The centrifuge is ready for operation. ### 6.2.1 Opening and closing the lid The lid can be opened if the centrifuge is at a standstill and if the lid key is illuminated. Press the lid key in order to open the lid. The centrifuge cannot be started if the lid is opened. To close, press with both hands slightly on the lid until both locks are audibly locked. Do not place your fingers between the lid and the housing when closing the lid. Risk of crushing! A flashing lid key indicates that only one lid lock has locked. ### 6 Using the centrifuge #### 6.2.2 Installation of rotors and accessories #### 6.2.2.1 Installation of a rotor - · Open the centrifuge lid by pressing the lid key. - Unscrew the rotor tie-down screw from the motor shaft (counterclockwise). - Lower the rotor with its central bore straight down onto the motor shaft. - Tighten the rotor tie-down screw clockwise with the supplied rotor wrench with 3 Nm. In doing so, hold the rotor at its outer rim. Once a day or after 20 cycles, the rotor tie-down screw must be loosened by some turns, and the rotor must be lifted and fastened again. This ensures a proper connection between the rotor and the motor shaft. The lid screw serves for the fastening of the lid onto the rotor only, not for the fastening of the rotor onto the motor shaft. When using rotors for microtiter plate formats: Ensure that the plate holders are inserted <u>together</u> with the plates into the buckets. The lid screw serves for the fastening of the lid onto the rotor only, not for the fastening of the rotor onto the collet chuck. - Prior to installing the lid, check for the tight fit (3 Nm) of the rotor tiedown screw. - Follow the safety instructions and hazard warnings (see chapter 3 "Safety")! ### 6.2.2.2 Installation of an angle
rotor with a hermetic lid - Screw the rotor cover onto the rotor and tighten it. - · Lower the rotor with the cover onto the motor shaft. - Insert the rotor tie-down screw into the motor shaft. Tighten the rotor tiedown screw with 3 Nm using the supplied rotor wrench so that the spring washer assembly is compressed tightly. - The rotor can also be used without a cover. - The rotors can be installed or removed with a closed lid after loosening the rotor tie-down screw. - Follow the safety instructions and hazard warnings (see chapter 3 "Safety")! - 1 Rotor tie down screw - 2 Lid - 3 Rotor Fig. 5: Angle rotor with a hermetic lid ### 6 Using the centrifuge #### 6.2.2.3 Installation of a microhaematocrit rotor - Open the centrifuge lid by pressing the lid key. - Replace the rotor tie-down screw with the rotor tie-down screw of the microhaematocrit rotor (part no. 81543, included in the scope of supply of the microhaematocrit rotor), and tighten it loosely. - Lower the rotor with its central bore straight down onto the motor shaft. - Tighten the rotor tie-down screw clockwise with 3 Nm using the supplied rotor wrench. In doing so, hold the microhaematocrit rotor with one hand and tilt it slightly in order to prevent the motor shaft from slipping through. - Check the rotor for a correct and tight fit. - Follow the safety instructions and hazard warnings (see chapter 3 "Safety")! Please consider the maximum permissible gravitational field of 12,000 x g. An excess gravitational field will result in an increased risk of glass breakage! ### Operation - Fill the capillary tubes with blood and seal them at one end with putty or by fusion. - Place the capillary tubes into the recesses of the rotor with the sealed end against the rubber ring. Ensure that the capillary tubes fit tightly against the rubber ring. The opposite places must be loaded. - Screw on the rotor cover. - Close the centrifuge lid. - Enter the following parameters: RCF 12,000 x g, runtime approx. 5 minutes. - · Start the centrifuge. - Open the centrifuge lid when the rotor has stopped. - Unlock the rotor cover and lift it off. #### **Evaluation** - Put the reader onto the microhaematocrit rotor. - Turn the reader and perform a fine adjustment with the aid of the central eccentric mechanism in order to localize the O-point and the maximum liquid point in the capillary tubes. You can now read the percentage value. - Remove the capillary tubes. Some of the tubes can also be evaluated with the reader outside of the rotor (see the instructions for use on the back of the reader). #### 6.2.2.4 Installation of accessories - Only use vessels that are suitable for the rotor. - In the case of swing-out rotors, all of the compartments must be equipped with buckets. - Always load opposite compartments of the rotors with the same accessories and fill to avoid imbalance. ### Centrifugation with vessels of various sizes Working with vessel of various sizes is possible. In this case, however, it is very important that the rotationally symmetrical inserts are identical. Fig. 6: Permissible and impermissible loading of a swing-out rotor with vessels of various sizes (example illustration) ### Centrifugation with low capacity - Install the sample vessels in a rotationally symmetrical manner so that the buckets and their suspensions are loaded evenly. - It is not permissible to load angle rotors on only one axis. Fig. 7: Permissible and impermissible loading of an angle rotor and a swing-out rotor (example illustrations) #### 6 Using the centrifuge #### 6.2.2.5 Adapters In order to ensure easy handling, even if vessels of various sizes are used, carrier systems were developed. - Load the opposite adapters with the same number of vessels and with the same weights in order to avoid imbalance. - If all of the compartments of a carrier are not used, the buckets must be loaded evenly. Loading the edges of a bucket only is not permissible. #### **6.2.2.6** Vessels - Load the vessels outside of the centrifuge. Liquids in the buckets or multiple carriers cause corrosion. - Fill the vessels carefully and arrange them according to their weight. Imbalances result in the excessive wear of the bearings. - Always fill the tubes up to their useful volume (= the volume that is stated for the tube). - Follow the safety instructions and hazard warnings (see chapter 3 "Safety")! #### Maximum speed for tubes Some tubes, such as centrifuge glass tubes, microtubes, culture tubes, fluoropolymer tubes and especially high-volume tubes can be used in our rotors, buckets, and adapters at higher speeds than their breaking limit. When using glass vessels, the maximum value of 4,000 x g must not be exceeded (except special high-strength glass tubes; please refer to the information provided by the manufacturer). # 6.3 Control system "Spincontrol Universal" #### 6.3.1 User interface The centrifuge is operated via three buttons with integrated light-emitting diodes and two functions knobs. The display is divided into several different fields. The various functions of the system can be called up by pressing and turning the functions knobs. - 1 Start key - 2 Left function knob - 3 Display - 4 Right function knob - 5 Stop key - 6 Lid key Fig. 8: User interface of the "Spincontrol Universal" control system ### **Display** The centrifuge display has the following display fields: - 1 "Lock" symbol for lockdown - 2 Time field - 3 Speed field - 4 Several display fields (e.g. for rotor, deceleration curve or program selection) - 5 RCF field Fig. 9: Display of the "Spincontrol Universal" control system #### 6.3.2 Manual mode ### 6.3.2.1 Starting a centrifugation run The centrifuge is ready for operation when the start key is illuminated. Press the start key in order to start a centrifugation run. ### 6.3.2.2 Interrupting a centrifugation run Press the stop key in order to interrupt a centrifugation run. The centrifugation run will be terminated prematurely. ### 6.3.2.3 Interrupting a deceleration process Press the start key during a deceleration process in order to interrupt it and to restart the centrifuge. ### 6.3.2.4 Selection, display, and modification of data - Turn the left function knob in order to select a field. The selected field will be preceded by the indication "set", "run", or "save". - Press the left function knob. The indication ("set", "run", or "save") flashes and the modification mode is active. - Turn the right function knob in order to modify the set value of the selected field. - Press the fright unction knob again to confirm the input and to quit the modification mode - If the input is not confirmed, the value will be automatically reset to the last setting. #### 6.3.2.5 Runtime The runtime is displayed in the left section of the display and can be set at different intervals in a range from 10 seconds to 11 hours and 59 minutes. The parameter runtime can be changed during the centrifugation. If the runtime is changed during an active centrifugation run, the time that has already elapsed will not be taken into consideration. The centrifuge will perform a complete run with the new runtime. Fig. 10: Setting the runtime #### Continuous run During the continuous run, the runtime of the centrifuge is unlimited and must be stopped manually. The centrifuge accelerates during the continuous run until the set speed is reached. Select the modification mode and turn the function knob from the time 00:10 anti-clockwise or from the time 11:59 clockwise. The indication "Cont" and the symbol "∞" will be displayed in the time field. Fig. 11: Indication "Cont" during a continuous run #### **Short run** Keep the start key pressed during the short run. During the short run, the centrifuge accelerates at maximum power until the maximum speed is reached. The runtime is counted and in the time field the indication "short run" is displayed. When the start key is released, the centrifuge decelerates at maximum power to a standstill. Fig. 12: Indication "short run" during a short run ### Changing the time increments By default, the runtime is changed in intervals of 10 sec (in the mode min:sec) or in intervals of 10 min (in the mode hrs:min) To change the runtime in intervals of 1 sec or 1 min: Keep the stop key pressed while setting the desired runtime with the right function knob #### 6.3.2.6 Speed The set speed of the centrifuge is displayed in the upper area of the speed field. The actual value is displayed right below. The speed is stated as the number of revolutions per minute (rpm). The speed/RCF values are interdependent (see chapter 2.2.2.1 - "Speed, radius, and relative centrifugal force"). The maximum speed values depend on the rotor that is used. It is also possible to change the RCF value during a centrifugation run. Fig. 13: Setting the speed ### Changing the speed increments By default, the speed is changed in intervals of 100 rpm. To change the speed in intervals of 1 rpm: Keep the stop key pressed while setting the desired speed with the right function knob. ### 6.3.2.7 Relative centrifugal force (RCF) The set RCF value of the centrifuge is displayed in the upper area of the RCF field. The actual value is displayed right below. The RCF value is stated as a multiple of the gravitational acceleration (x g). The values of speed and RCF are interdependent (see chapter 2.2.2.1 - "Speed, radius, and relative centrifugal force"). The maximum speed/RCF values depend on the rotor that is used. The parameter RCF can be changed during the centrifugation. Abb. 14: Setting the RCF-value ### **Changing the RCF increments** By default, the RCF value is changed in intervals of 10 x g. To change the RCF value in intervals of 1 x g: Keep the stop key pressed while setting the desired RCF value with the right function knob. #### 6.3.2.8 Rotor selection This field shows the rotor that is currently being used. The centrifuge is equipped with an automatic rotor identification system. After the installation of the rotor, the
rotor ID will be displayed. It is also possible to manually select the rotor. The rotor selection can only be changed when the centrifuge is at a standstill. - Select the "Rotor" field and confirm the selection. The indication "set" flashes in the activated status. - Turn the right function knob until the desired rotor number is selected. - Press the right function knob to confirm the input. The selected rotor will be adopted. Fig. 15: Rotor selection #### Attention - special case!!! If the rotors 12072 or 12107 are not preselected, rotor 12073 will be automatically displayed for rotor 12072, and rotor 12133 for rotor 12107. This setting does not cause any problems for the centrifugation since the suggested rotors have the same maximum speed. #### 6.3.2.9 Softstart and softstop function The softstart function is used to extend the acceleration time, whereas the softstop function is used to extend the deceleration time. The current combination is shown on the display. - Press the stop key repeatedly until the desired combination is displayed. The possible combinations are called cyclically. - If "soft start" is displayed, only the softstart function is activated. - If "soft start" and "soft stop" are displayed, the softstart and the softstop function are activated. - If "soft stop" is displayed, only the softstop function is activated. - If "soft start" is displayed and the "soft stop" indication flashes, the softstart function and the brakeless deceleration are activated. - If the "soft stop" indication flashes, the brakeless deceleration is activated. - If no indication is displayed, the standard operating mode is restored. #### 6.3.2.10 Automatic lid opening function ("Auto-Lid-Open") The automatic lid opening function must be activated so that the lid opens automatically at the end of the operation. In order to activate the automatic lid opening function: - Press the lid key three times and on the third time hold it down for approx. two seconds. - Proceed in the same way in order to deactivate the function. After every change, the current status of the setting is displayed in the form of a message running over the display ("Auto-Lid-Open on" or "off"). #### 6.3.2.11 Sound signal ("Buzzer") This function is used to set an acoustic signal that sounds at the end of the centrifugation run and also in the event of an imbalance or error message. In order to activate the sound signal: - Press the lid key five times and on the fifth time hold it down for approx. two seconds. - Proceed in the same way in order to deactivate the function.. After every change, the current status of the setting is displayed in the form of a message running in the display ("Buzzer on" or "off"). #### 6.3.2.12 Input lock In order to prevent the centrifuge from being manipulated by unauthorised persons, inputs can be disabled via the menu. Inputs via the keypad, i.e. for starting or stopping a centrifugation run or for opening the lid, are enabled. #### Activating a simple input lock: • Turn the left function knob until the symbol "[6]" is displayed in the upper left corner of the display. The centrifuge can only be started and stopped, but the parameters cannot be changed. As long as the symbol is displayed, the centrifuge can only be started and stopped, but the parameters cannot be changed. #### Activating a permanent input lock: • Press the start key three times and hold for approximately 2 seconds when pressing it for the third time. After the activation of this function, the padlock symbol flashes. The input lock is activated. Proceed in the same manner in order to deactivate the permanent input lock. The current status remains active even if the centrifuge is switched off with the help of the mains power switch. Fig. 16: "Padlock" symbol indicating an activated input lock ## 6.3.3 Programs A program contains all the data that are required for a centrifuge run. Certain sedimentation results can be repeated under identical conditions. A maximum of 50 programs can be stored and loaded under the numbers 1 – 50, when the centrifuge is at a standstill. #### 6.3.3.1 Saving the current settings - Select the desired parameters. - Turn the left function knob until "save" is indicated and confirm the selection by pressing the right function knob. The indication "save" flashes and the modification mode is active. - Select the desired program number by turning the right function knob and confirm the selection by pressing the right function knob. Program numbers that are already occupied will be overwritten with the current data. Fig. 17: Saving a program; here: program no. 08 #### 6.3.3.2 Calling up stored programs - Turn the left function knob until "run" is indicated and confirm the selection by pressing the right function knob. The indication "run" flashes and the modification mode is active. - Select the desired program number by turning the right function knob and confirm the selection by pressing the right function knob. The program is now loaded Fig. 18: Loading a program; here: program no. 8 # 6.4 Switching the centrifuge off - Open the centrifuge when it is not in use so moisture can evaporate. - Switch the centrifuge off by pressing the mains power switch. # 7 Malfunctions and error correction ## 7.1 General malfunctions Error messages are displayed with a code number. If the acoustic signal is activated, it sounds when the error message is displayed. - Eliminate the source of the problem (see table below). - · Acknowledge the error messages by pressing the lid key. Error messages can be eliminated by pressing the lid key. The error itself will not be eliminated, but the centrifuge can be operated again. | Type of error | Possible reason | Correction | | | | |---|--|---|--|--|--| | No indication on the display | No power in the mains supply | Check fuse in the mains supply | | | | | | Power cord is not plugged in | Plug in power cord correctly | | | | | | Fuses have tripped | Reactivate temperature fuse (see chapter 5.2.1 - "Type of connection") | | | | | | Mains power switch off | Switch mains power switch on | | | | | Centrifuge cannot be started: start key LED is not illuminated | Several possible causes | Power off/on. If the error occurs again, contact service | | | | | Centrifuge cannot be started: lid key LED flashes | The lid lock is not closed correctly | Open and close the lid. If the error occurs again, contact service | | | | | Centrifuge decelerates during operation | Brief mains power failure | Press start key in order to restart the centrifuge | | | | | | System error | Power off/on. If the error occurs again, contact service | | | | | Centrifuge decelerates during operation, imbalance message is displayed | Improper loading Centrifuge is inclined Drive problem Centrifuge was moved during run | Balance load and restart the centrifuge. If the error occurs again, contact service (see chapter 7.1.1 - "Emergency lid release") | | | | | | Ungreased load- bearing bolts | Clean and grease load- bearing bolts | | | | | Lid cannot be opened | Lid lock has not released | Unlock the lid manuallyand contact service | | | | | | Lid seal sticks | Clean the lid seal and apply talcum powder | | | | | Temperature value cannot be reached (only for refrigerated centrifuges) | Condenser dirty (only air-cooled units) | Clean the condenser. If the error occurs again, contact service | | | | ## 7.1.1 Emergency lid release In the event of a power failure, it is possible to manually open the centrifuge lid using two stoppers that are secured with screws. They are located on the front of the bottom panel (see figure). Fig. 19: Position of the opening for the emergency release - Switch off the mains power switch and disconnect the power cord from the socket - Unscrew the screws in the stoppers. - Remove the stoppers (see figure below, item 2) on the front of the button, e.g. with a screwdriver. Fig. 20: Screw for the emergency lid release - The stoppers are connected with a string. Pull the string in order to release the lid. - Then, reinsert the stoppers into the openings. String Screw Stopper 1 2 3 Do not unlock or open the lid unless the rotor is at a standstill. If the lid is opened via the emergency lid release system during a centrifuge run, the centrifuge will be switched off immediately and decelerate in an unbraked manner. # 7.2 Table of error codes | Error no. | Kind of error | Measures | Note | |-----------|---|--|--| | 1-9 | System error | Allow to slow downPower off/on | All these errors stop the centrifuge or cause it to decelerate brakeless | | 10-19 | Speedometer error | Allow to slow downPower off/on | | | 20-29 | Motor error | Power offEnsure ventilation | | | 30-39 | EEPROM error | Allow to slow downPower off/on | With error 34, 35, and 36, the centrifuge will stop; with error 37 and 38 only an error message will be given | | 40-45 | Temperature error (only for refrigerated centrifuges) | Allow to slow down Power off Allow to cool down Provide better ventilation (only
air cooled centrifuges) Provide sufficient water throughput (only water cooled centrifuges) | | | 46-49 | Imbalance error (only for centrifuges with imbalance monitoring system) | Allow to slow downPower offEliminate the imbalance | | | 50-59 | Lid error | Press lid key Close lid Remove foreign matter from
the opening of the lid lock
device | With error 50 and 51, the centrifuge will stop | | 60-69 | Process error | Allow to slow downPower off/on | With error 60, the message "power failure during run"will be displayed, with error 61, the message "stop after power on" will be displayed | | 70-79 | Communication error | Allow to slow downPower off/on | | | 80-89 | Parameter error | Power offAllow to cool downProvide for better ventilation | With error 83, error message only | | 90-99 | Other errors | Check connections Provide sufficient water
throughput (only water cooled
centrifuges) | | If it is impossible to eliminate the errors, contact the service! #### 7 Malfunctions and error correction ## 7.3 Service contact In the event of queries, malfunctions, or spare part enquiries: #### From Germany: Contact Sigma Laborzentrifugen GmbH An der Unteren Söse 50 37520 Osterode (Germany) Tel. +49 (0) 55 22 / 50 07-44 44 E-mail: support.lab@sigma-zentrifugen.de #### **Outside Germany:** Contact our agency in your country. All agencies are listed at $\underline{www.sigma-zentrifugen.de} \rightarrow [Sales Partners]$ If you would like to utilise our service, please state the type of your centrifuge and its serial number. ### 8 Maintenance and service The centrifuge, rotor, and accessories are subject to high mechanical stress. Thorough maintenance performed by the user extends the service life and prevents premature failure. If corrosion or other damage occurs due to improper care, the manufacturer cannot be held liable or subject to any warranty claims. - Use soap water or other water-soluble, mild cleaning agents with a pH value between 6 and 8 for cleaning the centrifuge and accessories (see also chapter 8.2 "Sterilisation and disinfection of the rotor chamber and accessories"). - Avoid corrosive and aggressive substances. - · Do not use solvents. - Do not use agents with abrasive particles. - Do not expose the centrifuge and rotors to intensive UV radiation or thermal stress (e.g. by heat generators). #### 8.1 Maintenance #### 8.1.1 Centrifuge - Unplug the mains power plug before cleaning. - Carefully remove all liquids, including water and particularly all the solvents, acids, and alkaline solutions from the rotor chamber using a cloth in order to avoid damage to the motor bearings. - If the centrifuge has been contaminated with toxic, radioactive, or pathogenic substances, clean the rotor chamber immediately with a suitable decontamination agent (depending on the type of contamination). Take suitable precautions for your own safety if there is a risk of toxic, radioactive, or pathogenic contamination. After every cleaning process, grease the motor shaft slightly with a small amount of heavy-duty grease for load-bearing bolts (part no. 71401) and distribute the grease with a cloth so that it forms a thin layer. #### 8.1.2 Accessories For the care of the accessories, special safety measures must be considered as these are measures that will ensure operational safety at the same time! - Immediately rinse off the rotor, buckets, or accessories under running water if they have come into contact with any liquids that may cause corrosion. Use a brush for test tubes in order to clean the bores of angle rotors. Turn the rotor upside down and allow it to dry completely. - Clean the accessories outside the centrifuge once a week or preferably after each use. Adapters should be removed, cleaned and dried. #### Do not clean the accessories in a dishwasher! Cleaning in a dishwasher removes the anodised coating; the result is cracking in areas that are subject to stress. - If the rotors or accessories have been contaminated with toxic, radioactive, or pathogenic substances, clean them immediately with a suitable decontamination agent (depending on the type of contamination). Take suitable precautions for your own safety if there is a risk of toxic, radioactive, or pathogenic contamination. - Dry the accessories with a soft cloth or in a drying chamber at approx. 50°C. #### 8.1.2.1 Plastic accessories The chemical resistance of plastic decreases with rising temperatures (see chapter 11.4 - "Resistance data"). • If solvents, acids, or alkaline solutions have been used, clean the plastic accessories thoroughly. Plastic accessories must not be greased! # 8.1.3 Rotors, buckets and carriers Rotors, buckets and carriers are produced with the highest precision, in order to withstand the permanent high stress from high gravitational fields. Chemical reactions as well as stress-corrosion (combination of oscillating pressure and chemical reaction) can affect or destroy the metals. Barely detectable cracks on the surface can expand and weaken the material without any visible signs. - · Check the material regularly (at least once a month) for - cracks - visible damage of the surface - pressure marks - signs of corrosion - other changes. - Check the bores of the rotors and multiple carriers. - Replace any damaged components immediately for your own safety. - After every cleaning process, grease the rotor tie-down screw slightly with a small amount of heavy-duty grease for load-bearing bolts (part no. 71401) and distribute the grease with a cloth so that it forms a thin layer. #### 8.1.4 Microhaematocrit rotor - Remove the microhaematrocrit rotor for cleaning. - · Wipe the centrifuge chamber clean. - Replace the rubber ring in the event of wear or glass breakage (part no. 16001 for rotor 11409). ## 8.1.5 Load-bearing bolts #### **Plastic bucket** The load-bearing bolts of the rotor must not be greased if plastic buckets are used! #### **Aluminium buckets** Only greased load-bearing bolts ensure a uniform swing-out of the buckets and, therefore, the smooth operation of the centrifuge. Load-bearing bolts that are insufficiently greased may cause the centrifuge to stop due to an imbalance. - Clean the load-bearing bolts and bucket groove in order to remove the old grease. - Apply a small amount of heavy-duty grease for load-bearing bolts (ref. no. 71401, see the following picture) to both load-bearing bolts of a bucket. Fig. 21: Sufficient quantity of grease for one bolt - Install the bucket and swing it manually back and forth once in order to distribute the grease. - · Repeat this process with all the other buckets. #### 8.1.6 Glass breakage In the case of glass breakage, immediately remove all glass particles (e.g. with a vacuum cleaner). Replace the rubber cushions since even thorough cleaning will not remove all glass particles. Glass particles will damage the surface coating (e.g. anodising) of the buckets, which will then lead to corrosion. Glass particles in the rubber cushions of the buckets will cause glass breakage again. Glass particles on the pivot bearing of the load- bearing bolts prevent the buckets and carriers from swinging evenly, which will cause an imbalance. Glass particles in the rotor chamber will cause metal abrasion due to the strong air circulation. This metal dust will not only pollute the rotor chamber, rotor, and materials to be centrifuged but also damage the surfaces of the accessories, rotors, and rotor chamber. #### In order to completely remove the glass particles and metal dust from the rotor chamber: - Grease the upper third of the rotor chamber with e.g. Vaseline. - Then, let the rotor rotate for a few minutes at a moderate speed (approx. 2000 rpm). The glass and metal particles will now collect at the greased part. - Remove the grease with the glass and metal particles with a cloth. - If necessary, repeat this procedure. # 8.2 Sterilisation and disinfection of the rotor chamber and accessories - Use commercially-available disinfectants such as, for example, Sagrotan[®], Buraton[®], or Terralin[®] (available at chemist's shops or drugstores). - The centrifuge and the accessories consist of various materials. A possible incompatibility must be considered. - Before using cleaning or decontamination agents that were not recommended by us, contact the manufacturer to ensure that such a procedure will not damage the centrifuge. - For autoclaving, consider the continuous heat resistance of the individual materials (see chapter 8.2.1 "Autoclaving"). Please contact us if you have any queries (see chapter 7.3 - "Service contact"). If dangerous materials (e.g. infectious and pathogenic substances) are used, the centrifuge and accessories must be disinfected. #### 8 Maintenance and service ## 8.2.1 Autoclaving The service life of the accessories essentially depends on the frequency of autoclaving and use. - Replace the accessories immediately when the parts show changes in colour or structure or in the occurrence of leaks etc. - During autoclaving, the caps of the tubes must not be screwed on in order to avoid the deformation of the tubes. It cannot be excluded that plastic parts, e.g. lids or carriers, may deform during autoclaving. | Accessories | Max. temp.
(°C) | Min. time
(min) | Max. time (min) | Max. cycles | |--|--------------------|--------------------|-----------------|-------------| | Aluminium buckets | 134-138 | 3 | 5 | - | | Aluminium rotors | 134-138 | 3 | 5 | - | | Glass tubes | 134-138 | 3 | 40 | - | | Polyallomer / polycarbonate rectangular carriers | 115-118 | 30 | 40 | - | | Polyallomer / polycarbonate round carriers | 115-118 | 30 | 40 | - | | Polyamide buckets | 115-118 | 30 | 40 | 10 | | Polycarbonate / polyallomer
lids for angle rotors | 115-118 | 30 | 40 | 20 | | Polycarbonate tubes | 115-118 | 30 | 40 | 20 | | Polyphenylsulfone (PPSU) caps for buckets | 134-138 | 3 | 5 | 100 | | Polypropylene balance adapter for blood-bag systems | 115-118 | 30 | 40 | n.s. | | Polypropylene copolymer tubes | 115-121 | 30 | 40 | 20 | | Polypropylene rectangular carriers | 115-118 | 30 | 40 | - | | Polypropylene rotors | 115-118 | 30 | 40 | 20 | | Polypropylene round carriers | 115-118 | 30 | 40 | - | | Polysulfone caps for buckets | 134-138 | 3 | 5 | 100 | | Polysulfone lids for angle rotors | 134-138 | 3 | 5 | 100 | | Rubber adapters | 115-118 | 30 | 40 | - | | Stainless-steel balance weight for blood-bag systems | 121 | 30 | 30 | n.s. | | Teflon tubes | 134-138 | 3 | 5 | 100 | #### 8.3 Service In the event of service work that requires the removal of the panels, there is a risk of electric shock or mechanical injury. Only qualified specialist personnel is authorised to perform this service work. The centrifuge is subject to high mechanical stress. In order to be able to withstand this high level of stress, high-quality components were used during the production of the centrifuge. Nevertheless, wear cannot be excluded and it may not be visible from the outside. Especially the rubber parts that are – among other things – part of the motor suspension, are subject to ageing. This is why we recommend having the centrifuge checked by the manufacturer during an inspection once per year in the operating state and once every three years in the dismantled state. Rubber parts should be replaced after three years. Information and appointments: #### In Germany: Contact Sigma Laborzentrifugen GmbH An der Unteren Söse 50 37520 Osterode (Germany) Tel. +49 (0) 55 22 / 50 07-44 44 E-mail: support.lab@sigma-zentrifugen.de #### **Outside Germany:** Contact our agency in your country. All agencies are listed at www.sigma-zentrifugen.de → [Sales Partners] • If you would like to utilise our service, please state the type of your centrifuge and its serial number. # 8.4 Return of defective centrifuges or parts Although we exercise great care during the production of our products, it may be necessary to return a unit or accessory to the manufacturer. In order to ensure the quick and economical processing of returns of centrifuges, spare parts, or accessories, we require complete and extensive information concerning the process. Please fill in the following forms completely, sign them, enclose them with the return package, and send them together with the product to: Sigma Laborzentrifugen GmbH An der Unteren Söse 50 37520 Osterode (Germany) #### 1. Declaration of decontamination As a certified company and due to the legal regulations for the protection of our employees and of the environment, we are obliged to certify the harmlessness of all incoming goods. For this purpose, we require a declaration of decontamination. - The form must be filled in completely and signed by authorised and specialised personnel only. - Affix the original form in a clearly visible manner to the outside of the packaging. We will return the part/unit if no declaration of decontamination is provided! #### 2. Form for the return of defective parts This form is for the product-related data. They facilitate the assignment, and they enable the quick processing of the return. If several parts are returned together in one packaging, please enclose a separate problem description for every defective part. A detailed problem description is necessary in order to perform the repair quickly and economically. If the form does not include a description of the malfunction, neither a refund nor a credit note can be issued. In this case, we reserve the right to return the part/unit to you at your expense. Upon request, we will prepare and submit to you a cost estimate prior to performing the repair. Please confirm such cost estimate within 14 days. If the cost estimate has still not been confirmed after 4 weeks, we will return the defective part/unit. Please note that you must bear the incurred costs. #### **8 Maintenance and service** The defective part/unit must be packaged in a transport-safe manner. Please use the original packaging for the unit, if at all possible. If the product is dispatched to us in unsuitable packaging, you will be charged the cost for returning it to you in new packaging. The forms can be downloaded online from $\underline{\text{www.sigma-zentrifugen.de}} \rightarrow [\text{Service}] \rightarrow [\text{Overhaul and repair}].$ # 9 Disposal # 9.1 Disposal of the centrifuge In accordance with the directive 2002/96/EC, SIGMA centrifuges are marked with the symbol shown to the left. This symbol means that it is not permissible to dispose of the unit among household waste. - You can return these centrifuges free of cost to Sigma Laborzentrifugen GmbH. - Ensure that the unit is decontaminated. Fill in a declaration of decontamination (see chapter 8.4 - "Return of defective centrifuges or parts"). - Comply with any other applicable local rules and regulations. # 9.2 Disposal of the packaging - Use the packaging to return the centrifuge for disposal or - dispose of the packaging, after having separated the individual materials. - Comply with all local rules and regulations. # 10 Technical data | Manufacturer | Sigma Laborzentrifugen GmbH
An der Unteren Söse 50
37520 Osterode (Germany) | |--|--| | Type: | 2-16P | | Connection requirements Electr. connection: Protection class: IP code: | see name plate I 20 | | Connected load (kVA): Power consumption (kW): Max. current consumption (A): Input fuse (AT): | 0.30
0.34
1.4 (at 220-240 V / 50 Hz)
2.8 (at 120 V / 60 Hz)
4.0 (at 220-240 V / 50 Hz) | | Performance data | 4.0 (at 220-240 V / 30 Hz) | | Max. speed (rpm): Max. capacity (ml): Max. gravitational field (x g): Max. kin. energy (Nm): | 15,000
408
20,627
7,756 | | Other parameters Time range: Storage locations: | 10 sec – 11h 59 min, short run, continuous run 50 | | Physical data Height (mm): Height with open lid (mm): Width (mm): Depth (mm): Weight (kg): | 300
610
365
452
32 | | Noise level (dB(A)): | < 67 (at maximum speed) | #### 10.1 Ambient conditions • The figures are valid for an ambient temperature of +23°C and a nominal voltage \pm 10 %. At a nominal voltage of 100V or 200V, a tolerance of +10% / -5% applies. - For indoor use only. - Allowable ambient temperature +5°C to +40°C. - Max. relative humidity of air 80% up to 31°C with a linear decrease to 50% relative humidity of air at 40°C. - Maximum altitude 2,000 m above sea level. #### 10.2 Technical documentation For environmental reasons, the comprehensive technical documentation of the centrifuge (e.g. circuit diagrams) and the safety data sheets of the manufacturers of refrigerants and lubricants are not attached to this documentation. You can order these documents from our service department. # 11 Appendix # 11.1 Range of accessories The complete list of accessories can be downloaded from www.sigma-zentrifugen.de. #### 11.1.1 Rotor radii The information in the accessories table concerning the radius refers to the values of the respective rotor as shown below. The radius calculation is described in chapter 2.2.2.1 - "Speed, radius, and relative centrifugal force". Fig. 22: Minimum and maximum radius of an angle rotor Fig. 23: Minimum and maximum radius of an swing-out rotor # 11 Appendix Fig. 24: Microhaematocrit rotor # 11.2 Speed-gravitational-field-diagram Fig. 25: Speed-gravitational-field-diagram ## 11.3 Table of the service life of rotors and accessories - If no other data concerning the service life are engraved on the rotor or accessory, rotors and buckets must be checked by the manufacturer after 10 years. - If a specification concerning the maximum number of cycles **and** a specification concerning the service life (i.e. a date) are provided, the specification that occurs first shall apply. - After 50,000 cycles, rotors must be scrapped for safety reasons. | Rotor /
bucket | Cycles | Service life ("Exp.Date") | Autoclaving | Suitable for centrifuge | Remarks | |-------------------|--------|---------------------------|-------------|---|--| | 9100 | 15,000 | | | 4-15C, 4K15C, 4-16, 4-16S,
4-16K, 4-16KS, 6-15, 6K15,
6-16, 6-16K | without engraving, only "spincontrol professional" and "spincontrol S" | | 11026 | | 7 years | | 1-14, 1-14K | | | 11805 | | 10 years* | | 8K, 8KB, 8KS, 8KBS | *in combination with
bucket 13850 or 13860 | | 12033 | | 5 years | | 1-16 Edition, 1-16K Edition | | | 12082 | | 7 years | | 1-14, 1-14K | | | 12083 | | 7 years | | 1-14, 1-14K | | | 12084 | | 7 years | | 1-14, 1-14K | | | 12085 | | 7 years | | 1-14, 1-14K | | | 12092 | | 5 years | 20x | 1-14, 1-14K | | | 12093 | | 5 years | 20x | 1-14, 1-14K | | | 12094 | | 5 years | 20x | 1-14, 1-14K | | | 12096 | | 5 years | 20x | 1-14, 1-14K | | | 12097 | | 5 years | 20x | 1-14, 1-14K | | | 12101 | | 5 years | 20x | 1-15, 1-15K, 1-15P, 1-15PK | | | 12124 | | 5 years | 20x | 1-15, 1-15K, 1-15P, 1-15PK | | | 12126 | | 5 years | 20x | 1-15, 1-15K, 1-15P, 1-15PK | | | 12134 | | 5 years | 20x | 1-16, 1-16K | | | 12135 | | 5 years | 20x | 1-16, 1-16K | | | 12137 | | 5 years | 20x | 1-16, 1-16K | | | 12500 | | 7 years | | 6-15, 6K15, 6-16, 6-16K | | | 12600 | | 7 years | | 6-16S, 6-16KS | | | 13218 | 20,000 | | | 4-16, 4-16S, 4-16K, 4-16KS, 6-16, 6-16S, 6-16K, 6-16KS | | | 13296 | 35,000 | 5 years | 10x | 2-6, 2-6E, 2-7,
2-16P, 2-16KL, 2-16KHL | | | 13299 | | 5 years | 10x | 2-6,
2-6E, 2-7,
2-16P, 2-16KL, 2-16KHL | | | 13635 | 25,000 | | | 6-16, 6-16K, 6-16S, 6-16KS | | | 13650 | 20,000 | | | 4-5L, 4-16S, 4-16KS,
4-16KHS, 6-16S, 6-16HS,
6-16KS, 6-16KHS | | | 13845 | 20,000 | | | 8K, 8KB, 8KS, 8KBS | | | 13850 | 10,000 | 10 years* | | 8K, 8KB, 8KS, 8KBS | *in combination with rotor 11805 | | 13860 | 15,000 | 10 years* | | 8K, 8KB, 8KS, 8KBS | *in combination with rotor 11805 | | 13864 | 1,000 | | | 8K, 8KB, 8KS, 8KBS | without engraving | | 13865 | 1,000 | | | 8K, 8KB, 8KS, 8KBS | without engraving | | 13866 | 1,000 | | | 8K, 8KB, 8KS, 8KBS | without engraving | | 13867 | 2,500 | | | 8K, 8KB, 8KS, 8KBS | without engraving | # 11.4 Resistance data The data refer to resistance at 20°C. | - no data
1 resistant
2 practically resistant
3 partially resistant
4 not resistant | | Concentration | High Density
Polyethylene | Polyamide | Polycarbonate | Polyoxymethylene | Polypropylene | Polysulfone | Polyvinyl chloride, hard | Polyvinyl chloride, soft | Polytetrafluorethylene | Acrylonitrile-butadiene-
caoutchouc | Aluminium | |---|---|---------------|------------------------------|-----------|---------------|------------------|---------------|-------------|--------------------------|--------------------------|------------------------|--|-----------| | Medium | Formula | [%] | HDPE | PA | S
S | POM | Ь | PSU | PVC | PVC | PTFE | NBR | AL | | Acetaldehyde | C ₂ H ₄ O | 40 | 3 | 2 | 4 | 2 | 3 | 4 | 4 | - | 1 | 4 | 1 | | Acetamide | C ₂ H ₅ NO | saturated | 1 | 1 | 4 | 1 | 1 | 4 | 4 | - | 1 | - | 1 | | Acetone | C ₃ H ₆ O | 100 | 1 | 1 | 4 | 1 | 1 | 4 | 4 | - | 1 | 4 | 1 | | Acrylonitrile | C ₃ H ₃ N | 100 | 1 | 1 | 4 | 3 | 3 | 4 | 4 | 4 | 1 | 4 | 1 | | Allyl alcohol | C ₃ H ₆ O | 96 | 1 | 3 | 3 | 2 | 2 | 2 | 2 | 4 | 1 | 1 | 1 | | Aluminium chloride | AICI ₃ | saturated | 1 | 3 | 2 | 4 | 1 | - | 1 | - | 1 | 1 | 4 | | Aluminium sulfate | Al ₂ (SO ₄) ₃ | 10 | 1 | 1 | 1 | 3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | Ammonium chloride | (NH ₄)CI | aqueous | 1 | 1 | 1 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 3 | | Ammonium hydroxide | $NH_3 + H_2O$ | 30 | 1 | 3 | 4 | 1 | 1 | 2 | 1 | - | 1 | - | 1 | | Aniline | C ₆ H ₇ N | 100 | 1 | 3 | 4 | 1 | 2 | 4 | 4 | 4 | 1 | 4 | 1 | | Anisole | C ₇ H ₈ O | 100 | 3 | 4 | 4 | 1 | 4 | 4 | 2 | - | 1 | 4 | 1 | | Antimony trichloride | SbCl ₃ | 90 | 1 | 4 | 1 | 4 | 1 | - | 1 | - | 1 | - | 4 | | Benzaldehyde | C ₇ H ₆ O | 100 | 1 | 3 | 4 | 1 | 1 | 3 | 4 | 4 | 1 | 4 | 1 | | Benzene | C ₆ H ₆ | 100 | 3 | 2 | 4 | 1 | 3 | 4 | 4 | - | 1 | 4 | 1 | | Boric acid | H ₃ BO ₃ | aqueous | 1 | 3 | 1 | 2 | 1 | - | - | - | 1 | 1 | 1 | | Butyl acrylate | $C_7H_{12}O_2$ | 100 | 1 | 2 | 4 | 2 | 3 | 4 | 4 | 4 | 1 | - | 1 | | Butyl alcohol, normal | C ₄ H ₁₀ O | 100 | 1 | 1 | 2 | 1 | 1 | 2 | 2 | 4 | 1 | 1 | 1 | | Calcium chloride | CaCl ₂ | alcoholic | 1 | 4 | 2 | 3 | 1 | - | - | 4 | 1 | 1 | 3 | | Carbon disulfide | CS ₂ | 100 | 4 | 3 | 4 | 2 | 4 | 4 | 4 | 4 | 1 | 3 | 1 | | Carbon tetrachloride (TETRA) | CCI ₄ | 100 | 4 | 4 | 4 | 2 | 4 | 4 | 4 | 4 | 1 | 3 | 1 | | Chlorine | Cl ₂ | 100 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 1 | - | 3 | | Chlorine water | Cl ₂ x H ₂ O | | 3 | 4 | 4 | 4 | 3 | - | 3 | 3 | 1 | - | 4 | | Chlorobenzene | C ₆ H ₅ CI | 100 | 3 | 4 | 4 | 1 | 3 | 4 | 4 | 4 | 1 | 4 | 1 | | Chloroform | CHCl ₃ | 100 | 3 | 3 | 4 | 4 | 3 | 4 | 4 | 4 | 1 | 4 | 3 | # **O** SIGMA # 11 Appendix | no data 1 resistant 2 practically resistant 3 partially resistant 4 not resistant | | Concentration | High Density
Polyethylene | Polyamide | Polycarbonate | Polyoxymethylene | Polypropylene | Polysulfone | Polyvinyl chloride, hard | Polyvinyl chloride, soft | Polytetrafluorethylene | Acrylonitrile-butadiene-
caoutchouc | Aluminium | |---|--|---------------|------------------------------|-----------|---------------|------------------|---------------|-------------|--------------------------|--------------------------|------------------------|--|-----------| | Medium | Formula | [%] | HDPE | PA | PC | POM | ЬР | PSU | PVC | PVC | PTFE | NBR | AL | | Chromic acid | CrO ₃ | 10 | 1 | 4 | 2 | 4 | 1 | 4 | 1 | - | 1 | 4 | 1 | | Chromic potassium sulphate | KCr(SO ₄) ₂ x
12H ₂ O | saturated | 1 | 2 | 1 | 3 | 1 | - | 1 | - | 1 | - | 3 | | Citric acid | C ₆ H ₈ O ₇ | 10 | 1 | 1 | 1 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | Citric acid | C ₆ H ₈ O ₇ | 50 | 1 | 3 | 1 | 2 | 1 | - | - | - | 1 | 1 | 1 | | Copper sulphate | CuSO ₄ x 5H ₂ O | 10 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 4 | | Cyclohexanol | C ₆ H ₁₂ O | 100 | 1 | 1 | 3 | 1 | 1 | 1 | 1 | 4 | 1 | 2 | 1 | | Decane | C ₁₀ H ₂₂ | 100 | - | 1 | 2 | 1 | 3 | - | - | - | 1 | 2 | 1 | | Diaminoethane | $C_2H_8N_2$ | 100 | 1 | 1 | 3 | 1 | 1 | - | 3 | 4 | 1 | 1 | 1 | | Diesel fuel | _ | 100 | 1 | 1 | 3 | 1 | 1 | - | 1 | 3 | 1 | 1 | 1 | | Dimethyl formamide (DMF) | C ₃ D ₇ NO | 100 | 1 | 1 | 4 | 1 | 1 | 4 | 3 | - | 1 | 3 | 1 | | Dimethyl sulfoxide (DMSO) | C ₂ H ₆ SO | 100 | 1 | 2 | 4 | 1 | 1 | 4 | 4 | - | 1 | - | 1 | | Dimethylaniline | C ₈ H ₁₁ N | 100 | - | 3 | 4 | 2 | 4 | - | - | - | 1 | - | 1 | | Dioxane | $C_4H_8O_2$ | 100 | 2 | 1 | 4 | 1 | 3 | 2 | 3 | 4 | 1 | 3 | 1 | | Dipropylene glycol (mono)methyl ether | C ₄ H ₁₀ O | 100 | 3 | 1 | 4 | 1 | 4 | 4 | 4 | 4 | 1 | - | 1 | | Ethyl acetate | $C_4H_8O_2$ | 100 | 1 | 1 | 4 | 1 | 1 | 4 | 4 | 4 | 1 | 4 | 1 | | Ethylene chloride | C ₂ H ₄ Cl ₂ | 100 | 3 | 3 | 4 | 1 | 3 | 4 | 4 | 4 | 1 | - | 1 | | Ferrous chloride | FeCl ₂ | saturated | 1 | 3 | 1 | 3 | 1 | 1 | 1 | 1 | 1 | - | 4 | | Formaldehyde solution | CH ₂ O | 30 | 1 | 3 | 1 | 1 | 1 | - | - | - | 1 | 2 | 1 | | Formic acid | CH ₂ O ₂ | 100 | 1 | 4 | 3 | 4 | 1 | 3 | 3 | 1 | 1 | 2 | 1 | | Furfural | $C_5H_4O_2$ | 100 | 1 | 3 | 3 | 2 | 4 | - | - | - | 1 | 4 | 1 | | Gasoline | C ₅ H ₁₂ - C ₁₂ H ₂₆ | 100 | 2 | 1 | 3 | 1 | 3 | 3 | 2 | - | 1 | 1 | 1 | | Glycerol | C ₃ H ₈ O ₃ | 100 | 1 | 1 | 3 | 1 | 1 | 1 | 1 | 2 | 1 | 1 | 1 | | Heptane, normal | C ₇ H ₁₆ | 100 | 2 | 1 | 1 | 1 | 2 | 1 | 2 | 4 | 1 | 1 | 1 | | Hexane, n- | C ₆ H ₁₄ | 100 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 4 | 1 | 1 | 1 | | Hydrogen chloride | HCI | 5 | 1 | 4 | 1 | 4 | 1 | 1 | 1 | - | 1 | 2 | 4 | | Hydrogen chloride | HCI | concentrated | 1 | 4 | 4 | 4 | 1 | 1 | 2 | 3 | 1 | 4 | 4 | | Hydrogen peroxide | H_2O_2 | 3 | 1 | 3 | 1 | 1 | 1 | 1 | 1 | - | 1 | 3 | 3 | | Hydrogen peroxide | H_2O_2 | 30 | 1 | 4 | 1 | 4 | 1 | 1 | 1 | - | 1 | 3 | 3 | | Hydrogen sulphide | H ₂ S | 10 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 3 | 1 | 3 | 1 | | lodine, tincture of | l ₂ | | 1 | 4 | 3 | 1 | 1 | - | 4 | 4 | 1 | 1 | 1 | | | | | | | | | | | | | | -ppci | | |---|--|---------------|------------------------------|-----------|---------------|------------------|---------------|-------------|--------------------------|--------------------------|------------------------|--|-----------| | no data 1 resistant 2 practically resistant 3 partially resistant 4 not resistant | | Concentration | High Density
Polyethylene | Polyamide | Polycarbonate | Polyoxymethylene | Polypropylene | Polysulfone | Polyvinyl chloride, hard | Polyvinyl chloride, soft | Polytetrafluorethylene | Acrylonitrile-butadiene-
caoutchouc | Aluminium | | Medium | Formula | % | HDPE | PA | PC | POM | P | PSU | PVC | PVC | PTFE | NBR | AL | | Isopropyl alcohol | C ₃ H ₈ O | 100 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 4 | 1 | - | 2 | | Lactic acid | $C_3H_6O_3$ | 3 | 1 | 3 | 1 | 2 | 1 | 1 | 2 | - | 1 | 1 | 1 | | Magnesium chloride | MgCl ₂ | 10 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | Mercuric chloride | HgCl ₂ | 10 | 1 | 4 | 1 | 3 | 1 | 1 | 1 | 1 | 1 | 1 | 4 | | Mercury | Hg | 100 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 3 | 1 | 1 | 3 | | Methyl acetate | $C_3H_6O_2$ | 100 | 1 | 1 | 4 | 2 | 1 | - | 4 | 4 | 1 | - | 1 | | Methyl alcohol | CH ₄ O | 100 | 1 | 2 | 4 | 1 | 1 | 3 | 1 | 3 | 1 | 2 | 1 | | Methyl benzene | C ₇ H ₈ | 100 | 3 | 1 | 4 | 1 | 3 | 4 | 4 | 4 | 1 | 4 | 1 | | Methyl ethyl ketone
(MEK) | C ₄ H ₈ O | 100 | 1 | 1 | 4 | 1 | 1 | 4 | 4 | 4 | 1 | 4 | 1 | | Methylene chloride | CH ₂ Cl ₂ | 100 | 4 | 3 | 4 | 3 | 3 | 4 | 4 | 4 | 1 | - | 1 | | Mineral oil | | 100 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | - | 1 | 1 | 1 | | Nitric acid | HNO ₃ | 10 | 1 | 4 | 1 | 4 | 1 | 1 | 1 | - | 1 | 4 | 3 | | Nitric acid | HNO ₃ | 100 | 4 | 4 | 4 | 4 | 4 | - | 4 | - | 1 | 4 | 1 | | Nitrobenzene | C ₆ H ₅ NO ₂ | 100 | 3 | 4 | 4 | 3 | 2 | 4 | 4 | 4 | 1 | 4 | 1 | | Oleic acid | C ₁₈ H ₃₄ O ₂ | 100 | 1 | 1 | 1 | 2 | 1 | - | 1 | - | 1 | 3 | 1 | | Oxalic acid | C ₂ H ₂ O ₄ x 2H ₂ O | 100 | 1 | 3 | 1 | 4 | 1 | 1 | 1 | 1 | 1 | 2 | 1 | | Ozone | O_3 | 100 | 3 | 4 | 1 | 4 | 3 | 1 | 1 | - | 1 | 4 | 2 | | Petroleum | | 100 | 1 | 1 | 3 | 1 | 1 | 1 | 1 | 3 | 1 | 1 | 1 | | Phenol | C ₆ H ₆ O | 10 | 1 | 4 | 4 | 4 | 1 | 4 | 1 | 3 | 1 | 3 | 1 | | Phenol | C ₆ H ₆ O | 100 | 2 | 4 | 4 | 4 | 1 | 3 | 4 | 3 | 1 | 3 | 1 | | Phosphoric acid | H ₃ PO ₄ | 20 | 1 | 4 | 2 | 4 | 1 | - | - | - | 1 | 2 | 4 | | Phosphorus pentachloride | PCI ₅ | 100 | - | 4 | 4 | 4 | 1 | - | 4 | 4 | 1 | - | 1 | | Potassium hydrogen carbonate | CHKO ₃ | saturated | 1 | 1 | 2 | 1 | 1 | - | - | - | 1 | - | 4 | | Potassium hydroxide | KOH | 30 | 1 | 1 | 4 | 3 | 1 | 1 | 1 | 1 | 1 | - | 4 | | Potassium hydroxide | KOH | 50 | 1 | 1 | 4 | 3 | 1 | 1 | 1 | 1 | 1 | - | 4 | | Potassium nitrate | KNO ₃ |
10 | 1 | 1 | 1 | 1 | 1 | - | - | - | 1 | 1 | 1 | | Potassium permanganate | KMnO ₄ | 100 | 1 | 4 | 1 | 1 | 1 | - | 1 | - | 1 | 3 | 1 | | Pyridine | C ₅ H ₅ N | 100 | 1 | 1 | 4 | 1 | 3 | 4 | 4 | 4 | 1 | 4 | 1 | | Resorcinol | C ₆ H ₆ O ₂ | 5 | 1 | 4 | 2 | 3 | 1 | 4 | 2 | - | 1 | - | 2 | | Silver nitrate | AgNO ₃ | 100 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 4 | | | | | | | | | | | | | | | | # 11 Appendix | no data 1 resistant 2 practically resistant 3 partially resistant 4 not resistant | | Concentration | High Density
Polyethylene | Polyamide | Polycarbonate | Polyoxymethylene | Polypropylene | Polysulfone | Polyvinyl chloride, hard | Polyvinyl chloride, soft | Polytetrafluorethylene | Acrylonitrile-butadiene-
caoutchouc | Aluminium | |---|---|---------------|------------------------------|-----------|---------------|------------------|---------------|-------------|--------------------------|--------------------------|------------------------|--|-----------| | Medium | Formula | [%] | HDPE | PA | PC | POM | ЬР | PSU | PVC | PVC | PTFE | NBR | AL | | Sodium bisulphite | NaHSO ₃ | 10 | 1 | 1 | 2 | 4 | 1 | - | - | - | 1 | 1 | 1 | | Sodium carbonate | Na ₂ CO ₃ | 10 | 1 | 1 | 1 | 1 | 1 | - | - | - | 1 | - | 3 | | Sodium chloride | NaCl | 30 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 3 | | Sodium hydroxide | NaOH | 30 | 1 | 1 | 4 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 4 | | Sodium hydroxide | NaOH | 50 | 1 | 1 | 4 | 1 | 1 | 1 | 1 | - | 1 | 2 | 4 | | Sodium sulfate | Na ₂ SO ₄ | 10 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | Spirits | C ₂ H ₆ O | 96 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 3 | 1 | - | 1 | | Styrene | C ₈ H ₈ | 100 | 4 | 1 | 4 | 1 | 3 | - | 4 | 4 | 1 | 4 | 1 | | Sulphuric acid | H ₂ SO ₄ | 6 | 1 | 4 | 1 | 4 | 1 | 1 | 1 | - | 1 | 2 | 3 | | Sulphuric acid | H ₂ SO ₄ | fuming | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 1 | 4 | 3 | | Tallow | _ | 100 | 1 | 1 | 1 | 1 | 1 | - | 1 | 1 | 1 | 1 | 1 | | Tetrahydrofuran (THF) | C ₄ H ₈ O | 100 | 3 | 1 | 4 | 1 | 3 | 4 | 4 | 4 | 1 | 3 | 1 | | Tetrahydronaphthalene | C ₁₀ H ₁₂ | 100 | 3 | 1 | 4 | 1 | 4 | 4 | 4 | 4 | 1 | - | 1 | | Thionyl chloride | Cl ₂ SO | 100 | 4 | 4 | 4 | 2 | 4 | 4 | 4 | 4 | 1 | - | 3 | | Tin chloride | SnCl ₂ | 10 | 1 | 4 | 2 | 2 | 1 | - | - | - | 1 | 1 | 4 | | Transformer oil | _ | 100 | 1 | 1 | 3 | 3 | 1 | 1 | 1 | - | 1 | 1 | 1 | | Trichloroethane | C ₂ H ₃ Cl ₃ | 100 | 3 | 3 | 4 | 2 | 4 | 4 | 4 | 4 | 1 | 4 | 4 | | Urea | CH ₄ N ₂ O | 10 | 1 | 1 | 1 | 1 | 1 | - | - | - | 1 | 1 | 1 | | Urine | _ | 100 | 1 | 1 | 1 | 1 | 1 | - | 1 | 1 | 1 | - | 2 | | Vinegar | C ₂ H ₄ O ₂ | 10 | 1 | 4 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 1 | | Vinegar | C ₂ H ₄ O ₂ | 90 | 1 | 4 | 4 | 4 | 1 | 3 | 1 | 4 | 1 | - | 1 | | Wax | _ | 100 | - | 1 | 1 | | 1 | - | - | - | 1 | - | 1 | | Wines | _ | 100 | 1 | 1 | 1 | 2 | 1 | 1 | 1 | 1 | 1 | - | 4 | | Xylene | C ₈ H ₁₀ | 100 | 3 | 1 | 4 | 1 | 4 | 4 | 4 | 4 | 1 | 4 | 1 | # 11.5 EC declaration of conformity ## **EC – DECLARATION OF CONFORMITY** The product named hereinafter was developed, designed, and manufactured in compliance with the relevant, fundamental safety and health requirements of the listed EC directives and norms. In the event of modifications that were not authorised by us or if the product is used in a manner that is not in line with the intended purpose, this declaration will be rendered void. | Product name: | Laboratory centrifuge | | | | | | |---------------|--|--|--|--|--|--| | Product type: | Sigma 2-16P | | | | | | | Order number: | 10155, 10156, 10157 | | | | | | | Directives: | 2006/42/EC Machinery Directive 2014/35/EU Low Voltage Directive 2014/30/EU EMC Directive 2011/65/EU RoHS Directive | | | | | | | Normes: | EN 61010-2-020:2006
EN 61000-3-2:2014
EN 61000-3-3:2013
EN 61326-1:2013 | | | | | | #### Sigma Laborzentrifugen GmbH An der Unteren Söse 50 37520 Osterode Germany Authorised representative for CE matters: Eckhard Tödteberg Osterode, 13/09/2017 Michael Souder General Manager CE_2-16P_2017-09-13_en Page 1 / 1 # 11.6 Declaration of conformity – China RoHS 2 #### **DECLARATION OF CONFORMITY** China RoHS 2 (Administrative Measures for the Restriction of the Use of Hazardous Substances in Electrical and Electronic Products) Laboratory centrifuge models: Sigma 1-14, 1-14K, 1-7, 1-16, 1-16K, 2-7, 2-16P, 2-16KL,2-16KHL, 3-16L, 3-16KL, 3-18KS, 3-18KHS, 3-30KS, 3-30KHS, 4-5L, 4-5KRL, 4-16S, 4-16KS, 4-16KHS, 4-16KRL, 6-16S, 6-16HS, 6-16KS, 6-16KHS, 6-16KRL, 8KS, 8KBS Sigma Laborzentrifugen GmbH has made reasonable effort to avoid the use of hazardous substances in the products it manufactures (laboratory centrifuges). A Product Conformity Assessment (PCA) was performed in order to determine whether the concentration of harmful substances in all homogeneous materials of the component parts is above or below the MCV limit (Maximum Concentration Value limit) as defined in GB/T 26572: Mercury and its compounds: 0.1 % Cadmium (Cd) and its compounds: 0.01 % Lead (Pb) and its compounds: 0.1 % Hexavalent chromium (Cr (VI)) and its compounds: 0.1 % Polybrominated biphenyls (PBB): 0.1 % Polybrominated diphenyl ethers (PBDE): 0.1 % | 表1 产品中有害物质的名称及含量
Table 1: Name and content of hazardous substances in the product | | | | | | | | | | | |--|--------------------------|-----------------------------|------------------------------------|---|---|---|--|--|--|--| | 部件名称
Component | | 有害物质
Hazardous substance | | | | | | | | | | part (PCA) | 铅
Lead
(Pb) | 录 | | | | | | | | | | Electronic PCB, cables | X ¹⁾ | 0 | 0 | 0 | 0 | 0 | | | | | | Display | 0 | 0 | 0 | 0 | 0 | 0 | | | | | | Housing | Housing $X^{2)}$ O O O O | | | | | | | | | | | Base, metal, accessories | | | | | | | | | | | | | | | 据SJ/T 11364的规
nade according to | | | | | | | | Declaration_China_RoHS2_2017-11-20_en-chr Page 1 / 2 #### 11 Appendix - O: 表示该有害物质在该部件所有均质材料中的含量均在GB/T 26572规定的限量要求以下。 Indicates that the content of the harmful substance in all homogeneous materials of the component part is below the limit as defined in GB/T 26572.) - X: 表示该有害物质至少在该部件的某一均质材料中的含量超出GB/T 26572规定的限量要求。(企业可在此处,根据实际情况对上表打"×"的技术原因进行进一步说明。) Indicates that the content of the harmful substance in at least one homogeneous material of the component part exceeds the limit as defined in GB/T 26752. (Contact the manufacturer for further technical information according to the actual situation.) - 1) Contains parts in compliance with exemptions 6c, 7c.I, 7c.II and 37 of 2011/65/EU RoHS. - ²⁾ Contains parts in compliance with exemptions 6a, 6b and 6c of 2011/65/EU RoHS. Apart from the exemptions given in this table, none of the substances listed above have been intentionally added to the product or metallic coatings. #### Sigma Laborzentrifugen GmbH An der Unteren Söse 50 37520 Osterode Germany Osterode, 20/11/2017 Michael Souder General Manager Declaration_China_RoHS2_2017-11-20_en-chn | A | Centrifuges | |---|--| | Acceleration time | - definition9 | | - see also the softstart and softstop function | Changes in colour50 | | 37 | Changes in structure50 | | Accessories, cleaning and care46 | Changing the RCF increments36 | | Acid20, 45, 46 | Changing the speed increments36 | | Activating the modification mode34 | Changing the time increments35 | | Adapter 32 | Chemical and biological safety19 | | Adapters 32, 46 | Chemical resistance of plastic46 | | Alkaline solutions 20, 45, 46 | China RoHS 2 – Declaration of conformity . 67 | | Ambient conditions55 | Cleaning agents49 | | Ambient temperature55 | Cleaning the bores of angle rotors46 | | Anodised coating46 | Cleaning the centrifuge45 | | Application examples13 | Closing the lid18, 27 | | Autoclaving 50 | Communication error43 | | Auto-Lid-Open38 | Condensation26 | | Automatic lid opening function38 | Condenser dirty41 | | Automatic rotor identification37 | Connected load55 | | В | Contamination19, 46 | | | Continuous heat resistance49 | | Brief mains power failure41 | Continuous run35 | | Bucket 32 | Control system33 | | Buckets, cleaning and care47 | Copyright10 | | Buzzer38 | Corrosion18, 21, 32, 45, 46, 47, 49 | | С | Cost estimate52 | | Calling up stored programs39 | Cracking46 | | Capacity55 | Cracks47 | | Capillary tubes30 | Current consumption55 | | Carrier32 | Customer-provided fuses26 | | Carrier systems32 | D | | Carriers, cleaning and care47 | Damage of the surface47 | | CE mark in compliance with the directive | Dangerous goods | | 2006/42/EC15 | Dangerous materials | | Centrifugation of infectious, toxic, radioactive, | Deceleration time | | or pathogenic substances | - see also the softstart and softstop function | | Centrifugation principle | | | Centrifugation with low capacity | Declaration of conformity10, 65 | | Centrifugation with vessels of various sizes 31 | Declaration of conformity – China RoHS 2.67 | | Centrifuge cannot be started | Declaration of decontamination 52, 54 | | Centrifuge decelerates during operation 41 | Decontamination agent 46, 49 | | Centrifuge is inclined | Deformation of tubes50 | | Centrifuge was moved during run41 | Density12, 20 | | Centrifuge, cleaning and care45 | , - | | Different service life of rotors and accessories | s Imbalance monitoring system22 | |--|--| | 21, 60 | Importance of the operating manual9 | | Dimensions | | | Direct hazard to the life and health10 | mproper loading41 | | Directive 2002/96/EC 54 | Infectious
substances | | Disinfectants49 | 9 Inflammable substances | | Disinfection of the rotor chamber and | Informal safety instructions17 | | accessories49 | Initial start-up27 | | Display33 | Input ruse 12, 55 | | Disposal of the centrifuge54 | Input lock | | Disposal of the packaging54 | inspection by the manufacturer | | Documentation10 | Installation of a microhaematocrit rotor 30 | | Drive problem4 | Installation of a rotor28 | | E | Installation of accessories31 | | Earth conductor check22 | 2 Installation of angle rotors with a hermetic lid | | EC declaration of conformity 10, 69 | 529 | | EEPROM error4 | Installation of rotors and accessories28 | | Electrical connection59 | 5 Installation site26 | | Electrical safety18 | Insufficiently greased load-bearing bolts 48 | | Emergency lid release42 | | | Equipotential bonding screw22 | | | Error correction4 | latamum Cara a de selana Cara masa a se | | Error message4 | 1 IP code55 | | Explanation of the symbols and notes 10 | 6 K | | Explosive substances19 | | | F | Kinetic energy12 | | | | | Fire preventions | _ | | Form for the return of defective parts 52 | . Edyout or the commage | | Functional and operating elements | | | Fuses have tripped4 | Lia carriot be opened | | G | Lid error | | General conditions | | | Glass breakage49 | | | Glass particles49 | Eid seal sticks41 | | Gravitational field5 | 5 M | | Grease for load-bearing bolts 45, 48 | Mains power switch off41 | | Н | Mains switch11 | | Hazard warnings | Mains voltage18 | | Heavy-duty grease for load-bearing bolts 48 | 8.4 ° (| | Highly corrosive substances | BATE C | | I | Manual mode34 | | | Manufacturer55 | | Imbalance | Marking of the Unit 15 | | Imbalance error4 | Maximum speed for tubes32 | | | • | | Measures in the event of hazards and | Radius | | |--|--|----| | accidents | RCF | | | Mechanical safety | Relative centrifugal force (RCF)14, | | | Microhaematocrit rotor, cleaning and care . 47 | Removal of the transport safety device | | | Mode of operation | Remove glass particles and metal dust from | | | Motor error | the rotor chamber | | | Motor shaft | Responsibility of the operator | 17 | | Multiple carrier | Return of centrifuges, spare parts, or accessories | 52 | | N | Return of defective parts | | | Name plate11, 12 | Risk of electrical shock | | | No indication on the display41 | Rotor chamber | | | No power in the mains supply41 | Rotor radii | | | Noise level55 | Rotor selection | | | Nominal voltage12 | Rotor tie-down screw | | | Notes on safety and hazards9 | Rotor wrench | | | Notes on transport24 | Rotors and accessories with a different | 29 | | 0 | service life | 60 | | Online download of forms53 | Rotors for microtiter plate formats | | | Opening the lid27 | Rotors, cleaning and care | | | Operating personnel17 | Runtime | 34 | | Operating voltage26 | S | | | Operational safety46 | Safety area | ഹ | | Overseas shipping24 | Safety devices | | | P | Safety devices | | | | Safety distance | | | Packaging | • | | | Parameter error | Safety instructions for centrifugation | | | Pathogenic substances | • | | | Plastic accessories, cleaning and care 46 | Safety, chemical and biological | | | Potential hazard to the life and health 16 | Safety, electrical | | | Potentially hazardous situation | Safety, mechanical | | | Power consumption 12, 55 | Safety-conscious work | | | Power cord is not plugged in41 | Saving the current settings | | | Power supply26 | Scope of supply | | | Pressure marks47 | Selection, display, and modification of data | | | Prevention of accidents9 | Serial number | | | Problem description52 | Service | | | Process error43 | Service contact | | | Programs39 | Service life | | | Protection class26, 55 | Service life of rotors and accessories 21, 0 | | | Q | Service life of the accessories | | | Quitting the modification mode34 | Service work | | | R | Set-up and connection | | | | Short run | | | Radioactive substances 19, 45 | Softstart and softstop function | ٦/ | | Solvents | |---| | Sound signal (buzzer)38 | | Spare part enquiries44 | | Speed 12, 14, 36, 55 | | Speed-gravitational-field-diagram59 | | Speedometer error43 | | Standards and regulations10 | | Standstill monitoring system22 | | Starting a centrifugation run34 | | Sterilisation of the rotor chamber and | | accessories49 | | Stopping of the centrifuge due to an | | imbalance | | Storage and transport | | Storage conditions | | Storage locations55 | | Stress-corrosion | | see | | corrosion47 | | Structural changes19 | | Supply voltage26 | | Switching the centrifuge off40 | | Switching the centrifuge on27 | | System check22 | | System error 41, 43 | | Т | | Table of error codes43 | | Table of rotors and accessories with a different service life | | Technical data | | |