Problem 1

Use the equation $m(dv/dt + v/\tau) = -eE$ for the electron drift velocity v to show that the conductivity at frequency ω is :

$$\sigma(\omega) = \sigma(0) \left(\frac{1 + i\omega\tau}{1 + (\omega\tau)^2} \right)$$

Show what $\sigma(0)$ is.

Problem 2

Find an expression for the imaginary part of the wavevector in the energy gap boundary of the first Brillouin zone, in the approximation that to the Eq.48 in chapter 7 of Kittel. Give the result for the imaginary part of wave vector at the center of the energy gap. Find the expression for the square of imaginary part of the wavevector.

Problem 3

(a) Simon 4.4

(b) Simon 15.1

Problem 4

We consider an alkali metal to be a set of N fixed ions (per unit volume) and N free electrons (one free electron per atom) of mass m and immersed in a vacuum ϵ_0 .

- A. This electron gas is submitted to an alternating electric field of frequency ω with form $E = E_0 e^{i\omega t}$. Find the equation of motion for each electron knowing that there exists a damping force that is proportional to their velocity v and of the form $-\frac{m}{\tau} \overrightarrow{v}$, τ is the relaxation time. Find the steady state solution.
- B. Express the conduction current density corresponding to the motion of N electrons per unit volume N? Taking into account the displacement current density (which is that of the vacuum), find the expression for the total current density.
- C. Show that alkali metals can be characterized electrically either by the complex relative dielectric constant $\tilde{\epsilon}_r(\omega) = \epsilon_1(\omega) i\epsilon_2(\omega)$ or by a complex electrical conductivity $\tilde{\sigma}(\omega) = \sigma_1(\omega) + i\sigma_2(\omega)$. Simplify the expressions obtained using $\omega_2^p = Ne^2/m\epsilon_0$.
- D. Numerical application for potassium: Specify the value of the plasma frequency ω_p as well as the corresponding energy (in eV). Mass density (K)=870 kg/m³, atomic mass= 39.1, and $\tau = 2.64 \times 10^{-14}$ s.
- E. Sketch the evolution of $\epsilon_1(\omega)$ and $\epsilon_2(\omega)$. Specify values when $\omega = 0$ and $\omega = \infty$. Give the value of ω at which $\epsilon_1 = 0$.
- F. When initially mono-energetic electrons ($E^0 \approx 20 50$ keV) are transmitted through a thin metal film, they excite the collective plasma oscillations of the free elections in the film via the longitudinal electric field they induce. Thus their energy loss is proportional to $\epsilon_2/(\epsilon_1^2 + \epsilon_2^2)$. Indicate the characteristics of this energy loss by specifying the position of its maximum ΔE and its full width at half maximum $\Delta E(1/2)$. What are the numerical values

of ΔE , $\Delta E(1/2)$ and E_F for potassium? (To simplify the calculations take into account that $\omega_p \tau \gg 1$).

- G. The electric field is now transverse field of an electromagnetic plane sine wave linearly polarized in x and propagating from origin O in the positive z-direction. Determine the equation of the electromagnetic wave propagation in the plasma. Solve it using $\vec{E_T}$ its complex aptitude in z=0 (where $\mu = \mu_0$). Show graphically the dispersion relation $\omega = f(k)$ for $\omega > \omega_p$ assuming that the relaxation time is infinite. Find the expression for the phase velocity of the wave as a function of ω , and ω_p . What is the nature of the wave when $\omega \le \omega_p$?
- H. Continuing in the hypothesis that $\tau = \infty$, find the expression for the magnetic excitation associated with the previous electric field as function of ϵ_r and next of ω_p and w. What is the wave impedance Z_p in the plasma?
- I. In fact the metal only occupies the half-space of positive z and the wave calculated above is only the part of the incident monochromatic linearly polarized electromagnetic wave that propagates in a vacuum ($\epsilon_0, \mu_0, z < 0$) and is partially reflected at the z = 0 plane. After recalling the expressions of incident waves(\bar{E}_i and \bar{H}_i : complex amplitudes) and the reflected waves (\bar{E}_r, \bar{H}_r), determine, from boundary conditions on the reflection coefficient $r = \bar{E}_r/\bar{E}_i$ as a function of Z_0, Z_p and the next as a function of $\tilde{\epsilon}_r$, and ϵ_0
- J. Show the variation of the ration R between the reflected and incident intensity $(R = r.r^x)$ as a function of ω after having first calculated the ration ω/ω_p for which R = 1/m. Carry out a numerical calculation using m=16. Indicate the frequency domain where a total reflection is obtained and the frequency domain where the wave can be fully transmitted. Determine for potassium numerical value of the wavelength λ_0 of the incident electromagnetic wave in a vacuum that marks the boundary between these two regions.
- K. Show that the results obtained in I, J could be deduced immediately from the expression for the coefficient of optical reflection (in magnitude) at normal incidence: $r = \frac{1 \tilde{N}}{1 + \tilde{N}}$, where the plasma may be described by a complex optical index $\tilde{N} = n ik$ that is a function of ϵ_1 and ϵ_2 .

Problem 5 (Bonus)

- (a) Kittel Chapter 8, problem 1
- (b) Kittel Chapter 8, problem 3