Heisenberg's Error Disturbance Relation (EDR)

M. Mehboudi

(Oct. 29, 2013)

Outline

- Heisenberg-Bohr's Microscope
- The difference between preparation variances and EDR.
- Werner's approach to prove the EDR.
- Ozawa's error disturbance relation and disproving the EDR.
- Experimental test of EDR.

Heisenberg-Bohr's microscope

• The uncertainty in position is the smallest distance at which two bodies might be distinguished.

$$\epsilon(x) = \frac{\lambda}{2\sin\theta}$$

• The disturbance in momentum of the electron is at list equal to the uncertainty in x component of photons momentum. $\eta(p_x) = p \sin \theta$

What is EDR exactly?

 It's impossible to measure the position of a mass without disturbing it's momentum,

 $\epsilon(A)~$ Is the error in measurement, and not the variance of distribution.

$$\epsilon(A)\eta(B) \ge \frac{\left|\left\langle \left[A,B\right]\right\rangle\right|}{2} = \frac{\hbar}{2}.$$

• It's different from the inequality relation between the variances of A and B, $|\langle [A,B] \rangle|_{\hbar}$

This inequality does not relate to the measurements.

• It's impossible to prepare a state which has arbitrarily sharp distribution of position and momentum. (There's no simultaneous measurement here.)

• No matter what the initial state is, we have:

How to define error and disturbance? Werner's approach

- Error in position measurement is the difference of the two distributions obtaining from Q' and Q.
- Disturbance on momentum caused by position measurement is the difference of two exact momentum measurements.

Quantifying error and disturbance

Ozawa's EDR relation

To avoid physically inaccessible resources to break Heisenberg's EDR:

$\left\|\overline{\mathbf{Q}}^{m}\overline{\mathbf{P}}^{n}\boldsymbol{\xi}\right\| < \infty \ , \ \forall \{m,n\}$ At t=0, for both probe and the system wave functions. Gauss introduced the mean square error and disturbance as: $\epsilon(Q, \psi) = \epsilon_G \left(Q(0), Q(\Delta t)\right)$ $\epsilon_G (\Theta, \Omega) = \left(\iint_{\mathbb{R}^2} (\omega - \theta)^2 \mu^{\Theta, \Omega} (d\theta, d\omega) \right)^1$ $\Theta = \theta \text{ is the true value and } \Omega \equiv \Theta \text{ is the measured value.}$

- Let's suppose the interaction Hamiltonian to be: $H(\alpha, \beta, \gamma) = \alpha \left(QP - \overline{QP} \right) + \beta \overline{QP} + \gamma Q\overline{P}$
- Solving Heisenberg's equations of motion:

 $Q(\Delta t) = a Q(0) + b \overline{Q}(0) , \quad \overline{Q}(\Delta t) = c Q(0) + d \overline{Q}(0)$ $P(\Delta t) = d P(0) - c \overline{P}(0) , \quad \overline{P}(\Delta t) = -b P(0) + a \overline{P}(0)$

• The error at this case would be:

$$\epsilon(\mathbf{Q}, \boldsymbol{\psi}) = \left\| \left[(c-1)\mathbf{Q}(0) + d\,\overline{\mathbf{Q}}(0) \right] \left(\boldsymbol{\psi} \otimes \boldsymbol{\xi} \right) \right\| < \infty$$

Root mean square disturbance:

$$\eta(\mathbf{P}, \boldsymbol{\psi}) = \left\| \left[(d-1)\mathbf{P}(0) - c \,\overline{\mathbf{P}}(0) \right] \left(\boldsymbol{\psi} \otimes \boldsymbol{\xi} \right) \right\| < \infty$$

• Error Disturbance Relation:

$$\epsilon(\mathbf{Q}, \psi)\eta(\mathbf{P}, \psi) \ge \frac{|1-c-d|\hbar}{2}$$

• Error free measurements:

$$b = -1, c = 1, d = 0, a > -2$$
$$\begin{cases} \epsilon(\mathbf{Q}, \psi) = 0\\ \eta(\mathbf{P}, \psi) < \infty \end{cases} \Rightarrow \epsilon(\mathbf{Q}, \psi) \eta(\mathbf{P}, \psi) = 0 \end{cases}$$

Experimental test of EDR

The error in measurement of Z, is given by:

$$\epsilon(Z)^{2} = 2\left(1 - \frac{1}{\cos \theta_{w}} \sum_{i,f} z_{f} z_{i} P(z_{f}, z_{i})\right)$$
$$P(z_{f} = 1, z_{i} = 1) = \sum_{k} N_{00k} / \sum_{i,k} N_{i0k}$$

The disturbance of X, is found by substituting x_f and x_i instead of z_f and z_i .

Blue: Heisenberg's bound---Red (short dashed): Ozawa's bound---purple (long dashed) and green (dot-dashed): Branciard's bound---black dot curve: theoretical prediction---Black (filled) circles: experimental data.

Appleby's Formulation for EDR

$$\overline{\epsilon}(\mathbf{Q}) = \sup_{\psi} \epsilon(\mathbf{Q}, \psi) , \ \overline{\eta}(\mathbf{P}) = \sup_{\psi} \eta(\mathbf{P}, \psi)$$

 $\overline{\eta}(\mathbf{P})\overline{\epsilon}(\mathbf{Q}) \ge \frac{\hbar}{2}$

• Using This relation Appleby claimed that:

Appleby's formulation does not work for error-free measurements!

$$\begin{cases} \overline{\epsilon}(\mathbf{Q}) = 0\\ \overline{\eta}(\mathbf{P}) \to \infty \end{cases} \Rightarrow \overline{\epsilon}(\mathbf{Q}) \overline{\eta}(\mathbf{P}) = ?$$

Since we can check only a limited set of *\V*; the last term is practically zero.

• The error and disturbance introduced by Appleby are almost always infinite.

$$\overline{\epsilon}(\mathbf{Q}) = \begin{cases} d \| \overline{\mathbf{Q}} \xi \| & , \quad c = 1 \\ \infty & , \quad c \neq 1 \end{cases} \qquad \overline{\eta}(\mathbf{P}) = \begin{cases} d \| \overline{\mathbf{P}} \xi \| & , \quad d = 1 \\ \infty & , \quad d \neq 1 \end{cases}$$

• For linear measurements Ozawa showed that Werner's definition of error and disturbance is the same as that of Appleby's.

Thank you

Red Blue Purple Orange

White