Robustness of Topological Color Codes

Saeed S. Jahromi,

K.N.Toosi University Of Technology, Iran

QI Group. Sharif University of Technology, 1 October 2013

technische universität dortmund

Outline

- **O Topological Order**
- **Quantum Computation and Error Correction**
- **Output Output Output**
- **©** Color Code-Ising and breakdown of the topological phase
- **•** Mapping the Hamiltonian of TCC
- **Output** Perturbative Continuous Unitary Transformation (PCUT)
- Oiscussion and results

Ordinary Phases of Matter

- Solid
- Liquid
- Gas
- Ferromagnetic
- Paramagnetic
- Metal

. . .

- Insulator
- •

Phase Transition

- Control Parameter (T, P, B, ...)
- Critical Point (Curi, Neel)

- Para \rightarrow Ferro (Anti Ferro)
- Metal \rightarrow Superconductor
- Metal \rightarrow Insulator

Classification of Phase Transitions

Ehrenfest Classification Free Energy

First Order

Coexistence of Phases Sometimes symmetry is broken Phase transition point

Higher Order (Continuous)

Always symmetry is broken Order Parameter Critical Point

Order Parameter and Landau Theory

Measure of the degree of order in a system

 $1 \rightarrow Total \ order \qquad 0 \rightarrow Total \ disorder$

• Order Parameter:

Vector, Tensor, Scalar, ...

Landau symmetry breaking Theory of Phase transition

$$\mathcal{L}(m,h,t) = c_1 hm + d_2 tm^2 + c_3 hm^3 + b_4 m^4$$
 $d_2 > 0$, $b_4 > 0$

$$t \equiv T - T_c$$
 and $h \equiv H - H_c = H$

Topological Order

Fractional Quantum Hall Effect

Correlated Motion

D.C. Tsui, H.L. Stormer, and A.C. Gossard. s.l., Phys. Rev. Lett, 48 1559 (1982).

Topological Order

Quantum Hall Effect

$$E_n = \hbar \omega_c \left(n + \frac{1}{2} \right), \quad n \ge 0.$$

Correlated Motion

Integer number of steps to dance around the circle in landau levels. Electrons dance around each other Fermi Statistics, Coulomb Interaction

Topological Order

- Ground state degeneracy \rightarrow Topology of space.
- The ground state degeneracy \rightarrow not a consequence of symmetry
- Robust against arbitrary perturbations
- Only Change in topological order \rightarrow change in the ground state degeneracy.

Ground state degeneracy quantum number \rightarrow **Characterize topological order.**

X. G. Wen, PRB 41, 9377 (1990).

Quantum Computation

Errors occur in transmission of Data

Original Data: 101 100 111, Transmitted Data: 101 101 111,

Classical Error Correction: (Repetition code)Original Data: 101 100 111101 100 111101 100 111Transmitted Data: 101 100 111101 101 111101 100 111

Magnetic Storage → **Ferromagnetic interaction with neighbors**

Errors in Quantum Computation

Information:
$$|\psi\rangle = a|0\rangle + b|1\rangle$$
 a and **b** are the information.

Information transmission Problems:

1. No cloning: It is impossible to create the same quantum state. Therefore, the repetition code cannot be realized:

$$|\psi\rangle \not\rightarrow |\psi\rangle |\psi\rangle |\psi\rangle \tag{6.8}$$

- 2. Measurements destroy a and b: If we measure the state, such as $|\psi\rangle = a|0\rangle + b|1\rangle$, to know what is the error, the state collapse to one of the two states $|0\rangle$ or $|1\rangle$.
- Linear combination of different types of errors: In case we can detect one error, what if the error is a mixture of different errors? Unfortunately, this is the case.

Quantum Errors Correction

Stabilizer Code

Represent a quantum state \rightarrow By a set of generators equivalent to observable.

$$|\psi\rangle = \frac{1}{\sqrt{2}} \left(|00\rangle + |11\rangle\right)$$

 ψ is stabilized by $\sigma_{X1} \sigma_{X2}$ and $\sigma_{z1} \sigma_{z2}$

$$\sigma_{X1}\sigma_{X2}|\psi\rangle = \frac{1}{\sqrt{2}}\left(|11\rangle + |00\rangle\right) = |\psi\rangle, \quad \sigma_{Z1}\sigma_{Z2}|\psi\rangle = \frac{1}{\sqrt{2}}\left(|00\rangle + |11\rangle\right) = |\psi\rangle$$

 $S = \{\sigma_{X1}\sigma_{X2}, \sigma_{Z1}\sigma_{Z2}\} \longrightarrow \text{generators of a vector spac}_{V_S} = \{|00\rangle, |11\rangle\}$

Errors in Quantum Computation

- Search for systems which are intrinsically robust against errors.
- States carrying non-local degrees of freedom.
- We can put the quantum information on global degrees of freedom.

Error Correcting Quantum Codes

Fault-Tolerant Quantum Computation

Topological Properties protects the system against Errors

Toric Code

Color Code

A.Yu. Kitaev, Annals of Physics 303 2-30 (2003).

H. Bombin, Phys.Rev.Lett. 97 180501 (2006).

Topological Color code

 $H = -\sum (X_{\mathfrak{p}} + Z_{\mathfrak{p}})$

 $\mathfrak{p} \in \Lambda$

$$X_{\mathfrak{p}} = \bigotimes_{\mathfrak{v} \in \mathfrak{p}} \sigma_{\mathfrak{v}}^{x}$$
$$Z_{\mathfrak{p}} = \bigotimes_{\mathfrak{v} \in \mathfrak{p}} \sigma_{\mathfrak{v}}^{z}$$

H. Bombin, M.A. Martin-Delgado, Phys.Rev.Lett. 97 180501 (2006).H. Bombin, M.A. Martin-Delgado, Phys. Rev. A 77, 042322 (2008).

String Operators

$$\mathcal{S}^{CX} = \bigotimes_{\mathfrak{v} \in I} \sigma_{\mathfrak{v}}^{x}, \quad \mathcal{S}^{CZ} = \bigotimes_{\mathfrak{v} \in I} \sigma_{\mathfrak{v}}^{z}$$

String Operators

Closed strings are extension of plaquette operators

Strings of different shapes are created by product of neighboring plaquette operators

Ground State

$$H=-\sum_{\mathfrak{p}\in\Lambda}(X_\mathfrak{p}+Z_\mathfrak{p})$$

$$(X_{\mathfrak{p}})^2 = \mathbb{I} = (Z_{\mathfrak{p}})^2 \qquad \qquad X_{\mathfrak{p}} = \pm 1, \quad Z_{\mathfrak{p}} = \pm 1$$

$$[X_{\mathfrak{p}}, Z_{\mathfrak{p}}] = 0, \ [X_{\mathfrak{p}_1}, X_{\mathfrak{p}_2}] = 0, \ [Z_{\mathfrak{p}_1}, Z_{\mathfrak{p}_2}] = 0$$

$$0000\rangle = \prod_{\mathfrak{p}} (1 + X_{\mathfrak{p}}) | \Uparrow ... \Uparrow\rangle \implies |\psi\rangle = \sum_{\gamma}$$

String-net Condensation

X.G. Wen, Quantum Field Theory of Many-body Systems, Oxford Univ. Press, (2004).

SAEED S. JAHROMI

Global String Operators

There are another kind of strings which are closed but are not product of pluquette operators

Global Strings (Fundamental non-contractible loops)

Topological Degeneracy

 $X_1 \leftrightarrow \mathcal{S}_2^{BX}, \quad X_2 \leftrightarrow \mathcal{S}_1^{GX}, \quad X_3 \leftrightarrow \mathcal{S}_2^{BX}, \quad X_4 \leftrightarrow \mathcal{S}_1^{GX}, \\ Z_1 \leftrightarrow \mathcal{S}_1^{GZ}, \quad Z_2 \leftrightarrow \mathcal{S}_2^{BZ}, \quad Z_3 \leftrightarrow \mathcal{S}_1^{GZ}, \quad Z_4 \leftrightarrow \mathcal{S}_2^{BZ}.$

$$|\psi_{ijkl}\rangle = X_1^i X_2^j X_3^k X_4^l |0000\rangle$$

Excitations

Excitations are created at the end points of open strings

$$egin{aligned} X_{\gamma} &:= \bigotimes_{\mathfrak{e} \in \gamma} X_{\mathfrak{e}}, & Z_{\gamma} &:= \bigotimes_{\mathfrak{e} \in \gamma} Z_{\mathfrak{e}} \ &\\ \{X_{\gamma}, Z_{\mathfrak{p}}\} &= 0 & \{Z_{\gamma}, X_{\mathfrak{p}}\} &= 0 \ &\\ &|\Psi_{\mathrm{ex}}\rangle &= X_{\gamma} |\Psi_{\mathrm{gs}}\rangle &= - |\Psi_{\mathrm{gs}}\rangle \end{aligned}$$

Mutual Statistics and Anyons

$$|f\rangle = S^{x-loop}|i\rangle = S^{x-loop}S^xS^z|\psi_{gs}\rangle = -|i\rangle$$

"Since interchange of two of these particles can give any phase, I will call them generically **Anyons**." Frank Wilczek, PRL, **49**, NUMBER 14, (1982).

SAEED S. JAHROMI

Perturbed Topological Color Code with magnetic field or Ising interaction

$$H_{\rm TCC} = -J \sum_{p \in \Lambda} (X_p + Z_p)$$

$$H = H_{\rm TCC} - \sum_{\alpha} \left(h_{\alpha} \sum_{i} \sigma_{i}^{\alpha} + j_{\alpha} \sum_{\langle ij \rangle} \sigma_{i}^{\alpha} \sigma_{j}^{\alpha} \right)$$

 $\alpha = x, y, z$

We call $\alpha = x, z$ parallel and $\alpha = y$ transverse

no longer exactly solvable

Small Ising Couplings

Mapping the Hamiltonian

$$H = -J\sum_{p} (X_{p} + Z_{p}) - j_{x} \sum_{\langle ij \rangle} \sigma_{i}^{x} \sigma_{j}^{x}$$
$$H = -NJ - J\sum_{p} Z_{p} - j_{x} \sum_{\langle ij \rangle} \sigma_{i}^{x} \sigma_{j}^{x}$$

Small Field Limit Mapping

Original Honeycomb lattice \rightarrow Effective triangular lattice

Continuous Unitary Transformations (CUTs)

$$H = H_0 \longrightarrow H_1 \longrightarrow \dots \longrightarrow H_m,$$
$$H_i = U_i H_{i-1} U_i^{\dagger}, \quad i = 1, 2, \dots m$$

 $H_{simple} = H_m = UHU^{\dagger}, \quad U := U_1U_2\dots U_m.$

$$U = e^{\eta}$$

Continuous Unitary Transformations (CUTs)

The basic idea is to unitarily transform the initial problem in a continuous fashion.

$$H \longrightarrow H(\ell), \ \ell \in \mathbf{R}_0^+$$

 $U(\ell) = e^{\eta(\ell)}$

Hamiltonian
$$\mathcal{H}(l) = U(l)\mathcal{H}U(l)^{\dagger}$$

 $\implies \frac{d\mathcal{H}(l)}{dl} = [\eta(l), \mathcal{H}(l)]$ $\mathcal{H}(0) = \mathcal{H} \text{ and } \mathcal{H}(\infty) = \mathcal{H}_{eff}$

F.J. Wegner, Ann. Phys. (1994) S.D. Glazek and K.G. Wilson, Phys. Rev. D (1994)

$$\eta(\ell) = [H_d(\ell), H(\ell)]$$

Perturbative Continuous Unitary Transformations (PCUT)

H(x) = U + xV

- (A) The unperturbed part U has an equidistant spectrum bounded from below. The difference between two successive levels is the energy of a particle, i.e. Q = U.
- (B) There is a number $\mathbb{N} \ni N > 0$ such that the perturbing part V can be split according to $V = \sum_{n=-N}^{N} T_n$ where T_n increments (or decrements, if n < 0) the number of particles by n: $[Q, T_n] = nT_n$.

$$H = Q + T_{-N} + \ldots + T_0 + \ldots + T_{-N}$$

$$H(x;\ell) = Q + xV(\ell) = Q + \sum_{k=1}^{\infty} x^k \sum_{|\underline{m}|=k} F(\ell;\underline{m})T(\underline{m})$$

A. Mielke, EPJB (1998) C. Knetter and G. S. Uhrig, EPJB (2000)

Perturbative Continuous Unitary Transformations (PCUT)

$$H(x;\ell) = Q + xV(\ell) = Q + \sum_{k=1}^{\infty} x^k \sum_{|\underline{m}|=k} F(\ell;\underline{m})T(\underline{m})$$

$$\frac{dH(\ell)}{d\ell} = \eta(\ell)H(\ell)$$

$$Q|i\rangle = q_i|i\rangle$$

Quasiparticle conserving Generator

$$\eta_{ij}(\ell) = (q_i - q_j)h_{ij}(\ell)$$

A. Mielke, EPJB (1998)C. Knetter and G. S. Uhrig, EPJB (2000)

$$H_{\text{eff}} = Q + \sum_{k=1}^{\infty} x^k \sum_{\substack{|\underline{m}|=k\\M(\underline{m})=0}} C(\underline{m})T(\underline{m})$$

• Effective Hamiltonian conserves number of quasi-particles $[H_{\rm eff}, 9]$

$$[H_{\rm eff},Q]=0$$

• Coefficients given as ratio of integer number

$$\bullet T(m) = T_{m_1}T_{m_2}T_{m_3}\cdots T_{m_k}$$

$$m = (m_1, m_2, m_3, \dots, m_k)$$

 $m_i \in \{0, \pm 1, \pm 2, \dots, \pm N\}$

Mapping to a quasi-particle conserving Hamiltonian by PCUT (TCC+Field)

$$\frac{H}{2J} = -\frac{1}{2} \sum_{i} \tau_{i}^{z} + \frac{h_{x}}{2J} \sum_{\langle ijk \rangle} \tau_{i}^{x} \tau_{j}^{x} \tau_{k}^{x}$$

$$\vdots$$

$$\frac{K}{2J} = -\frac{N}{2} + Q + x \sum_{n=-N}^{N} T_{n}, \quad x = \frac{h_{x}}{2J}$$

$$\frac{H}{2J} = -\frac{N}{2} + Q + x (T_{-3} + T_{-1} + T_{1} + T_{3})$$

Small Field Results (TCC+Field)

$$\begin{split} \epsilon_0^{\mathrm{lf}} &= -\frac{1}{2} - \frac{2}{3} h_x^2 - \frac{19}{27} h_x^4 - \frac{42872}{8505} h_x^6 - \\ &\quad \frac{500690327}{10716300} h_x^8 - \frac{148610627638}{281302875} h_x^{10} \\ \Delta^{\mathrm{lf}} &= 1 - 12 h_x^2 + 32 h_x^4 - \frac{134356}{81} h_x^6 + \\ &\quad \frac{18694889252}{893025} h_x^8 - \frac{29786981411535707}{40507614000} h_x^{10} \end{split}$$

Large Field Results (TCC+Field)

Quantum Phase Transition (TCC+Field)

 $h_x = \sin \theta, \quad J = \cos \theta$

S. S. Jahromi, M. Kargarian, S. F. Masoudi, K. P. Schmidt, Phys. Rev. B. 87, 094413 (2013) TABLE II: First-order critical point of the small and large field gap intersection and the ground state energy per site.

Gap	$ heta_c$	Ground State	$ heta_c$
dlog Padé $[3, 4]$	0.382	Padé [1, 7]	0.391
dlog Padé $[5, 2]$	0.371	Padé $[2, 6]$	0.396
dlog Padé $[6,1]$	0.411	Padé $[3, 5]$	0.395
dlog Padé $[4,3]$	0.377	Padé $[4, 4]$	0.394
dlog Padé $[2, 5]$	0.363	Padé $[6, 2]$	0.394
dlog Padé $\left[1,6\right]$	0.385	Padé $[7,1]$	0.396

Physical Measurement (TCC+Field)

magnetization $(m = d\epsilon_0/dh_x)$

ground state susceptibility $(m = -d^2\epsilon_0/dh_x^2)$

parallel perturbations (j_x, j_z) or (h_x, h_z) setting J = 1

TCC plus transverse perturbations j_y or h_y

interactions (j, j_y) with $j \equiv j_x = j_z$ and J = 1

$$\sigma^{z} = i\sigma^{y}\sigma^{x}$$
$$H = -h_{y}\sum_{i}\sigma^{y}_{i} - J\sum_{p}X_{p}(1-Y_{p})$$

Transverse field

S. S. Jahromi, M. Kargarian, S. F. Masoudi, K. P. Schmidt, arXiv:1308.1407

Thanks For Your Attention