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MACHINE LEARNING



What is Machine learning?

▪ “Learning is any process 
by which a system 
improves performance 
from experience.” 

-Herbert Alexander Simon 



Types of Learning

▪Supervised learning:
▪ The training examples along with the class 

labels are utilized to generate a predictive 
model.

▪Unsupervised learning:
▪ Patterns or structures are found in data and 

labelled appropriately.

▪Reinforcement learning:
▪ A Machine Learning method that is concerned 

with how agents should take actions in an 
environment.



Examples of Supervised 
& Unsupervised Learning



Example of Reinforcement Learning

▪How should a 
robot behave so 
as to optimize its 
“performance” ?

(Robotics)



QUANTUM MACHINE LEARNING



Methods of Combining Quantum Computing 
& Machine Learning

In [1] four approaches are distinguished 
for combining quantum computing and 
machine learning

▪ CC: Classical data being processed 
classically 

▪ QC: Quantum data being processed 
by classical computers

▪ CQ: Using quantum computing to 
process classical datasets

▪ QQ: Quantum data being processed 
by quantum computers 

[1] Schuld, Maria. Supervised learning with quantum computers. Springer, 2018.



QC CASE

Exploring the quantum entanglement via the machine learning approach



Methods of Detecting Bipartite Entanglement

▪ Positive Partial Transpose (PPT) Criterion

A separable state must have a PPT. however, it is only necessary and 
sufficient when 𝑑𝐴𝑑𝐵 ≤ 6

▪ Entanglement Witnesses

The different entangled states often require different entanglement 
witnesses. 

Lu, Sirui, et al. "Separability-entanglement classifier via machine learning." Physical Review A 98.1 (2018): 012315.



Machine Learning: 
Feature Vector Representation

▪Any quantum state 𝜌 as a density operator acting on     
𝐻𝐴 ⊗𝐻𝐵 can be represented as a real vector 𝑥 in        
ℋ = ℛ𝑑𝐴

2𝑑𝐵
2−1

▪We refer to 𝑥 as the feature vector of 𝜌 and ℋ as the 
feature space.

▪ To represent a 𝑛 × 𝑛 density matrix 𝜌 as a real vector 𝑥, we 
take the generalized Gell-Mann matrices and the identity 
matrix as the Hermitian orthogonal basis.

Lu, Sirui, et al. "Separability-entanglement classifier via machine learning." Physical Review A 98.1 (2018): 012315.



Example

Generalized Gell-Mann Matrices 
& Feature Vectors

▪ Considering the computational basis of the 𝑛 dimensional 
Hilbert space ȁ ۧ1 ,… , ȁ ۧ𝑛 and 𝐸𝑗,𝑘 = ȁ ۧ𝑗 ۦ ȁ𝑘 , three collections 
of matrices can be defined  

▪ Symmetric: 𝑆𝑗,𝑘 = 𝐸𝑗,𝑘 + 𝐸𝑘,𝑗 for 1 ≤ 𝑗 < 𝑘 ≤ 𝑛

▪ Antisymmetric: 𝐴𝑗,𝑘 = −𝑖 𝐸𝑗,𝑘 − 𝐸𝑘,𝑗 for 1 ≤ 𝑗 < 𝑘 ≤ 𝑛

▪ Diagonal: 𝑑𝑙 =
2

𝑙 𝑙+1
σ𝑗=1
𝑙 𝐸𝑗,𝑗 − 𝑙𝐸𝑙+1,𝑙+1 for 1 ≤ 𝑙 ≤ 𝑛 − 1

▪ Generalized Gell-Mann Matrices: 𝜆𝑖 = 𝑠𝑗,𝑘 ∪ 𝑎𝑗,𝑘 ∪ 𝑑𝑙

Lu, Sirui, et al. "Separability-entanglement classifier via machine learning." Physical Review A 98.1 (2018): 012315.

Feature vector 
representation



Training Dataset

▪ A dataset of training examples is produced, with the form

which

Lu, Sirui, et al. "Separability-entanglement classifier via machine learning." Physical Review A 98.1 (2018): 012315.



Inferring a Classifier 

The aim of supervised learning is to infer a classifier ℎ: ℋ → −1,1 , where 

ℎ is expected to be close to the true decision function.

To evaluate how well ℎ fits the training data 𝐷𝑡𝑟𝑎𝑖𝑛, a loss function is defined 

as 

Lu, Sirui, et al. "Separability-entanglement classifier via machine learning." Physical Review A 98.1 (2018): 012315.



Method: Convex Hull Approximation (CHA)

▪ We randomly sample 𝑚 separable pure 
states 𝒄1, … , 𝒄𝑚 ∈ ℋ to form a convex 
hull 𝒞 = 𝑐𝑜𝑛𝑣 𝒄1, … , 𝒄𝑚 .

▪ With 𝒞, we can approximately tell 
whether a state 𝜌 is separable or not by 
testing if it is in 𝒞. 

Lu, Sirui, et al. "Separability-entanglement classifier via machine learning." Physical Review A 98.1 (2018): 012315.



Bell Diagonal Example



Bell Diagonal Example

Step1

Creating the feature vector of density 
matrix by writing the Gell-Mann form of it

Step2

Producing a dataset of training 
examples

Feature Vector of 𝝆

𝒙 = (𝑡1, 𝑡2, 𝑡3)

max 𝜶

𝑠. 𝑡. 𝛼𝒙 =
𝑖=0

𝑚

𝜆𝑖𝒄𝑖 ,

𝜆𝑖 ≥ 0, 
𝑖
𝜆𝑖 = 1.



Werner State



SOME CQ CASES



CQ: Quantum Computing Help Machine Learning 

▪Core idea: Inputs to learning problem are often high-

dimensional vectors of numbers (texts, images, …). 

▪Required number of qubits is only logarithmic in dimension! 

▪ Vector 

▪So we want to efficiently represent our data as quantum 

states, and apply quantum algorithms on them to learn. 



QUANTUM ASSOCIATIVE MEMORY 

An example of CQ



What Is Associative Memory?

▪ Store a set of fundamental memories 𝜉1, 𝜉2, … , 𝜉𝑀 , 

so that, when presented a new pattern 𝑥, the system 

outputs one of the stored memories that is most 

similar to 𝑥.



Purpose of Quantum Associative Memory

▪The main purpose of the quantum associative memory 

built by Ventura and Martinez is pattern completion, 

where the full pattern can be restored from partial pattern.

▪The memory use a storage algorithm and Grover’s 

quantum search algorithm for retrieving the patterns.

Ventura, Dan, and Tony Martinez. "Quantum associative memory." Information Sciences 124.1-4 (2000): 273-296.



Two Tasks of Quantum Associative Memory

Task 1

• Preparing Superpositions of Inputs

Task 2
• Retrieves the patterns. 



Algorithm of Quantum Associative Memory

▪ With 2𝑛 + 1 qubits, the QuAM can store 
up to 𝑁 = 2𝑛 patterns, where 𝑁 is the 
total number of basis states, in 𝑂(𝑚𝑛)
steps and requires 𝑂 𝑁 time to recall 
a pattern. 

complete pattern

incomplete pattern

4

2

Grover

Grover

T N

Times T T

T T


=


= −


=




0 0,...,0=

Ventura, D., Martinez, T.: Quantum associative memory. Inf. Sci. 124(1), 273–296 (2000).



Time-Step for Incomplete Pattern Retrieving

1

0

:  the number of marked states that correspond to stored patterns

:  the number of marked states that do not correspond to stored patterns

:  the total number of basis states

:  the number of patterns 

r

r

N

p stored inthe QuAM









Ventura, D., Martinez, T.: Quantum associative memory. Inf. Sci. 124(1), 273–296 (2000).



Task 1 • Preparing Superpositions of 
Inputs



Basis Encoding

▪ Assume we are given a binary dataset 𝐷 where each pattern 𝑥𝑚 ∈ 𝐷 is a binary 
string of the form 𝑥𝑚 = 𝑏1

𝑚, … , 𝑏𝑁
𝑚 with 𝑏𝑖

𝑚 ∈ 0,1 for 𝑖 = 1,… ,𝑁.

▪ We can prepare a superposition of basis states ȁ ۧ𝑥𝑚 that qubit-wise correspond to 
the binary input patterns, 

Schuld, Maria. Supervised learning with quantum computers. Springer, 2018.



Circuit for One Step of Ventura and Martinez’s 
State Preparation 

Ventura, D., Martinez, T.: Quantum associative memory. Inf. Sci. 124(1), 273–296 (2000).
Trugenberger, Carlo A. "Probabilistic quantum memories." Physical Review Letters 87.6 (2001): 067901.

Summary of an elegant way to 
construct data superpositions
introduced by Ventura, Martinez and 
others



Quantum Gates



Example of State Preparation 

Storage the fourth pattern 110

Storage Result



Task 2 • Pattern Retrieving



Example 1: Complete Pattern Retrieving by 
Ventura-Martinez Version of Grover Search

Result

The probability of collapsing into 

the desired ȁ ۧ𝟏𝟏𝟎 is 88%.

test pattern: 110

ȁ ۧ𝑠 =
1

8


𝑖,𝑗,𝑘=0

1

ȁ ۧ𝑖𝑗𝑘

𝐺 = 2ȁ ۧ𝑠 ۦ ȁ𝑠 − 𝐼
𝜏 = ȁ ۧ110

ȁ ۧ𝜓 =
1

3
0,0,1,1,0,0,1,0

ȁ ۧ𝜓 →
𝐼𝜏
ȁ ۧ𝜓 =

1

3
0,0,1,1,0,0, −1,0

ȁ ۧ𝜓 →
𝐺
ȁ ۧ𝜓 =

1

4 3
1,1, −3, −3,1,1,5,1

ȁ ۧ𝜓 →
𝐼𝑃
ȁ ۧ𝜓 =

1

4 3
1,1, 3,3,1,1, −5,1

ȁ ۧ𝜓 →
𝐺
ȁ ۧ𝜓 =

1

8 3
1,1, −3,−3,1,1,13,1



Example 2: Incomplete Pattern Retrieving by 
Common Grover Search

▪ We want to amplify the amplitude of search string 10? in a sparse uniform superposition, 

which in vector notation corresponds to the amplitude vector:ȁ ۧ𝜓 =
1

2
1,0,0,1,1,0,1,0 𝑇

▪ In conventional Grover search, the first step is to mark the target state by a negative 
phase, 

ȁ ۧ𝜓 →
𝐼𝜏
ȁ ۧ𝜓 =

1

2
1,0,0,1, −1,0, 1,0 𝑇

and then apply 𝐺: ȁ ۧ𝜓 →
𝐺
ȁ ۧ𝜓 =

1

4
−1,1,1, −1,3,1, −1,1 𝑇

▪ In the second iteration we mark again the target state: ȁ ۧ𝜓 →
𝐼𝜏
ȁ ۧ𝜓 =

1

4
−1,1,1,−1,−3,−1,−1,1 𝑇

and apply again 𝐺: ȁ ۧ𝜓 →
𝐺
ȁ ۧ𝜓 =

1

2
0,−1,−1, 0,1, 0, 0, −1 𝑇

The probability of collapsing into the desired 100 is 25%.



Example 2: Incomplete Pattern Retrieving by 
Ventura-Martinez Version of Grover Search 

▪ Getting back to the previous example and applying the Ventura-Martinez trick, starting with the 

same initial state, marking the target, and ‘rotating’ the amplitudes for the first time, we have

ȁ ۧ𝜓 =
1

2
1,0,0,1,1,0,1,0 𝑇 ⟹ ȁ ۧ𝜓 →

𝐼𝜏
ȁ ۧ𝜓 =

1

2
1,0,0,1,−1,0, 1,0 𝑇 ⟹ ȁ ۧ𝜓 →

𝐺
ȁ ۧ𝜓 =

1

4
−1,1,1, −1,3,1, −1,1 𝑇

▪ The adapted routine ‘marks’ all amplitude that correspond to states in the data superposition, 

ȁ ۧ𝜓 →
𝐼𝑃
ȁ ۧ𝜓 =

1

4
1,1, 1,1,−3,−1,1,1

▪ and applying 𝐺, we have: ȁ ۧ𝜓 →
𝐺
ȁ ۧ𝜓 =

1

8
−1,3, 3,−1,−5, 3,−1,3

At this point, there is a 53% probability of observing the system and finding the state 10?. Of 

course there are two states that match and state 100 has a 39% chance while state 101 has a 

14%.



Example 3: Incomplete Pattern Retrieving by 
Ventura-Martinez Version of Grover Search 

Preparing 

▪ Similar to the previous example, using the 
algorithm for storing patterns, we have:

Pattern Retrieving
1

, , 0

1

8

1
(1,0,0,1,1,1,1,0)

2

1
(1,0,0,1, 1, 1,1,0)

5

1
( 3,1,1, 3,5,5, 3,1)

4 5

1
(3,1,1,3, 5, 5,3,1)

4 5

1
( 5, 1, 1, 5,11,11, 5, 1)

8 5

10?

2

P

i j k

I

G

I

G

G

s ijk

s s I





 

 

 

 



=

=

=

⎯⎯→ = − −

⎯⎯→ = − − −

⎯⎯→ = −

⎯

−

⎯→ = − − − − −

=

=

−

−



At this point, there is a 24% probability of 
observing the system and finding the state 10?. 
Of course there are two states that match and 
states 100 and 101 have the same chance 
equal to 38%.



Example 3: Incomplete Pattern Retrieving by 
Ventura-Martinez Version of Grover Search 

Preparing 

▪ Similar to the previous example, using the 
algorithm for storing patterns, we have:

Pattern Retrieving

At this point, there is a 76% probability of 
observing the system and finding the state 10?. 
Of course there are two states that match and 
states 100 and 101 have the same chance 
equal to 38%.

ȁ ۧ𝑠 =
1

8
σ𝑖,𝑗,𝑘=0
1 ȁ ۧ𝑖𝑗𝑘

𝐺 = 2ȁ ۧ𝑠 ۦ ȁ𝑠 − 𝐼
𝜏 = ȁ ۧ10?

ȁ ۧ𝜓 =
1

2
1,0,0,1,1,1,1,0

ȁ ۧ𝜓 →
𝐼𝜏
ȁ ۧ𝜓 =

1

5
1,0,0,1, −1, −1,1,0

ȁ ۧ𝜓 →
𝐺
ȁ ۧ𝜓 =

1

4 5
−3,1,1, −3, 5, 5, −3,1

ȁ ۧ𝜓 →
𝐼𝑃
ȁ ۧ𝜓 =

1

4 5
3,1,1,3, −5, −5,3,1

ȁ ۧ𝜓 →
𝐺
ȁ ۧ𝜓 =

1

8 5
−5,−1,−1,−5, 11, 11, −5,−1



QUANTUM PATTERN 
CLASSIFICATION

Another example of CQ case



SCHULD-SINAYSKIY-PETRUCCIONE (SSP) 
ALGORITHM 

Quantum Nearest Neighbour Algorithms



Schuld-Sinayskiy-Petruccione (SSP) Algorithm

The algorithm is a quantum version of the classical weighted nearest neighbor 
algorithm.

Properties: 

Ablayev, Farid, et al. "On quantum methods for machine learning problems part II: Quantum classification 
algorithms." Big Data Mining and Analytics 3.1 (2019): 56-67.



SSP Algorithm 

• Preparing a superposition of all of the training vectors into one quantum state: 

Step 1

• Prepare the following initial state:

Step 2 

• Apply the Hadamard gate to the utility qubit:

Step 3 

• Apply the CNOT gate and NOT gate as follows: 

Step 4



SSP Algorithm 

• Apply the unitary operator U:    

Step 5

• Apply a Hadamard gate on the utility qubit, 

• And write the phase information of the j –th state into amplitudes:

Step 6 

• Measure the utility qubit. If the test vector is close to the training vector, 

• Then the probability of a 0 result is high; 

• Otherwise, the probability of a 1 result is high. 

Step 7 

• If we obtain a 0 result, then the next step is to measure the “class register”. 

• The probability of obtaining c-result from the “class register” measurement is: 

Step 8



SSP Algorithm 

Ablayev, Farid, et al. "On quantum methods for machine learning problems part II: Quantum classification 
algorithms." Big Data Mining and Analytics 3.1 (2019): 56-67.



CQ APPLICATION



IMPLEMENTATION OF 
ENTANGLEMENT MEASURE



Application: 
Implementation of Entanglement Measure

▪ The Mz is a unitary operator that applies 
the CNOT gate between the qubits    
and    followed by measuring the 
degree of entanglement in between 
through the operator D.

▪ The state of the qubit    is arbitrary.

▪ The state of the qubit    is initialize in 
the vacuum state    . 

▪ For the state                 , the 
concurrence measure is as follows:

u
v

u

v

0

00 11uv  = +

2C =

Zidan, Mohammed, et al. "Quantum classification algorithm based on competitive learning neural network and 
entanglement measure." Applied Sciences 9.7 (2019): 1277.



Algorithm

▪ The CNOT gate is applied on each 
replica of the two-qubit systems    and         

.

▪ The Pauli gate y is applied to the third 
and forth qubits. 

▪ CNOT gate is applied between the 
second and the forth qubits, 
respectively, followed by the rotation R 
gate as follows: 

u

v

0 1,2 3,4CNOT CNOT uv uv = 

3 41 0( )y y   = 

2,42 2 1( )R CNOT = 

Zidan, Mohammed, et al. "Quantum classification algorithm based on competitive learning neural network and 
entanglement measure." Applied Sciences 9.7 (2019): 1277.



Example 

▪ Initial state u is

▪ The state of the system after applying MZ operator is as follows:

▪ Given that         , the relationship between the concurrence and the success 
probability for obtaining the states      ,      ,      ,      is:

▪ In general, the measurement outputs are 0000, 0100, 0011, 1010, 0111, 1001, 1101, 
1110. Now, if we see the four states 0000, 0100, 1010, 1110, then the desired state is 
entangled. Otherwise, nothing can be said about the entanglement or separability of 
the state. 

0 1u  = +

2C =

0000 0100 1010 1110



QQ CASE



K-NEAREST NEIGHBORS (KNN)



𝐾-Nearest Neighbors (KNN) Algorithm

▪ Supervised ML algorithm

▪ Classification Based on measure of ‘similarity’ 

▪ Computer is trained with a set of train states 
whose class labels are known.

▪ The test state with the unknown label is 
compared with the train states.

▪ k number of the nearest neighbors from the train 
states are identified for the given test state.

▪ The label of the test state is determined upon 
majority voting.

Basheer, Afrad, and Sandeep K. Goyal. "Quantum k-nearest neighbor machine learning algorithm." arXiv preprint 
arXiv:2003.09187 (2020).



Classical & Quantum kNN Alghorithm

Classical kNN

▪ Aim: Determine the distance 
between the test state and all the 
train states.

▪ Each state (train or test) is 
represented by a vector of complex 
numbers.

▪ Classical kNN algorithm has a 
complexity of 𝑂(𝑀𝑁), with

▪ 𝑁: dimension of vector to be classified

▪ 𝑀: cardinality of set of train vectors

Quantum kNN

▪ Quantum k-nearest neighbor (QKNN), is a 
quantum analog of classical kNN algorithm.

▪ Distance between the test state and all the train 
states are simultaneously calculated by using:

▪ superposition properties of the quantum states 

▪ collapse of the wavefunction upon measurement

▪ Swap test is used to calculate the fidelity 
simultaneously between the test state and all the 
train states:

▪ This makes Quantum KNN algorithms much faster than 
its classical counterpart.

Basheer, Afrad, and Sandeep K. Goyal. "Quantum k-nearest neighbor machine learning algorithm." arXiv preprint 
arXiv:2003.09187 (2020).



Classical kNN Algorithm

Steps 

▪ For each test state (𝒖) (whose label is 
to be determined), compute its 
distance to the train states (𝒗) whose 
labels are known.

▪ Choose the 𝑘 number of neighbors 
which are nearest to the test point.

▪ Conduct a majority voting and assign 
the label of the majority to the test 
point.

Different Types of Distance Measures
▪ Euclidean distance: 

▪ Cosine similarity: 

▪ Fidelity:  

Basheer, Afrad, and Sandeep K. Goyal. "Quantum k-nearest neighbor machine learning algorithm." arXiv preprint 
arXiv:2003.09187 (2020).



Limitations of Classical kNN

▪ As the number of train data points and the dimension of the state vectors grows, kNN
can quickly turn intractable for classical computers. 

▪ Classification of an 𝑁 dimensional test state by comparing with 𝑀 train states requires 
𝑂(𝑀𝑁) multiplication operations. 

▪ Finding the nearest neighbors will require sorting of 𝑀 number of distance which 
requires 𝑂(𝑀 log𝑀) operations. 

▪ The choice of the number 𝑘 is also highly debated. There is no general way of 
choosing 𝑘 and usually, hyperparameter tuning is done to choose the best possible 𝑘.

Basheer, Afrad, and Sandeep K. Goyal. "Quantum k-nearest neighbor machine learning algorithm." arXiv preprint 
arXiv:2003.09187 (2020).



Swap Test

The swap test is a quantum algorithm that can be 
used to statistically
estimate the fidelity of two pure states ȁ ۧ𝜓 and ȁ ۧ𝜙 , 
i.e., 𝜓 𝜙 2.

1. Three registers prepared in states ห ۧ0 , ȁ ۧ𝜓 , ȁ ۧ𝜙
are needed to implement the swap test. The 
initial combined state of the three registers 
is:ȁ ۧ𝑅 = ห ۧ0 ⊗ ȁ ۧ𝜓 ⊗ ȁ ۧ𝜙

2. Next we apply a Hadamard operation 𝐻 on the 
first register followed by a control swap 𝐶𝑠 on 
the other two registers where the first register 
serves as the control system. 

3. Applying another Hadamard operation H on the 
first qubit followed by a measurement on the first 
qubit in the                results in 0 and 1 with 
probabilities: 

4. The quantity P (0) - P (1) gives us the desired 
fidelity.

ȁ0ۄ , ȁ1ۄ



QKNN for Classifying Bipartite Entangled States 

 

 n-qubit test state without  label

 train states with label i
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1

2

3
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registrs

:

:

f the set:
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r
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Basheer, Afrad, and Sandeep K. Goyal. "Quantum k-nearest neighbor machine learning algorithm." arXiv preprint 
arXiv:2003.09187 (2020).



Initialization 

In this step of the algorithm, we prepare the four registers in a suitable state: 

▪ is prepared in 

▪ is prepared in the test state

▪ is prepared in the state       which 

▪ is prepared in the state       which 

▪ The initial state of the total system is: 

1r 0

2r 

3r 0
n

logn N=

4r 0
m

logm M=

0 0 0
n m

R 
 

=

Basheer, Afrad, and Sandeep K. Goyal. "Quantum k-nearest neighbor machine learning algorithm." arXiv preprint 
arXiv:2003.09187 (2020).



State Transformation 

In the second step of the algorithm, we apply 
a set of quantum operations that are 
independent of the given test state.

➢Apply a Hadamard gate H  to the first
register   and     to the   :

➢Apply a quantum oracle W of the form

➢ to the third and forth registers.

➢ Implement a control swap CS (6) with r1 
as the control qubit and r2 and r3 as the 
target registers:

➢Apply the Hadamard operation on the
r1 register. 

1r mH 

4r



Measurements

In the final step we preform measurements on the 
four registers in the following order. 

▪ First a measurement is performed on register    in         
basis           resulting in 0 and 1 outcomes 
with probabilities: 

▪ the state of the other three registers after the 
measurement is

▪ Upon measurement on   in the basis     , the 
probability of the i-th outcome is: 

▪ Define: 

which 

𝑟1
ȁ0ۄ , ȁ1ۄ

𝑟4 ȁ𝑖ۄ

Basheer, Afrad, and Sandeep K. Goyal. "Quantum k-nearest neighbor machine learning algorithm." arXiv preprint 
arXiv:2003.09187 (2020).



Important Notes

▪ The quantity q (i) is directly proportional to the desired fidelity and is the quantity 
of interest in QKNN algorithm.

▪ We need to initialize the system in the state and transform it into the
state and perform the measurement for a sufficiently large number of times.

▪ In each run of the algorithm, we acquire a click in the register   and a click in the 
register   .

▪ The larger values of the fidelity yields larger contrast q(i); hence, running the QKNN 
algorithm a sufficient number of times, we can find the k states which are closest 
to    , i.e., the k number of indices having highest q(i).

ȁ𝑅ۄ
ȁۄ ത𝑅

𝑟1
𝑟4

ȁ𝜓ۄ



Advantages of QKNN Over Its Classical Counterpart.  

▪ It offers the capability to classify unknown states. This is advantageous when we 
deal with quantum data as we get to bypass the expensive process of quantum state 
tomography. Any classical kNN method will require the complete description of the 
quantum state. 

▪ In classical kNN methods, one requires to compute the distance of the test state 
with every train state, even far off states, to obtain the k nearest neighbors. In our 
QKNN algorithm, through quantum parallelism and the probabilistic nature of 
quantum measurement, only those train states which have high Fidelity with the train 
states will have high probability of getting detected upon measurement. Therefore, in 
a limited number of trails only the states which are closer to the train state will 
appear in the measurement hence fewer resources are spent on them. 

Basheer, Afrad, and Sandeep K. Goyal. "Quantum k-nearest neighbor machine learning algorithm." arXiv preprint 
arXiv:2003.09187 (2020).



Entanglement Classification Using Classical kNN

▪ The results show that the classical kNN
works perfectly for entanglement 
classification in two-qubit case. In the 
case of three-qubit case the accuracy 
we achieve is little over 82%. This 
accuracy can be increased by increasing 
the number of k and by increasing the 
size of the set of train states. 

Entanglement classification using classical 
kNN classifier. 
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Entanglement classification using QKNN 

▪ we simulate the QKNN algorithm and 
classify two-qubit states in two 
scenarios. First, when the classification 
is between separable states and 
maximally entangled states and next 
when the two classes are separable 
states and general entangled states. 

Entanglement classification using 
quantum kNN classifier compared with 
classical kNN classifier. Here, shots 
indicate the number of measurement 
shots performed over each quantum 

circuit simulation. 
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