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● Much is known about using quantum computers to 
simulate quantum systems.

● Why might Quantum Field Theory be different?
– Field has infinitely many degrees of freedom
– Relativistic
– Particle number not conserved
– Formalism looks different



Representing Quantum Fields

● A field is a list of values, one for each location in space.

● A quantum field is a superposition over classical fields.

● A superposition over bit strings is a state of a quantum computer.



Classical Algorithms

● Feynman Diagrams

● Breaks down at strong 
coupling or high precision

● Lattice Methods

● Good for binding energies.

● Real-time dynamics difficult

There’s room for exponential speedup by quantum computing.



Layout of the scattering Problem

● Input:
– A set of incoming particles 

with given momenta

– A Hamiltonian

– A time of evolution

● The Output of Scattering:
– A set of particles with their 

momenta at the end of the 
evolution time



Bosonic vs Fermionic

● Boson statistics:
– Map to local operators
– They can all occupy 

the same quantum 
state.

– The number of qubits 
per lattice site is 
proportional to the 
energy cutoff.

● Fermion statistics
– Map to non-local 

operators
● Jordan-Wigner 

transformation
● Workarounds exist

– Can be represented 
with a constant 
number of qubits per 
site.

– Fermion doubling



Motivation

● Jordan-Lee-Preskill 
(2014)
– Proof of concept for 

BQP
– Run-time dominated by 

state preparation
– State preparation very 

slow
– Limited to the phase 

directly connected to 
free theory

● Two paths forward to 
improve state 
preparation
– More efficient state 

preparation algorithms
– More general state 

preparation algorithms
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Gross-Neveu Model

● Toy model for QCD
● 1+1d- fermionic
● Asymptotic 

Freedom
● Has flavors
● Chiral symmetry

– Broken by mass 
term 

Gross, D. J. & Neveu, A. Dynamical symmetry breaking in asymptotically free field theories. Phys. Rev. D 10, 3235–3253 (1974).
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1.Prepare the GS of system, NN-term and g
0
 set to zero

2.Adiabatically turn on the NN-term

3.Adiabatically turn on the g
0
 term

4.Excite particles by adding a weak sinusoidal source 
term to the Hamiltonian.

5.Evolve in time

6.Either phase estimate local charges or adiabatically 
return to free theory then phase estimate number 
operators of momentum mode.

Jordan-Lee-Preskill(2014)

Jordan, S. P., Lee, K. S. M. & Preskill, J. Quantum Algorithms for Fermionic Quantum Field Theories. 29 (2014).
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Fermion Doubling Problem



  13

Wilson term
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Faster quantum algorithm to simulate fermionic quantum field theory
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Faster quantum algorithm to simulate fermionic quantum field theory

● Discretize and put on a lattice.
● Use DMRG to calculate the GS of interacting theory.

– Map the MPS to a quantum circuit.

– Apply the Quantum circuit to get the GS.
● Excite particles using Rabi Oscillations.

– Floquet’s Theorem, guarantees excitation.
● Evolve in time(e.g. Suzuki-Trotter)
● Measure the outcome using phase estimation algorithm.
● Performance, Quantum:                Classical: 

Hamed Moosavian, A. & Jordan, S. Faster quantum algorithm to simulate fermionic quantum field theory. Phys. Rev. 
A 98, 012332 (2018).
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From MPS to Quantum Circuit

● DMRG: 

● SVD:

Schön, Hammerer, Wolf, Cirac & Solano Phys. Rev. A 75, 032311 (2007).



  17

From MPS to Quantum Circuit

● Quantum Circuit:

● Each of these classical steps, run in time:

Schön, Hammerer, Wolf, Cirac & Solano Phys. Rev. A 75, 032311 (2007).
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Exciting Initial Particles
● Starting in the ground state of interacting 

Hamiltonian, simulate dynamics with a sinusoidal 
source term(Rabi Oscillations):

●    is chosen so it resonates with our desired state:

● Ensure the desired momentum with W:

Hamed Moosavian, A. & Jordan, S. Faster quantum algorithm to simulate fermionic quantum field theory. Phys. Rev. 
A 98, 012332 (2018).
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Few-Level Approximation

Hamed Moosavian, A. & Jordan, S. Faster quantum algorithm to simulate fermionic quantum field theory. Phys. Rev. 
A 98, 012332 (2018).
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Two-Level Approximation

Hamed Moosavian, A. & Jordan, S. Faster quantum algorithm to simulate fermionic quantum field theory. Phys. Rev. 
A 98, 012332 (2018).

● ↓ν and ↑δ = better 
approximation

● ν is the degeneracy in  the 
rotating frame = number of 
states on resonance

● 2-levels for anharmonic 
asymmetric case.
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Applying Floquet’s Theorem

Hamed Moosavian, A. & Jordan, S. Faster quantum algorithm to simulate fermionic quantum field theory. Phys. Rev. 
A 98, 012332 (2018).
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Exciting Initial Particles, Bounds
● Two ingredients go into our analysis of the 

success rate of exciting particles:

1. 2-level approximation. Error bound:

2. Analyze 2-level system with Floquet’s theory:

Moosavian, A. H. & Jordan, S. http://arxiv.org/abs/1711.04006 (2017).
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Limitations

● Jordan-Lee-Preskill:
– Not practical:

– Adiabatic state 
preparation:

● Limited to the phase 
adiabatically 
connected to the free 
phase of the theory.

● Moosavian-Jordan:
– 1+1 space-time 

dimensions
– Bottlenecked by 

classical heuristic 
algorithm:
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Site-by-site quantum state preparation algorithm for 
preparing vacua of fermionic lattice field theories
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Overview of the Algorithm

● Start with the ground state of a small system:
– Can be explicitly calculated

● We add sites to the ground state, one site at a time
● Two requirements:

– The spectral gap doesn’t close:
● Mass gap

– The inner product between consecutive ground states 
is not exponentially close to zero:

● Physical intuition: with finite correlation length, the inner 
product should approach a constant.
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Jagged Adiabatic Path Lemma

Aharonov, D. & Ta‐Shma, A. Adiabatic Quantum State Generation. SIAM J. Comput. 37, 47–82 (2007).
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Preparing PEPS on a QC

Schwarz, M., Temme, K. & Verstraete, F. Preparing Projected Entangled Pair States on a Quantum Computer. 
Phys. Rev. Lett. 108, 110502 (2012).
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Modified Jagged Path Lemma

Hamed Moosavian, A., Garrison, J. R. & Jordan, S. P. Site-by-site quantum state preparation algorithm for 
preparing vacua of fermionic lattice field theories. (2019).

● Sequence             of geometrically local, 
bounded norm, gapped Hamiltonians 

● Non-vanishing overlap of ground states

● Predictions of GS energies

➔ QA                  in run-time 
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The Algorithm

Hamed Moosavian, A., Garrison, J. R. & Jordan, S. P. Site-by-site quantum state preparation algorithm for 
preparing vacua of fermionic lattice field theories. (2019).

● Set Lattice Spacing 
● Discretize the Hamiltonian
● Prepare the GS of a small system
● Apply a unitary, e.g. Hadamard on the rest of 

the system
● Repeat:

– Transform                     to          using Theorem 1

● Runtime: 
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Adding sites

● Keep the shape as close 
to a D-dimensional 
hypercube as possible.

● This ensures the overlaps 
do not vary too much 
during the preparation 
algorithm.

● If correlation length is 
finite, only a finite amount 
of sites will be affected.
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The Conjecture

Hamed Moosavian, A., Garrison, J. R. & Jordan, S. P. Site-by-site quantum state preparation algorithm for 
preparing vacua of fermionic lattice field theories. (2019).
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The Conjecture

Hamed Moosavian, A., Garrison, J. R. & Jordan, S. P. Site-by-site quantum state preparation algorithm for 
preparing vacua of fermionic lattice field theories. (2019).

● Proven cases:
– GS is injective PEPS

Phys. Rev. Lett. 108, 
110502 (2012).

– GS is topological 
PEPS

Phys. Rev. A - At. Mol. 
Opt. Phys. 88, 1–5 
(2013).
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The Conjecture

Hamed Moosavian, A., Garrison, J. R. & Jordan, S. P. Site-by-site quantum state preparation algorithm for 
preparing vacua of fermionic lattice field theories. (2019).

● Proven cases:
– GS is injective PEPS

Phys. Rev. Lett. 108, 
110502 (2012).

– GS is topological 
PEPS

Phys. Rev. A - At. Mol. 
Opt. Phys. 88, 1–5 
(2013).

● Counter example:
– AKLT

● Does not have a 
single site coarse 
continuum limit!

● Solution:
– Add two sites at a 

time
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Testing on Classical Computers

● Gross-Neveu model
● Pick some reasonable variables:

–

● Calculate GS using DMRG for different system sizes:
– up to 50 sites

● Calculate inner product between GS of consecutive 
systems.
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Mass Renormalization & Correlation Length
● How to calculate the gap? How about CL?
● Continuous Free Theory:

● Discretized and Interacting Theory:

– Where m is the renormalized mass and is inversely 
proportional to the correlation length χ.

Hamed Moosavian, A., Garrison, J. R. & Jordan, S. P. Site-by-site quantum state preparation algorithm for 
preparing vacua of fermionic lattice field theories. (2019).
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Choosing an appropriate parameters

● A reasonable correlation length should be much 
larger than lattice spacing and much smaller 
than system size at the same time.

● Preliminary numerical investigation:

Hamed Moosavian, A., Garrison, J. R. & Jordan, S. P. Site-by-site quantum state preparation algorithm for 
preparing vacua of fermionic lattice field theories. (2019).
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Two point correlation functions

Hamed Moosavian, A., Garrison, J. R. & Jordan, S. P. Site-by-site quantum state preparation algorithm for 
preparing vacua of fermionic lattice field theories. (2019).
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Correlation lengths

Hamed Moosavian, A., Garrison, J. R. & Jordan, S. P. Site-by-site quantum state preparation algorithm for 
preparing vacua of fermionic lattice field theories. (2019).
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Inner Product

Hamed Moosavian, A., Garrison, J. R. & Jordan, S. P. Site-by-site quantum state preparation algorithm for 
preparing vacua of fermionic lattice field theories. (2019).
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Predicting Ground Energies

Hamed Moosavian, A., Garrison, J. R. & Jordan, S. P. Site-by-site quantum state preparation algorithm for 
preparing vacua of fermionic lattice field theories. (2019).

● Idea: Use previous energy data to predict the 
next one.

● Two models were tried:
– Constant energy density
– Energy density with Casimir effect corrections
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Predicting Ground Energies

Hamed Moosavian, A., Garrison, J. R. & Jordan, S. P. Site-by-site quantum state preparation algorithm for 
preparing vacua of fermionic lattice field theories. (2019).
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Predicting Ground Energies

Hamed Moosavian, A., Garrison, J. R. & Jordan, S. P. Site-by-site quantum state preparation algorithm for 
preparing vacua of fermionic lattice field theories. (2019).
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Summary & Conclusion

● We’ve looked at two state preparation algorithms
– MPS
– Site-by-site

● Direct applications in simulation of fermionic QFTs.
● Other possible applications:

– Optimization problems
– Quantum chemistry algorithms
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Open Problems

● Future ideas:
– Prove the conjecture
– Check with other QFT
– Check if they can run on NISQ era quantum 

computers
– Improve upon bosonic algorithms
– Quantum Algorithm for hybrid systems
– The Standard Model



Thank you
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Bond Dimension

● It suffices to take                where errors shrink 
superpolynomially with k, resulting in

● For lattice spacing small compared to the correlation 
length,       can be estimated from a CFT argument.

●           , therefore, the complexity for preparing the 
interacting vacuum is:

Swingle, B. https://arxiv.org/abs/1304.6402 (2013).

https://arxiv.org/abs/1304.6402
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Efficient Phase Estimation

Hamed Moosavian, A., Garrison, J. R. & Jordan, S. P. Site-by-site quantum state preparation algorithm for 
preparing vacua of fermionic lattice field theories. (2019).



  48

Mapping Overlapping GS

Hamed Moosavian, A., Garrison, J. R. & Jordan, S. P. Site-by-site quantum state preparation algorithm for 
preparing vacua of fermionic lattice field theories. (2019).
39. Yoder, T. J., Low, G. H. & Chuang, I. L. Fixed-Point Quantum Search with an Optimal Number of Queries. 
Phys. Rev. Lett. 113, 210501 (2014).
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DMRG package in Julia
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