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6.1 THE POSTULATE OF CLASSICAL
STATISTICAL MECHANICS

Statistical mechanicsis concerned with the properties d matter in equilibriumin
the empirical sense used in thermodynamics.

Theam of statistical mechanicsis to derive al the equilibrium properties o
a macroscopic molecular system from the laws d molecular dynamics. Thus it
aims to derive not only the general laws d thermodynamicsbut also the specific
thermodynamic functionsd a given system. Statistical mechanics, however, does
not describe how a system approaches equilibrium, nor doesit determine whether
a system can ever be found to be in equilibrium. It merely states what the
equilibrium situation is for a given system.

We recall that in the kinetic theory o gases the process o the approach to
equilibrium is rather complicated, but the equilibrium situation, the Maxwell-
Boltzmann distribution, is smple. Furthermore, the Maxwell-Boltzmann di stribu-
tion can be derived in a simple way, independent of the details of molecular
interactions. We might suspect that a dight generalization o the method
used—the method o the most probable distribution— wouldenable us to discuss
the equilibrium situation d not only a dilute gas but also any macroscopic
system. This indeed is true. The generdlization is classical statistical mechanics.

We consider a classica system composed of alarge number N o molecules
occupying a large volume V. Typical magnitudesd N and V are

N = 10% molecules
¥ =102  molecular volumes
Since these are enormous numbers, it is convenient to consider the limiting case
N+m
V- o0
14 (6.1)
— =0
N

where the specific volume v is a given finite number.
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The system will be regarded as isolated in the sense that the energy is a
constant of the motion. Thisis clearly an idealization, for we never deal with
truly isolated systemsin the laboratory. The very fact that measurementscan be
performed on the system necessitates some interaction between the system and
the external world. If the interactions with the externa world, however, are
sufficiently wesk, so that the energy o the system remains approximately
constant, we shall consider the system isolated. The walls o the container
containing the system (if present) will be idealized as perfectly reflecting walls.

A state of the system is completely and uniquely defined by 3N canonical
coordinates q,, ¢,,...,4;5 and 3N canonical momenta p,, p,,..., ps5. These
6N variables are denoted collectively by the abbreviation (p, g). The dynamics
o the system is determined by the Hamiltonian s#( p, q), from which we may
obtain the canonical equations of motion

*(pa) _,
dp; —4
0#(p,q)
dq;
It is convenient to introduce, as we did in Chapter 3, the 6N-dimensional T’
space, or phase space, d the system, in which each point represents a state d the
system, and vice versa. Thelocus d al pointsin I' space satisfying the condition
H(p,q) = E definesasurface caled the energy surfaced energy E. As the state
of the system evolvesin time according to (6.2) the representative point tracesout
apath in T’ space. This path dways stays on the same energy surface because by
definition energy is conserved.

For a macroscopic system, we have no means, nor desire, to ascertain the
state at every instant. We are interested only in a few macroscopic properties of
the system. Specifically, weonly requirethat the system has N particles, avolume
V, and an energy lying between the values E and E + A. An infinite number of
states satisfy these conditions. Therefore we think not of a single system, but of
an infinite number o mental copies of the same system, existing in al possible
states satisfying the given conditions. Any one d these system can be the system
we are dealing with. The mental picture d such a collection of systems is the
Gibbsian ensemble we introduced in Chapter 3. It is represented by a distribu-
tion of pointsin I' space characterized by a density function p( p, g, t), defined
in such a way that

p(p,q,t)d**pd3*Ng = no. of representative points con-
tained in the volume eement
dNpd¥y located a (p,q) in T (&3
space at the instant t

| (6.2)

i

We recall Liouville's theorem:

dp N[ dp dH X dp

— + — - — | =0 6.4
Jt E’l dq; dp; dq, dp, (6.4)
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In geometrical languageit states that the distribution o pointsin I' space moves
like an incompressiblefluid. Since we are interested in the equilibrium situation,
we restrict our considerations to ensembles whose density function does not
depend explicitly on the time and depends on (p, q) only through the Hamilto-
nian. That is,

e(p.q) =o' (H#(p,q)) (6.5)

where p’(5#) is a given function of s#. It follows immediately that the second
term on the left side of (6.4) isidentically zero. Therefore

%P(PJI) =0 (6.6)

Hence the ensemble described by p( p, Q) is the same for dl times.
Classical statistical mechanicsis founded on the following postul ate.

Postulata of Equal a Priori Probabliity \When a macroscopic system is in
thermodynamic equilibrium, its state is equaly likely to be any state satisfying
the macroscopic conditions of the system.

This postulate implies that in thermodynamic equilibrium the system under
consideration is a member o an ensemble, caled the microcanonica ensemble,
with the density function

_ | Const. if E<o#(p,q) <ETA 6.7
olp.q) {0 otherwise (6.7)

It is understood that al members o the ensemble have the same number of
particles N and the same volume V.

Suppose T (p, q) is a measurable property o the system, such as energy or
momentum. When the system is in equilibrium, the observed value & f( p, q)
must be the result obtained by averaging f(p,q) over the microcanonical
ensemble in some manner. If the postulate of equa a priori probability is to be
useful, al manners of averaging must yield essentially the same answer.

Two kinds of average vaues are commonly introduced: the most probable
value and the ensemble average. The most probable value o f (p, q) is the vaue
o f(p,q) that is possessed by the largest number of systemsin the ensemble.
The ensambleaverage o f( p, q) is defined by

[d*pd*qf(p,a)p(p. q)
(fy= (6.8)
fd”pd’”qp(p, q)

The ensemble average and the most probable value are nearly equal if the mean
squarefluctuation is small, i.e., if

U= P _

o 1 (6.9)
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If this condition is not satisfied, there is no unique way to determine how the
observed value o f may be calculated. When it is not, we should question the
validity of statistical mechanics. In all physical cases we shal find that mean
square fluctuations are of the order of 1/N. Thusin the limit as N - o« the
ensemble average and the most probable value became identical.

Strictly speaking, systems in nature do not obey classical mechanics. They
obey quantum mechanics, which contains classical mechanicsas a specia limiting
case. Logicaly we should start with quantum statistical mechanics and then
arrive at classical statistical mechanics as a specia case. We do this later. It is
only for pedagogical reasons that we begin with classical statistical mechanics.

From a purely logica point of view there is no room for an independent
postulate of classica statistical mechanics. It would not be logically satisfactory
even if we could show that the postulate introduced here follows from the
equations of motion (6.2), for, since the world is quantum mechanical, the
foundation of statistical mechanicslies not in classical mechanics but in quantum
mechanics. At present we take this postulate to be a working hypothesis whose
justification lies in the agreement between results derived fromit and experimen-
tal facts.

6.2 MICROCANONICAL ENSEMBLE

In the microcanonical ensemble every system has N molecules, a volume ¥, and
an energy between E and E + A. Itisclear that the average total momentum of
the system is zero. Weshow that it is possible to define quantities that correspond
to thermodynamic quantities.

The fundamental quantity that furnishes the connection between the micro-
canonical ensembleand thermodynamicsis the entropy. It isthe main task of this
section to define the entropy and to show that it possesses dl the properties
attributed to it in thermodynamics.

Let T'(E) denote the volume in T' space occupied by the microcanonical
ensemble:

I'(E) =
( ) ‘/.E<.9f(p,q)<E+A

The dependence o T(E) on N, ¥, and A is understood. Let Y (E) denote the
volumein I space enclosed by the energy surface of energy E:

d*Npd3yg (6.10)

Y(E) = [ d*Npd¥Ny (6.11)
H(p,q)<E
Then
T(E) =Y (E+A)_ 2(E) (6.12)
If A issochosenthat A < E, then
T(E)=w(E)A (6.13)
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where w(E) is called the density of states of the system at the energy E and is
defined by
9L (E)

()= —5p

(6.14)

The entropy is defined by
S(E,V)=klogT(E) (6.15)
where k is a universal constant eventually shown to be Boltzmann's constant. To

justify this definition we show that (6.15) possesses all the properties of the
entropy function in thermodynamics, namely,

(a) Sisan extensive quantity: If a system is composed of two subsystems
whose entropies are, respectively, S, and S,, the entropy of the total
systemis S, + S,, when the subsystems are sufficiently large.

(b) S satisfiesthe properties of the entropy as required by the second law of
the thermodynamics.

To show the extensive property, let the system be divided into two subsys-
tems which have N; and N, particles and the volumes ¥, and V,, respectively.*
The energy of molecular interaction between the two subsystems is negligible
compared to the total energy of each subsystem, if the intermolecular potential
has a finite range, and if the surface-to-volume ratio of each subsystem is
negligibly small. The total Harniltonian of the composite system accordingly may
be taken to be the sum o the Harniltonians of the two subsystems:

#(p.q) =#(p1, 1) +2(pas 42) (6.16)

where( p;, q;) and ( p,, q,) denote, respectively, the coordinates and momenta of
the particles contained in the two subsystems.

Let usfirstimaginethat the two subsystemsareisolated from each other and
consider the microcanonical ensemblefor each taken alone. Let the energy of the
first subsystem lie between E, and E, + A and the energy of the second
subsystem lie between E, and E, + A. The entropies of the subsystems are,
respectively,

Si(E\, ) = klog T, (E,)
S,(Ey, V) = klog T, ( E,)

where I';(E,;) and T, (E,) are the volumesoccupied by the two ensemblesin their
respective I' spaces. They are schematically represented in Fig. 6.1 by the
volumes of the shaded regions, which lie between successive energy surfaces that
differ in energy by A.

Now consider the microcanonica ensemble of the composite system made
up of the two subsystems, and let the total energy lie between E and E + 2A.

*For smplicity we assume that the same N;, N, particlesare always confined respectively to the
volumes ¥;, ¥,. The proof is thereforeinvalid for a gas, for which § has to be modified (See Section
6.6).
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p1 E E1 + A Pz

q1 q2
Fig. 6.1 The microcanonical ensemble of the two subsystems.

We choose A such that A < E. This ensemble contains al copies of the
composite system for which

(a) the N; particles whose momenta and coordinates are ( p,,q,) ae
contained in the volume ¥,
(b) the N, particles whose momenta and coordinates are (p,,q,) are
contained in the volume V5,
(c) the energies E;, E, of the subsystems have values satisfying the condi-
tion
E<(E+E)<E+2A (6.17)

Obviously, the volume o the region of T" space that corresponds to conditions
(a)and (b)with a total energy lying between E, + E, and E, T E, T 2A is

I\ (E)TL(E,)

To obtain the total volume d the ensemble specified by (a),(b),and (c),weonly
have to take the sum of T',(E,)T,(E,) over valuesd E,; and E, consistent with
(c).Since E, and E, are possible values of the Harniltonians 5#,( p,, ¢;) and
Hr( ps» q,), their spectra of values must be bounded from below; otherwise the
subsystems would not be stable. For simplicity we take the lower bounds for both
spectra to be 0. If wedivide each o the energy spectra E;, and E, into intervals
of size A, then between0 and E there are E/A intervalsin each spectrum. Thus,
since A <« E, we can write
E/A
I(E) = ¥ T{(E)T,(E - E) (6.18)
i=I
where E, is the energy lying in the center of each energy interval.
The entropy o the composite system of N particlesand o volumeV, with

N=N,+N,
V=v,+7,
is given by
E/A
S(E,V )=klog Z Fl(Ei)FZ(E - Ei) (6-19)
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It will now be shown that when N, — o0 and N, — oo asingle term in the sum
o (6.18)dominates the sum. The sum in (6.18)is asum of E/A positive terms.
Let the largest term in the sum be T, ( E,)T,( E,), where

E,+E,=E (6.20)
Then it is obvious that

I(E)L,(E,) <T(E) < 'f‘rl(il)r2(f2)

klog [T,(E\)T,(E,)] 1 S(E,V) < klog[Ty(E)T,(E,)] + klog-i (6.21)
If the subsystems are molecular systemswith N, and N, particles, respectively,
we expect that as N; — o0 and N, — oo,

logl;, a N
logT, a N, (6.22)
Ean, TN,

Thus the term log(E/A) in (6.21) may be neglected because A is a constant
independent of N. Therefore

S(E,V) = S8,(E,V}) + $,(E,, ;) + O(log N) (6.23)

which provesthe extensive property of the entropy. ]
We have actually proved more than the extensive property o the entropy
because (6.23) also implies that the energies of subsystems have the definite

values E, and E,, respectively. They are the vluesof E; and E, that maximize
the function T,(E,)T,(E,) under the restriction E, * E, = E. That is,

8[TW(E)T,(E,)] =0, OE, +8E,=0
This leads to the condition

d ] [ 3
— logI')( E =|=—1ogIL(E ]
{3151 1( 1)- £, -F, _8E2 2( 2) £,=F,
(6.24)
ISE) | _[98:(E)
OE, |g-r | 9Ey |g_g
We define the temperature o any system by
S(E, V) 1
— = (6.25)

9E T

134 STATISTICAL MECHANICS

Then E, and E, are such that the two subsystems have the same temperature:
T, =T, (6.26)

The temperature defined by (6.25) is precisdly the absolute temperature in
thermodynamics. Not only is it a parameter associated with the condition for
equilibrium, it is aso related to the entropy by (6.25), which is one o the
Maxwell relations in thermodynamics. Choosing the standard temperature inter-
va to be the conventional Centigrade degree defines the constant k in (6.15)to
be Boltzmann's constant. Thus the proof o the extensiveproperty o the entropy
also reveals the meaning of the temperature for an isolated system: The tempera-
ture of an isolated system is the parameter governing the equilibrium between one
part of the system and another.

Although the condition (6.17) allows a range of values o (E,, E,) to occur
among members of the microcanonical ensemble, the result (6.21) shows that as
the number of particles becomes very large aimost al members of the ensemble
have the values (E,, E,). This fact is fundamental to the success of statistical
mechanics as a theory of matter.

A calculation similar to that leading to (6.23) shows that the following
definitions of S are equivalent, up to additive constant terms of order log N or
smaller:

S=klogI(E) (6.27)
S=klogw(E) (6.28)
S = klog ¥ (E) (6.29)

In fact, if these definitions were not equivaent, the validity of statistical me-
chanics would be in doubt.

To show that S possesses the properties of the entropy as required by the
second law of thermodynamics, let usfirst state the form of the second law that is
most convenient for the present purpose. The entropy in thermodynamics, just as
S here, isdefined only for equilibrium situations. The second law states that if an
isolated system undergoes a change of thermodynamic state such that the initial
and final states are equilibrium states, the entropy of the final state is not smaller
than that of the initial state. For the system we are considering, the only
independent macroscopic parameters are N, ¥, and E. By definition N and E
cannot change, for the systemisisolated. Thusonly V can change. Now V cannot
decrease without compressing the system thereby disturbing its isolation. Hence
V can only increase. (An exampleis the free expansion of a gas when one of the
containing walls is suddenly removed.) For our purpose the second law states
that the entropy is a nondecreasing function of V.

Let us use the definition (6.29):

S(E,V)=klog) (E)

It is obvious that )_(E) is a nondecreasing function of V, for if ¥, > 15, then
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the integral (6.11) for V = ¥, extends over a domain of integration that includes
that for V = ¥,. Thisshowsthat S(E, V) is a nondecreasing function of V.

We conclude that the function S(E, V), as defined by any one o the
formulas (6.27)—(6.29), is the entropy of a system of volume V and internal
energy E. This conclusion furnishes the connection between the rnicrocanonical
ensemble and thermodynamics.

6.3 DERIVATION OF THERMODYNAMICS

We have defined the entropy of a system and have shown that the second law of
thermodynamics holds. The complete thermodynamics of a system can now be
obtained.

First we discuss the analog of quasistatic thermodynamic transformations. A
guasistatic thermodynamic transformation corresponds to a dow variation of E
and V, induced by coupling the system to externa agents. During such a
transformation the ensemble is represented by a collection of representative
points uniformly distributed over a dowly changing region in T' space. The
change is so dow that at every instant we have a microcanonical ensemble.
Accordingly, the change in the entropy in an infinitesimal transformation is

given by

dS(E, V) = (j—z)ydE+ (;—i)EdV (6.30)

The coefficient of dE has been defined earlier as the inverse absol ute temperature
T~!. We now define the pressure o the system to be

p= T(ﬁ) (6.31)
V) '
Hence
1
ds = $(dE + Pav) (6.32)
dE = TdS — Pdv (6.33)

This is the first law o thermodynamics.

Thus we have succeeded not only in deriving the first and second laws o
thermodynamics, but aso in finding means to calculate al thermodynamic
functions in terms of molecular interactions. The third law of thermodynamics
cannot be obtained in classical statistical mechanics, because it is quantum
mechanical.

We summarize by giving a practical recipefor finding al the thermodynamic
functions of a system.
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RECIPE
Consider an isolated system that occupied volume V and has an energy E
within a small uncertainty A < E. The Harniltonian is presumed known. To find

al thermodynamic functions of the system, proceed as follows:

(a) Cadlculate the density of states w(E) of the system from the Hamilto-
nian.

(b) Find the entropy up to an arbitrary additive constant by the formula

S(E,V)=klogw(E)

where Kk is Boltzmann’s constant. Alternatively we can use the formula
(6.27) or (6.29).

(c) Solve for E in terms of S and V. The resulting function is the
thermodynamic internal energy of the system

U(S,vV)=E(S,V)

(d) Find other thermodynamic functions from the following formulas:

T= (g’S) L (absolute temperature)
P=—(é£)s (pressure) *
v
A=U-TS (Helmholtz free energy)
G=UTPV-TS (Gibbs potential)
au _
C, = (ﬁ) , (heat capacity at constant volume)

(e) To study any equilibrium behavior of the system, use thermodynamics.

6.4 EQUIPARTITION THEOREM

Let x; be either p;, or ¢, (i =1,...,3N). We calculate the ensemble average of
x,(85%/3x;), where 5 is the Hamiltonian. Using the abbreviation dpdq =
d3¥p d3Ng, we can write

ast 1 i ax A 43 f b d aH
L — = — —_— = — xi———
¥ dx; T(E) -/;3<3f<E+A ? qx'(')xj T(E) JE Jw<k i dx,

Noting that dE/dx; =0, we may calculate the last integral in the following

*This is equivalent to (6.31) by the chain relation.
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manner:
asxt d
f dp dgx,— = f dpdgx,—(H#—E)
#<E dx; <k dx;

d
= [ dodg 5—[x(~ E]—S,Jf _dpda (2 - E)
H<E j
Thefirst integral on the right side vanishes becauseit reducesto asurfaceintegra
over the boundary o the region defined by s#< E, and on this boundary
22— E = 0. Substituting the latest result into the previous equation, and noting
that I'(E) = w(E)A, we obtain

i % 9 dpdq (E - #
x,-a—xj ﬂw(E)ﬁ/szp q (E — )

5,
= o8 s (E)

E k
=81 Z( ) 1 [ IOgZ( ] =8i'_—
i9Y (E)/9E ¥ ’3S/3E
that is,
o 8, kT 6.34
xia—xj =0y (6.34)
This is the generalized equipartition theorem.
For the special casei = j, x, = p,, we have
ox kT 6.3
i (6.35)
For i = j and x, = q,, we have
i kT 6.36
qi 8q, - ( . )

According to the canonical equations o motion, d¢/dq, =
leads to the statement

—p,. Hence (6.36)

3N
< > q,-i’i> = —3NKT (6.37)
i=1

which is known as the virid theorem because Y. g, p,—the sum of the ith
coordinate times the ith component o the generalized force—is known in
classical mechanics as the viridl.
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Many physical systems have Hamiltonians that, through a canonical trans
formation, can be cast in the form

H#= Y AP?+ Y BQ? (6.38)

where P,, O, are canonically conjugate variables and A,, B; are constants. For
such systemswe have

8.%” aw¥
(e, + 03

Suppose f of the constants 4; and B, are nonvanishing. Then (6.35) and (6.36)
imply that

) =2 (6.39)

(A?) = 3ifkT (6.40)

That is, each harmonic term in the Hamiltonian contributes 4T to the average
energy of the system. Thisis known as the theorem of equipartition of energy. But
(6.40) is the internal energy o the system. Therefore
C, f
P 5 (6.41)
Thus the heat capacity is directly related to the number of degreesd freedom o
the system.

A paradox arises from the theorem of equipartition of energy. In classica
physics every system must in the last analysis have an infinite number of degrees
o freedom, for after we have resolved matter into atoms we must continue to
resolve an atom into its constituents and the constituents of the constituents,
ad infinitum. Therefore the heat capacity of any system isinfinite. Thisis a rea
paradox in classical physics and is resolved by quantum mechanics. Quantum
mechanics possesses the feature that the degree of freedom of a system are
manifest only when there is sufficient energy to excite them, and that those
degreesd freedom that are not excited can be forgotten. Thus the formula (6.41)
is vaid only when the temperature is sufficiently high.

6.5 CLASSICAL IDEAL GAS

To illustrate the method of calculation in the microcanonical ensemble we
consider the classical ideal gas. This has been considered earlier in our discussion
of the kinetic theory o gases. In that discussion we also introduced the micro-
canonical ensemble, but we obtained al the thermodynamic properties of the
ideal gas via the distribution function. For the saked illustration, we now derive
the same results using the recipe given in Section 6.3.

The Hamiltonian is

1 N
=5 Y p? (6.42)
m,_3
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We first calculate
1 3 3 3 3
LE)=gmw [ d'pio dpydi o dgy (643)
where h is a constant o the dimension of momentum X distance, introduced to

make ) (E) dimensionless. The integration over g, can be immediately carried
out, giving a factor of V'V, Let

R =VImE (6.44)
Then
|4 N
(5) - 53 Bw(®) (6.45
where @, is the volume o an n-sphere of radius R:
Q.(R) = f dx,dx, --- dx, (6.46)
x12+x%+ +x,f<R2
Clearly,
Q.(R)=C,R" (6.47)

where C, is a constant. To find C,, consider the identity

f+°°dx1 f+°°dx" e Gt = (fﬂndxe*"z)" =a"/? (6.43)

— 00 — 00 — 0o

The left side of (6.48) can be re-expressed as follows. Let S (R) = dQ,(R)/dR
be the surface area of an n-sphere of radius R. Then

+ oo + 0o 2 2 00 2
f dx, f dx"e""‘+”‘+"")=f dRS,(R)e R
— o0 — o0 0

o 2
= nC"f dRR" le R
0

= %nC"fOoo drt"/P et = LyC T(n/2)

(6.49)
where T'(z) is the gamma function. Comparison of (6.49) and (6.48) yields
an/2
C = m (6.50)
n n n,n
log C"n:w > log 7 — 5 log > + > (6.51)

Hence

E(8) = | romey | (652
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The entropy o theidead gasis

| 4
S(E,V) = k[log Cyy + N log i + 3N log (2mE)] (6.53)
By (6.51), this reduces to
4rm E \3/?
S(E, V) = Nk log V(ij*) + %Nk (654)

Solving for E intermsaf S and V, and calling the resulting function U(S, V) the
internal energy, we obtain

3 h*\ N 2 S
U(s,v)= (E;z_) Ve exp(gﬁ - 1) (6.55)
The temperature is
aU 2 U
T=(§)V=§ﬁ (6.56)
from which follows
C, = 3Nk (6.57)
Finally the equation of stateis
U 2U  NkT
P=—(W)S=§—\;=T (6.58)

This calculation shows that the microcanonical ensemble is clumsy to use.
There seems little hope that we can straightforwardly carry out the recipe of the
microcanonical ensemble for any system but theidea gas. We later introduce the
canonical ensemble, which gives results equivalent to those of the microcanonical
ensemble but which is more convenient for practical calculations.

6.6 GIBBS PARADOX
According to (6.54), the entropy of an ideal gasis

S = Nk log (Vu®?) * Ns, (6.59)
where
u=2kT
3k dam
So = —2—(1+ log ) (6.60)

Consider two ideal gases, with N, and N, particles, respectively, kept in two
separate volumes ¥, and ¥, at the same temperatureand the samedensity. Let us
find the change in entropy of the combined system after the gases are alowed to
mix in avolumeV = ¥, T ¥,. The temperature will be the same after the mixing
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process. Hence » remains unchanged. From (6.59) we find that the change in
entropy is

AS V + V 0
= N, log v N, log v, > (6.61)

which is the entropy of mixing. If the two gases are different (e.g., argon and
neon), this result is experimentally correct.

The Gibbs paradox presentsitsalf if we consider the case in which the two
mixing gases are of the same kind. Since the derivation of (6.61) does not depend
on theidentity df the gases, we would obtain the same increased entropy (6.61).
Thisis a disastrous result becauseit implies that the entropy o a gas depends on
the history of the gas, and thus cannot be a function of the thermodynamic state
alone. Worse, the entropy does not exist, because we can awaysimagine that the
existing state of a gasis arrived at by pulling off any number of partitions that
initially divided the gas into any number o compartments. Hence S is larger
than any number.

Gibbs resolved the paradox in an empirical fashion by postulating that we
have made an error in calculating Y ( E), the number of states o the gas with
energy less than E. Gibbs assumed that the correct answer is N! times smaller
than we though it was. By this assumption we should subtract from (6.59) the
term logN! = N logN — N and obtain

S= NKI K 3/2 62
og| ¥ e (6.62)

4
t %Nk(% + log Wm)

This formula does not affect the equation of state and other thermodynamic
functions of a system, because the subtracted term is independent of T and V.
For the mixing of two different gases (6.62) till predicts (6.61), because N, and
N, are the same constants before and after the mixing. For the mixing o gases
that are of the same kind, however, it gives no entropy of mixing because the
specific volume V/N is the same before and after mixing.

The formula (6.62) has been experimentally verified as the correct entropy of
an idea gas at high temperatures, if h is numerically set equal to Planck's
constant. It is known as the Sackur-Tetrode equation.

It is not possibleto understand classically why we must divide Y (E) by N!
to obtain the correct counting of states. The reason is inherently quantum
mechanical. Quantum mechanically, atoms are inherently indistinguishablein the
following sense: A state of the gas is described by an N-particle wave function,
which is either symmetricor antisymmetricwith respect to the interchange o any
two particles. A permutation of the particles can at most change the wave
function by a sign, and it does not produce a new state of the system. From this
fact it seems reasonable that the I'-space volume element dpdqg corresponds to
not one but only dpdg/N! states of the system. Hence we should divide ) (E)
by N!. Thisruled countingisknown as the " correct Boltzmann counting.” It is
something that we must append to classical mechanics to get right answers.

142 STATISTICAL MECHANICS

The foregoing discussion contains the correct reason for, but is not a
derivation of, the ""correct Boltzmann counting,” because in classical mechanics
there is no consistent way in which we can regard the particlesas indistinguisha:
ble. In all classical considerations other than the counting of states we must
continue to regard the particles in a gas as distinguishable.

We may derive the ' correct Boltzmann counting™ by showing that in the
l[imit of high temperatures quantum statistical mechanics reduces to classical
statistical mechanicswith " correct Boltzmann counting.” Thisis done in Section
9.2.

PROBLEMS

6.1 Show that the formulas (6.27), (6.28), and (6.29) are equivaernt to one ancther.

6.2 Let the"uniform” ensambled enargy E be defined as the ensembled dl systemsd
the given type with enargy less than E. The equivdence between (6.29) and (6.27) means
that we should obtain the same thermodynamic functions from the " uniform" ensembie d
enegy E & from the microcanonical ensamble d energy E. In particular, the interna
energy is E in both ensembles. Explain why this ssemingly paradoxica result is true.
6.3 Condder asydemd N free particlesin which the enagy d eech particlecan assume
two and only e digtinct vdues, 0 and E (E > 0). Denate by »n, and », the occupation
numbers d the enargy levd 0 and E, regpectivdy. The totd enargy o the sysem is U.
(a) Find the entropy d such asygem.
(b) Find the mog probablevduesd n, and n,, and find the mean square fluctuations d
these quantities.
(¢) Find the temperatureasa functiond U, and show that it can be negative
(d) What happens when a sydem d  negdive temperatureis dlowed to exchange heat
with asygem o postive temperature?

Reference. N. F. Ramsgy, Phys. Rev. 103, 20 (1956).
6.4 Usng the corrected entropy formula (6.62), work out the entropy d mixing for the
caed different gasesand for the case d identical gases, thus showing explicitly that there
is no Gibbs paradox.
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AND GRAND
CANONICAL ENSEMBLE

7.1 CANONICAL ENSEMBLE

We wish to consider the question, ""What ensemble is appropriate for the
description o a system not in isolation, but in thermal equilibrium with a larger
system?* To answer it we must find the probability that the system has energy E,
because this probability is proportional to the density in T' space for the
ensemble we want.

We investigated a similar problem in Section 6.2, when we consider the
energies o the component parts o a composite system. In the following we
discuss the case in which one component part is much smaller than the other.

Consider an isolated composite system made up of two subsystems whose
Hamiltonians are, respectively, #,(p,, q,) and #,( p,, q,), with number of
particles N, and N,, respectively. We assume that N, > N, but that both N,
and N, are macroscopicaly large. We areinterested in system 1 only. Consider a
microcanonical ensemble of the composite system with total energy between E
and E * 2A. The energies E, and E, d the subsystems accordingly can have
any values satisfying

E<(E +E,) <E+2A (7.1)

Although this includes a range of values d E,, E,, the analysis o Section 6.2
shows that only one set d values, namely El, Ez, is important. We assume that
E, > E,. Let T,(E,) be the volume occupied by system 2 in its own T space.
The probability of finding system 1 in a state within dp, dg, of (p,, q,),
regardiess o the state of system 2, is proportional to dp, dg, I',( E,), where
E, = E — E,. Therefore up to a proportionality constant the density in I" space
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for system 1is
p(p1,q;) x T,(E — Ey) (72)

Since only the values near E; = El are expected to be important, and E, < E,
we may perform the expansion

klog ,(E - E;) = S,(E - E;) = S,(E) - E, M
JE, + ..
E1 E,=E
= 85,(E) - T (7.3)
where T is the temperature d the larger subsystem. Hence
1 E,
L,(E — E,|) = exp [;SZ(E)] exp(— ﬁ) (7.4)

The firgt factor isindependent o E; and is thus a constant as far as the small
subsystem is concerned. Owing to (7.2) and the fact that E, = 5#,(p,, 4;), we
may take the ensemble density for the small subsystem to be

p(p,q) = e X P AT (75)

where the subscript 1 labeling the subsystem has been omitted, since we may
now forget about the larger subsystem, apart from the information that its tem-
perature is T. The larger subsystem in fact behaves like a heat reservoir in
thermodynamics. The ensemble defined by (7.5), appropriate for a system whose
temperature is determined through contact with a heat reservoir, is caled the
canonical ensemble.
The volume in I' space occupied by the canonical ensemble is caled the
partition function:
d3NPd3Nq -
Qn(V,T) = fW e AXir D (7.6)

where 8 = 1/kT, and where we have introduced a constant h, o the dimension
d momentum X distance, in order to make Q, dimensionless. The factor 1/N'!
appears, in accordance with the rule d "correct Boltzmann counting.” These
constants are d no importance for the equation of state.

Strictly speaking we should not integrate over the entire I' space in (7.6),
because (7.2) requires that p(p,, q;) vanish if E; > E. The judtification for
ignoring such a restrictionisthat in theintegral (7.6) only one valueof the energy
S ( p, q) contributes to theintegral and that thisvaluewill liein the range where
the approximation (7.4) is valid. We prove this contention in Section 7.2,

The thermodynamicsd the systemis to be obtained from the formula

On(V,T) = e BAV.D (7.7)
where A(V, T) is the Helmholtz free energy. To justify this identificationwe show
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that

(a) A isan extensive quantity,
(b) A is related to the internal energy U =(H) and the entropy S=
—(0A /3T )4 by the thermodynamic relation

A=U-TS

That A is an extensive quantity follows from (7.6), becauseif the system is made
up of two subsystemswhose mutua interaction can be neglected, then Q,, isa
product of two factors. To prove the relation (b), we first convert (b) into the
following differential equation for A:

Hy=A-T|— o4 7.8
To prove (7.8), note the identity
N|h3N/dpdqeﬂ[A(V Ty=#(p. ) = 1 (7.9)
Differentiating with respect to 8 on both sides, we obtain
A
N|h3Nfdeqeﬂ[A(V y~#(p, 9l A(V T) ‘%ﬂ(}, q) + '3 B )V} =0

This is the same as

AW, T) - U(V,T) - T(%)V=0

All other thermodynamic functions may be found from A(V,T) by the
Maxwell relations in thermodynamics:

(o4

d “(a—v),
0A

= (5),

G=A+ PV

U=(H)=A+ TS

Therefore all calculationsin the canonical ensembles begin (and nearly end) with
the calculation o the partition function (7.6).

7.2 ENERGY FLUCTUATIONS IN THE
CANONICAL ENSEMBLE

We now show that the canonical ensemble is mathematically equivalent to the
microcanonical ensemble in the sense that although the canonical ensemble
contains systemsdf all energies the overwhelmingmajority of them have the same
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energy. To do this we calculate the mean square fluctuation of energy in the
canonical ensemble. The average energy is

fdpdq.?fe_ﬂf
U=(H#)="— (7.10)
fdpdqe*ﬂ”’
Hence
fdp dg [U — #(p, A)] PHAV.D=*(p. 9l = (7.11)

Differentiating both sides with respect to 8, we obtain

v B(A=-%) ) A - - TaA =0 (7.12)
73—§+farparqe (U - o#) = .

By (7.8) this can be rewrittenin the form
aU
+ ((U-#)?) = (7.13)
Therefore the mean squarefluctuatlon o energy is

R U
() = (#Y=((U~#)) = - -5 =kT*——

or
(H#?) = (H#) =kTC, (7.14)
For a macroscopic system (Y a N and C, a N. Hence (7.14) is a normal
fluctuation. As N — oo, amost al systems in the ensemble have the energy
(', which is the internal energy. Therefore the canonical ensemble is equiv-
alent to the microcanonical ensemble.
It is instructive to calculate the fluctuations in another way. We begin by
calculating the partition function in the following manner:

fdeqe B#(p,q) — f dEw(E) e f°° dE e~ BE+108 o(E)
0

=f dE eFITS(E~E] (7.15)
0

N|h3N

where S is the entropy defined in the microcanonical ensemble. Since both S and
U are proportional to N, the exponent in the last integrand is enormous. We
expect that as N — oo theintegral receives contribution only from the neighbor-
hood of the maximumd theintegrand. The maximum df the integrand occurs at
E = E, where E satisfies the conditions

T(%)Eq =1 (7.16)

( aZS) <0 (7.17)
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The first condition implies E = U, theinternal energy. Next we note that

a’s J 1 1 /aT 1
8E E=E JE T E=E T aE E=F T CV

Thus the condition (7.17) issatisfiedif C,, > 0, whichistruefor physical systems.
Now let us expand the exponent in (7.15) about E = E:

o LS
S(E) - - [15(E) ~ E] + (5~ EVT{ 53]

= [Ts(U) - U] - (E-U)’+--- (7.19)

21C,
Hence
1
Nip3¥

showing that in the canonical ensemble the distribution in energy is a Gaussian
distribution centered about the value E = U with a width equal to

AE = \2kT*C,, (7.21)

SinceUaN and C,aN, AE/U is negligibly smal. As N = oo the Gaussian
approaches a 8-function. Finally, let us perform the integral in (7.20). It is
elementary:

f°° dE e~ (E-U?/2kT*C, _ f°° dx e- % /2KT*C,
0 U

=~ f+°°dx e~ X /2TCy = V27kT*C,

/dp dge P¥r.9 = e'g‘TS_U)fw dE e~ (F-UY'/3T?Cy (7.20)
0

Therefore
1
N3N

f dpdge FHP.D =~ ot ATS=U)\hkT2C, (1.22)
A=(U-TS)—-3kTlogC, (7.23)

This last term is negligiblewhen N — oo. In that limit we haveexactly A = U —
TS. Statement (7.23) shows that the entropy as defined in the canonical and
rnicrocanonical ensemble differsonly by terms of the order of log N.

We have shown that dmost al systems in the canonical ensemble have the
same energy —namely, the energy that isequal to theinternal energy of a system
at the given temperature T. The reason for'this is easy to see, both mathemati-
cally and physicaly.

In the canonical ensemble we distribute systemsin T’ space according to the
density function p(p,q) = exp[—BH#(p, g)], which is represented in Fig. 7.1.
The density of pointsfails off exponentially as we go away from the origin of I
space. The distribution in energy is obtained by **counting” the number o points
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p

Energy surface

Fig. 7.1 Didributiond representetive pointsin T’ space for
the canonicd ensamble

on energy surfaces. As we go away from the origin, the energy increases and the
area of the energy surfaceincreases. Thisis why we get a pesk in the distribution
in energy. The sharpnessdf the pesk is due to the rapidity with which the area of

the energy surface increases as E increases. For an N-body system this area
increases like eF, where E a N.

From a physical point of view, a microcanonical ensemble must be equiv-
aent to a canonical ensemble, otherwise we would serioudly doubt the utility of
either. A macroscopic substance has the extensive property, i.e., any part of the
substance has the same thermodynamic property as the whole substance. Now
consider a piece o substance isolated from everything. Any part of the substance
must still be in equilibrium with the rest of the substance, which serves as a heat
reservoir that definesa temperature for the part on which we focus our attention.
Therefore the whole substance must have a well-defined temperature.

We have seen earlier that in the microcanonical ensemble it matters little
whether we take the entropy to be k times the logarithm o the density of states
at the energy E, the number of states with energies between E, E + A, or dl the
states with energy beow E. In al these cases we arrive at the same thermody-
namic behavior. Now we see that it matters little whether we specify the energy
o the system or the temperature of the system, for specifying one fixes the other,
and we find the same thermodynamic behavior in both cases. All these examples
illustrate the insensitivityof thermodynamicresultsto methods of derivation. The
reasons behind this insensitivity are, in all cases, the facts that

(a) density of statesae*
(b) ExN
(c) N> oo

On these facts depends the validity of statistical mechanics.
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7.3 GRAND CANONICAL ENSEMBLE

Although the canonical and the microcanonical ensemble give equivalent resuilts,
it may be argued that conceptually the canonical ensemble corresponds more
closely to physical situations. In experiments we never deal with a completely
isolated system, nor do we ever directly measure the total energy of a macro-
scopic system. We usualy deal with systems with a given temperature—a
parameter that we can control in experiments.

By the same token we should not have to specify exactly the number of
particles of a macroscopic system, for that is never precisely known. All we can
find out from experiments is the average number of particles. This is the
motivation for introducing the grand canonical ensemble, in which the systems
can have any number o particles, with the average number determined by
conditions external to the system. This is analogous to the situation in the
canonical ensemble, where the average energy of a system is determined by the
temperature of the heat reservoir with which it isin contact.

The T space for the grand canonical ensemble is spanned by all the
canonical momenta and coordinates of systems with 0,1,2,... number of par-
ticles. The density function describing the distribution of representative pointsin
I space is denoted by p( p, g, N), which gives the density of points representing
systems with N particles with the momenta and coordinates (p, g). To find
p(p,q, N) we consider the canonical ensemble for a system with N particles,
volume V, and temperature 7, but we focus our attention on a small subvolume
V, of the system.

Suppose there are N, particles in ¥; and N, = N — N, particles in V, =
V - ¥;. We assume

vV, >V,
N, > N

and designate the coordinates of the N, particlein ¥, by { p;, ¢;}, and those in
V, by {p,, q,}- The interactions between particles in ¥; with those in ¥V, are
surface effects that can be neglected if ¥, is of macroscopic size. Thus the total
Hamiltonian can be decomposed in the form

H(p,q,N)=H(p,q,, M) + #(p,, q,, Ny) (7.24)

Note that the terms above involve the same function evaluated at different values
of its arguments. The partition function of the total system is

dp dq
QN(V7 T) = thNNy e*B%’(p,q,N)
We shall segregate the contributions to the above from different valuesdf N,. In
so doing, we do not care which particles arein ¥; aslong as there are N; of them,
and the coordinates of those that happen to be in V; will be designated by
{ P, q,). That is, in carrying out the integration over the phase space of the
N-particle system, we always designate by {p,, q,} the coordinates of those
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particles that happen to bein V;, through a changein the variables of integration
if necessary. Thus

1 NN

= | dprdp, X
h3NN!f PR 2o NI,

QN(V’ T) =

X/ d‘h] dqze‘B[-’f(Pl’41=N1)+X(P23112,N2)]
Uy ]

N 1

= Z —_———
Nz PV

)(j‘dp2 deqze_ﬁ-’f(Pz,lIz,Nz) (725)

—B¥(p1>q1- M
fdP1f dgy e F¥ (g )h3N2N2‘
U1 .

The relative probability p( p;, G, N,) that there are N, particles in V; with
coordinates { p,, 4,} is proportional to the summand of fdp, dq, ZNI. We
choose its normalization such that

1 e—B-’f(Pb‘Il,Nl) 1
= —BH#(pi, 42, N3)
P(Podn M) = oy RN N fdpzfvquze
(7.26)
The first factor aboveis chosen so that
N
Z fdP1 dq, P(Pb q1s Nl) =1 (7.27)
M=0

which is obvious if we rewrite the last expression in (7.25) in terms of p as
defined in (7.26).

We can rewrite (7.26) in the form
QNZ(VZ’ T) e BX(pi, a1, N)

oy(V,T) R*MN

p(Py, 1, Ny) = (7.28)

Using (7.7) we write
QNZ(V27 T)
QN(V’ T)

where A(N, V, T) is the Helmholtz free energy. Since N > N, and V > V,, we
may use the approximation

A(N-N,V-V,T) -A(N,V,T) = ~Nu + VP (7.30)
where u and P are, respectively, the chemical potential and the pressure of the

—exp{—-B[A(N - N,,V-V,,T) - A(N,V,T)]} (7.29)
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part of the system externa to the small volume ¥;:
dA(N,,V,T)
p=|—=7
N,=N

dNn,
dA(N,V,,T) (73
o ]
We now introduce the fugacity:
z=ehr (7.32)

Substituting (7.32) and (7.30) into (7.29), and then substituting (7.29) into (7.28),
we obtain
N

T NN

where the subscript 1 identifying the volume under consideration has been
omitted because the system external to the volume can now be forgotten, apart
from the information that it has the temperature T, pressure P, and chemica
potential x. We now dlow the system external to the volume under consideration
to become infinitein sze. Then the range of N in (7.33) becomes

e(p,q,N) e BPV-BX(p. ) (7.33)

0<N<ow®

The thermodynamic functions for the volume under consideration may be
found as follows. First, the internal energy shall be the ensemble average o
H#(p,q). Second, the temperature, pressure, and chemical potential shall be
respectively equal to T, P, u. To show that thisis a correct recipe, it suffices to
remind ourselves that thermodynamics has been derived from the canonica
ensemble. It is an elementary thermodynamic exercise to show that if a systemis
in equilibrium any part of the system must have the same 7, P, ¢ as any other
part; but thisis the desired result.

To obtain a convenient formal recipe for finding all the thermodynamic
functions we define the grand partitionfunction as follows:

2z,V,T)= Y zM0\(V,T) (7.34)
N=0
which in principle can be calculated from a knowledge o the Hamiltonian.
Integrating both sides of (7.33) over dl (p, g) for agiven N, and then summing
N from 0 to o, wefind that

il log2(z,V, T 7.35

o =109 2(z,¥,T) (7.35)
Thus the grand partition function directly gives the pressureasafunction of z, V,
and T. The average number N of particlesin the volume V is by definition the
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ensemble average

NZNQN(V,T)
=(N) = 23 — z—log 2(z,V,T) (7.36)
Z ZNOn(V, T) :

N=0

M3

=Z|

The equation o state, which is the equation expressing P as afunction o N, V,
and T, is obtained by eliminating z between (7.35) and (7.36).

All other thermodynamic functions may be obtained from the internd
energy:

U 81 2(z,V,T (7.37)
_—aBQg (z,’) .

After eliminating z with the help of (7.36), U becomesafunctiond N, ¥, and T.
We can then use the formulas

c U
V_(aT)V
T CV
s—fo dT —
A=U-TS

7.4 DENSITY FLUCTUATIONS IN THE GRAND
CANONICAL ENSEMBLE

We now calculate the density fluctuationsin the grand canonical ensemble. By
differentiating (7.36) with respect to z, one can easily show
2

(N?Y —(NY = zaj zaa—log 2(z,V,T) = kTVa (7.38)

u?

where the last equality is obtained through the use o (7.34) and (7.36). To
express the abovein terms of conveniently measurabl e quantities, assume that the
Helmholtz free energy of the system, being an extensive quantity, can be written
in the form

A(N,V,T) = Na(v), v=VIN (7.39)
where the temperature dependenced a(v) has been suppressed for brevity. Then
the two equations in (7.31) can be rewritten as

da(v)
p=al(v)—v .
da(v)
dv

(7.40)
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Regarding both p and P as functions o » and 7, we obtain from the above

p d%(v)
[T (7.41)
dP  dP/dv 1
a_u - du/dv T
Hence
a°pP 1 dv 1 1
I T TR 0’9k’ T v*dP/dv (7.42)

Substituting this relation into (7.38), we finally obtain, after some minor rewrit-
ing,
1

<N2> - <N>2 = NkTkr/v, Ky = m

(7.43)

This shows that the density fluctuations are vanishing small in the thermody-
namic limit, provided the isothermal compressibility «  isfinite(i.e., not infinite).
This is true except in the transition region of a first-order phase transition,
including the critical point.

The relation (7.43) is similar to (7.14), whereby a fluctuation is related to an
appropriate "*susceptibility.” In the case o energy fluctuations the relevant
susceptibility is the specific heat at constant volume, and in the case of density
fluctuationsit is the isothermal compressibility. These are specia cases of a more
general rule known as thefluctuation-dissipation theorem, the historically earliest
form of which is the Einstein relation (2.61) pertaining to Brownian motion.

The probability that a system in the grand canonical ensemble has N
particles is proportional to

W(N)=z"Q,(V,T) =expB[uN — A(N,V,T)] (7.44)

where A is the Helmholtz free energy calculated from the canonical ensemble
with N particles. When the density fluctuations are small, W(N) is strongly
peaked about N = N, with a width o the order & VN , and we may obtain the
Helmholtz free energy directly from the grand partition function through the
formula

A(N,V,T) =kTNlogz — kT log 2(z,V,T) (7.45)

where z is to be eliminated through (7.36).

When dP/dv = 0, as happens at the critical point, the density fluctuations
become very large, asis borne out experimentally by the phenomenon d critical
opalescence. However, even in this case, (7.45) is still valid. To show this requires
a more detailed analysis, which we postpone until the end o this chapter.
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7.5 THE CHEMICAL POTENTIAL
Thermodynamics

The chemical potential x is defined such that the Helmholtz free energy A
changes by p dN, when the number of particleschange by dN, at constant T and
V. Hence

dA= —PdV — SdT + pdN (7.46)
from which we can deduce a more general form of the first law of thermody-
namics:

dU= —PdV + TdS + pdN (7.47)

When u is positive, it tends to drive N to smaller values, in order to lower the
energy. Hence the name chemical potential .*
From (7.46) we can also deduce the change of the Gibbs free energy:

dG= —VdP — SdT + pdN (7.48)
Thus we have the equivalent Maxwell relations
A4 At
p=[{9dN\yr_{dNjp T
JoN oN

A useful result is the chemical potential of an ideal gas, which can be easily
calculated from the partition function for an ideal gas:

O = _1—fdeqexr> leﬁp?ﬂm] = i(K)N
RN = ARDS (7.49)
A = 2ah®>/mkT
Hence
v
A = kT log Qy = —kTN [IOQ(W) +1 (7.50)

p=03A4/9dN = kT log(N’n)
where n is the density.

Conservation of Particie Number

For ordinary matter, it makes sense to speak of a system of N atoms, because N
is an effectively conserved quantity. The chemical potential may be viewed as the
Lagrange multiplier to take that into account. The conservation law hasits origin
in the more fundamental law of baryon conservation, which states that the
number of baryons (such as protons or neutrons) minus the number of anti-
baryons is conserved. This means, for example, that a proton can be created or

*The name fugacity for exp(Su) has a dictionary meaning of 'the tendency to flee' or
“volatility." The fugacity o pleasure, the frugility of beauty (Samuel Johnson).
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annihilated only in conjunction with an antiproton. At low temperatures the
thermal energy is not sufficient to create pairs, nor are there antiprotons present.
Thus the number o protons (and neutrons) is effectively conserved.

The same thing can be said about electrons, whose number appears to be
conserved at low temperatures only because there is insufficient energy to create
electron-positron pairs, and there are usuadly no positrons present. The truly
conserved quantity is the number of electrons minus the number of positrons.

A correct description of matter at high temperatures must take into account
the possibility of pair creation. There will be an average number of particles and
antiparticles present in equilibrium, there will aso be fluctuations about the
average values. It is the difference between particle and antiparticle number that
remains strictly constant and is determined by the initial conditions. For exam-
ple, the reaction e* te 2 y can occur in the interior of stars, and establishes
the equilibrium density of electrons, positrons, and radiation.

The detailed mechanism for pair creation and annihilation is not relevant for
the equilibrium situation, and affects only the relaxation time for the establish-
ment of equilibrium. Thus, to treat the equilibrium situation we may describe the
system in the grand canonical ensemble, using the effective Hamiltonian

H=H,+H,— n(N, — N) (7.51)

where the subscripts 1 and 2 refer to particle and antiparticle, and p is the
Lagrange multiplier introduced to enable usto treat N, and N, as unconstrained
variables. The grand partition function is

o0 o0
2= Y QNIQNzeBu(NﬁNz)
0

N=0 N,=

o0 o0
= X X exp- B[y + 4y —p(N - N)] (7.52)
N=0 N,=0
where @, is a partition function, and A, the corresponding Helmholtz free
energy. In the thermodynamic limit we keep only the largest term in the
summand, with N, and N, determined by the conditions

aANl/aNl =R

04y, /N, = —p (753

We should calculate the Helmholtz free energies using relativistic kinematics. For
the purpose df illustration, however, we shall pretend that the energy of a particle
is E=mc T p%2m. Theinclusion o the rest energy is important, for we are
concerned with processesthat can convert it into other forms of energy. Thus we
take the chemical potential to be (7.50) plus the rest energy. The conditions for
equilibrium then become

kT log(Nn,) + mc? =y

(7.54)
kT log(Nn,) + me? = —p
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where n, and n, are the densitiesof particles and antiparticles. Adding the two
eguations gives

MNnn, = e 3 /KT (7.55)

The rest energy of an electron corresponds to a temperature of 6 x 10° K. That
for a proton is 2000 times higher. Thus the right side of (7.55) is essentially zero
for ordinary temperatures. This means that, if either n; or n, is not essentially
zero, the other must be. This shows why we can completely ignore antiparticles
when kT < mc%

Chemical Equilibrium

Suppose we have a reaction such as
2H, + 0,2 2H,0

What are the fractions of each species of molecules present in an equilibrium
mixture? More generaly we consider a reaction in which a group of particles
X, X,,... paticipate in a reaction to yield a group of particles Y3, Y,,... or
vice versa

nX, T Xt 2y Ty, L (7.56)
The numbers »; are called stoichiometric coefficients. The processis a generaliza-
tion of our previousdiscussion of particle-antiparticle reaction, for which v, = »,

= 1. For notational convenience, rewrite (7.56) as
K

Y »X, =0 (7.57)
i=1
where both X's and Y's are denoted by X, and »/ = —»,. The conservation law
in this case is
SN SN, SN
L2 .. X (7.58)
4 $) Vk

where 8N, is the increasein the number o particlesd the ith type. This means
ON,/v, isindependent of i:

SN,=p,6N i=1,...,K (7.59)
To find the equilibrium condition consider the reaction proceeding at constant V
and T. In equilibrium the Helmholtz energy A is at a minimum. Hence any
variation of the number N, from their equilibrium valuewill not change A to first
order. Assume A is the sum o the component free energies. Then
K K 94, K
0=84= Y 64,= ) — 8N, = Y u» N (7.60)
i=1 i=1 a]vz i=1

Since 8N is arbitrary, we obtain as a condition for equilibrium

K
Cur,=0 (7.61)
i=I
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where p; is the chemical potential of X,. If the reaction proceeds at constant P
and T, one considers the Gibbs free energy instead, and arrives at the same
condition.

7.6 EQUIVALENCE OF THE CANONICAL ENSEMBLE AND
THE GRAND CANONICAL ENSEMBLE

We have seen that if 3P/dv < 0 then amost all systemsin the grand canonical
ensemble have the same number of particles N. Then the grand canonica
ensemble is trivially equivalent to the canonical ensemblefor N particles.

To complete our investigationof the equivalence between the canonical and
the grand canonical ensemble it is necessary to consider values of v for which
dP/dv = 0. It will be shown that in such cases the function W(N ) given in (7.44)
will no longer have a sharp maximum; the equation of state as given by the recipe
in the grand canonical ensemble neverthelessstill agrees with that given by the
recipe in the canonical ensemble. In this sense the two ensembles are always
equivalent.

Physically the valuesdf v for which dP/dv = 0 correspond to the transition
region of a first-order phase transition. In this region, (7.43) leads us to expect
that the fluctuations of density in a given volume o the system will belarge. This
is also expected physicaly, for in such a region the system is composed of two or
more phases of different densities. Therefore the number of particlesin any given
volume can have a whole range of values, depending on the amounts of each
phase present. At the critical point of a gas-liquid system fluctuationsin density
are also expected to be large, because throughout the system molecules are
spontaneously forming large clustersand breaking up. It is clear that under these
conditions the grand canonical ensemble must continue to yield thermodynamic
predictions that are in agreement with those obtained by the canonical ensemble.
Otherwise the validity of either as a description of matter would be in doubt, for
it is a basic experimental fact that we can obtain the same thermodynamic
information whether we look at the whole system or at only a subvolume of the
system.

The mathematical questions that we try to answer are as follows. Suppose
Qx(V, T) isgiven, and we wish to calculate

o0

2(z,V,T)= XL 2"0y(V,T) (7.62)

N=0O
for given valuesaf z, V,and T.
(a) For agivenvaued z is the following true for some N?
92(z,V,T)=z"Q(V,T) (7.63)

(b) Does there dways exist avalued z for which N has any given positive
value?
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The answers are obviously no, if Q,(V, T )is any function of N, ¥, T. We
are only interested, however, in the answers when Q,(V, T ) is the partition
function of a physical system. Thus we must first make some assumptions about
QN(V’ T)

To incorporate the salient features of a physical system into our considera-
tions, and yet keep the mathematics simple, we assume that we are dealing with a
system

(@) whose moleculesinteract through an intermolecular potential that con-
tains a hard-sphere repulsion of finite diameter plus a finite potential o
finite range, and

(b) whose Helmholtz free energy has the form

1 Vv
AN, V) == 2100y (V) == £/(0) (7.64)
where v=V/N, B=1/kT, and f(v) isfinite. The temperature will be
fixed throughout our discussions and will not be displayed unless
necessary. The function f(v) is related to the pressure P(v) o the
canonical ensemble by

f(v) = 5fvvdu'/3P(u’) (7.65)

(]

where the integration is carried out along an isotherm and v, is an
arbitrary constant corresponding to an arbitrary additive constant in the
Helmholtz free energy.

(c) We further assumethat f(v) is such that

opP
— <0 (7.66)
dv
Thisimmediately implies that
3 (v
dl )2 < (7.67)
a(1/v)

With these assumptions the grand partition function may be written in the
form

2z, V)= Y /N (7.68)
N=0

where z is an arbitrary fixed number and

o(v, z) = f(v) + ilogz (7.69)
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Using (7.65) we obtain
1 1 o
¢(v,2)= _logz+t —f dv’ BP(v") (7.70)
v vy,

By (7.67), we have 3% /3(1/v)? < 0, or
A% 293¢
gz * 0 9
We now calculate the grand partition function. For a fixed volume V the
partition function Q,(¥) vanisheswhenever

N> Ny(V)

where Ny(V') is the maximum number of particles that can be accommodated in
the volumeV, such that no two particles are separated by a distance less than the
diameter of the hard spherein the interparticle potential. Therefore 2(z,V )isa
polynomial of degree N,(V'). For largeV it isclear that

N(V) =aV (1.72)

where a is a constant. Let the largest value among the termsin this polynomial
be exp[Vé,(z)], where

(1.71)

¢0(z)=max[¢(;,z)] (N=0,1,2,...) (7.73)

Then the following inequality holds:
e’ | 2(z,v) < Ny(V') "¢
Using (7.72) we obtain
e < 9(z,V ) < aVe¥®
or
log (aV')

- (7.74)

1
do(2) < ;108 2(z, V) < ¢p(2) +
Therefore
1
Jim —log 2(z,V) = ¢y(z) (7.75)

Let 5 be a vaue of v at which ¢(v, z) assumes its largest possible value.
Since ¢(v, z) is differentiable, v is determined by the conditions

d

(£)0=5 =0 (7.76)
3%

(W),):D <0 (7.77)

By virtue of (7.71) the first condition implies the second. Therefore o is de-
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v

g 7.2 Typicd isotheem d a substancein the trang-
tion region o afirg-order phase trangtion.

termined by (7.76) alone. By (7.69) and (7.65) we may rewriteit in the form
[ v P(v') - 5P(5) = ~kTlogz
Y

or

[/Edu'P(v»—(s—uo)P(a) ~0P(3) = —KTlogz (7.7

A geometrical representation of this condition is shownin Fig. 7.2. The value of
v is such that the difference between the area of the region A and that of the
region B is numerically equal to — kT log z. The result isshown in Fig. 7.3. It is
seen that to every vaue of ¢ greater than the close-packing volume there
corresponds a value df z. This answers question (b) in the affirmative.

2z l————

| |
| |
| |
| |
| |
| |

U1 U2
Fg 7.3 za afunctiond ©.
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There is a value of z that corresponds to al the values o v lying in the
interval v, 1 7 1 v,. Thisvaue, denoted by z,, is given by

log z, = Bv, P(vy) — fvldU'BP(U/) (7.79)

7.7 BEHAVIOR OF W(N)

In (7.44) we introduced the quantity W(&), which is the (unnormalized) prob-
ability that a system in the grand canonical ensemblehas N particles. Comparing
(7.44) to (7.68) we see that

W(N) = exp[V¢(;,z)] (7.80)

Hence it is of some interest to examine the function ¢(v, z) in more detail.
Suppose P(v) hasthe form shownin the P — v diagram of Fig. 7.2. For valuesdf
v lyingin therange v, < v < v,, P hasthe constant value P,. For thisrangecdf v
we have

1 v
o(v,z) = ;[logz + f dv' BP(v’) — BPy, | + BP,
which is the same as
1 z
o(v,z) = " log(z—) +BP, (v, <v<uv,) (7.81)
0

where z, is defined by (7.79). Hence we can immediately make a qualitative
sketch of a family of curves, one for each z, for the function ¢(v, z) in the
interval v; < v < v,. Theresult isshown in Fig. 7.4.

¢ (v;2)

BPo

0 /v
Fig. 7.4 Quditative foom d ¢(v,z) for a
phydcd substance.
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To deduce the behavior of ¢(v, z) outside the interval just discussed we use
the following facts:

(a) d¢/dv iseverywhere continuous. Thisis implied by (7.70).

(b) d¢/3v=0 implies 3% /3v? 1 0. That is, as a function of », ¢ cannot
have a minimum. This follows from (7.71).

(c) For z# z,, ¢ has one and only one maximum. This follows from (b).

Guided by these facts we obtain the curves shown in Fig. 7.4.

The behavior of W(N) can beimmediately obtained from that of ¢(v, 2). It
issummarized by the seriesof graphsin Fig. 7.5. For z # z,, W(N) hasa single
sharp peak at some value o N. This peak becomes infinitely sharp as V — .
For z = z,, al valuesd N in the interval

Vv
v, < v <, (7.82)
are equally probable. The number of N vaues corresponding to (7.82) is
1 1 - 3
- - — 7.
P (7.83)

This situation corresponds to the large fluctuation of density in the transition

W(N)
z2>2
I
z2=2)
z<2p
a b c
v v N

vy "1
Fig. 7.5 The function W(N) for three different fugacities
(hence three different dengties). For curves a ad ¢ the
gydem isin a dngle pure phase. For curve b the sysem is
undergoing a firg-order phase trangtion.
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region and may be stated in more physica terms as follows. The pressure is
unchanged if we take any number of particles from one phase and ddliver them
to the other. Each time we do this, however, the total number of particlesin a
given volume changes, because the densities of the two phases are generally
different. Let us start with the system in one pure phase and then transfer the
particles one by one to the other phase, until the system exists purely in the other
phase. The number o transfers we can make is proportiona to V. Each transfer
corresponds to a term in the grand partition function, and all these terms have
the same value.

7.8 THE MEANING OF THE MAXWELL CONSTRUCTION

It has been shown that if the pressure P calculated in the canonical ensemble
satisfies the condition 3P/3dv < 0, the pressure calculated in the grand canonical
ensemble is aso P. We show that the converse is also true. We then have the
statement

(a) The pressure P calculated in the canonical ensemble agrees with that
calculated in the grand canonical ensembleif and only if dP/dv <0.
It will further be shown that

(b) If aP/dv >0 for some v, the pressurein the grand canonical ensemble
is obtainable from P by making the Maxwell construction.

Suppose the pressure calculated in the canonical ensembleis given and is
denoted by P, (v). At a certain temperature we assume P, (v) to have the
gualitative form shown in the P — v diagram of Fig. 7.6.

The partition function of the system under consideration is

On(V) = €' (7.84)
where
1
F(v) = — / dv' BP.,.(v") (7.85)
U Yy,
It is easily seen that
dF(v)
BP...(v) =F(v)+v o (7.86)
Let
1
®(v,z)=F(v)t —log:z (7.87)
v
It is easily verified that
¢ 290 aP
2+___=E an | > 0 (a<U'<b) (7.88)
du v dv v dv | <0 (otherwise)
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Pcan(v)
\
________________ A
i
]
U f b
| ! | Maxwell
} ‘ i | construction
| | ; |
i | ! | Isotherm
|
L o
| ! | !
I | | |
) ; ! i
1 ! 1 |
| i | | v
vo U1 a b v
Fig. 7.6 Isotherm with dP,,/dv > 0 for v lying in the range
a<v<h.

To caculate the grand partition function we recall that the derivation o
(7.75) is independent of the sign of dP/dv. Hence, in analogy with (7.75), we
have in the present case

1
lim — log2(z,V) = ®(5,z) (7.89)
Voo V
where
®(v,2) = max [®(v, )] (7.90)

This determines o in terms of z, or vice versa. The pressure in the grand
canonical ensemble, denoted by P, (v), is given by

BP,(v) = ®(v, z) (7.91)
From (7.87) and (7.85) we see that both @ and 3®/dv are continuous
functions of ». Hence (7.90) is equivalent to the conditions

oo "
(3;)0=17 B

3® 0
<
vt

=V

(1.92)

with the following additional rule: If (7.92) determines more than one valueof o,
we must take only the value that gives the largest ®(v, z).
The first condition of (7.92) is the same as

28F =1 7.93
(Uauv-_ng (7.93)

=U
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Substituting this into (7.86) we obtain
1
BP. (o) = F(v) —logz = ®(7,2) (7.94)

Comparing this with (7.91) we obtain
Po(D) = P, () (7.95)

That is, if thereisa vaue v that satisfies (7.92), then at this value of the specific
volume the pressure is the same in the canonical and grand canonical ensemble.
Therefore it only remains to investigate the possible values of o.

It is obvious that o can never lie between the values a and b shown in Fig.
7.6, because, as we can see from (7.88), in that region d®/dv =0 implies
32® /au2 > 0, in contradiction to (7.92). On the other hand, outside this region,
a®/dv =0 implies 32®/3v> 1 0. Hence the first condition of (7.92) alone
determines &. Using (7.85) we can write this condition in the form

/Edu’Pcan(u’) _ 3P (7) = -kTlogz (7.96)

Thereisavaued z, denoted by z,, at which (7.96) has two roots v, and v,
for which ®(v,, z) = ®(v,, z). The conditions for this to be so are that

vy Uy
—kT IOg Zp = f dU,Pcan(U’) - Uchan(Ul) = f dU’Pcan(U,) - UZPcan(UZ)
Vo Yo

®(vy, 29) = (v, 2o) (7.97)

The second condition is equivalent to P, (v;) = P.,.(v,), by virtue o (7.94).
Combining these conditions, we obtain

/UUZdU’ Pcan(U') = (UZ - Ul)Pcan(Ul) (798)

which means that v, and v, are the end points o a Maxwell construction on
P,,., asshownin Fig. 7.6.

In general we can find z asa function of & by solving (7.96) graphically,in a
manner similar to that used in the last section for (7.78). The result is qualita-
tively sketched in Fig. 7.7. As explained before, the interval a < v < b must be
excluded. By definition df the-Maxwell construction, the portions of the curves
outside the interval v, < 5 I v,, shown in solid lines in Fig. 7.7, coincide with
the corresponding portions in Fig. 7.3. We need to discuss further only the
dashed portions o the curves.

Consider the points A and B in Fig. 7.7. Let their volumes be, respectively,
v, and vy and let their common z vaue be z. The fact that they are both
solutions of (7.96) means that the function ®(v, z') has two maxima, located
respectively at v = v, and v = vg. These maxima cannot be of the same height,
because that would mean that v, and vy are, respectively, v, and v,, which they
are not. To determine which maximum is higher we note that by (7.85), (7.94),
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>V Fig. 7.7 z asafunction of 5.

and the fact that z' is common to both,
./UA a0’ Pegn (") = 04 Pean(04) = 0pPesn(V5) (7.99)

2]
Suppose P, (vg) < P,.(v,). Consider the point C indicated in Fig. 7.6. By
inspection of Fig. 7.6 we see that

/UAdU’Pcan(U’) < (UA - UC)Pcan(UA)
Subtracting (7.99) from thisinequality, we obtain
fUBdU’Pcan(Ul) < UBPcan(UB) - UCPcan(UA)

which, by the original assumption, implies
/UBdU’Pcan(U’) < (UB - UC)Pcan(UB)

By inspection of Fig. 7.6 we see that thisis impossible. Therefore we must have
P (vg) > P.(v,). By (7.94), this means that

D (vg,27) > O(vy, 2’)
In asimilar fashion we can prove that, for the points 4’ and B’ in Fig. 7.7,
®(v,,2") > O(vg, 27

Therefore the dashed portions of the curvesin Fig. 7.7 must be discarded.

In Fig. 7.8, P&(i) is shown as the solid curve. It is the same as P,,,(v)
except that the portion between v, and v, is missing because there is no z that
will give a ¢ lying in that interval. In other words, in the grand canonical
ensemble the system cannot have a volumein that interval. We can, however, fill
in a horizontal line at P, by the usual arguments, namely, that since the systems
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Pgr(v)
7™,
/AN
PyI- ——/— A
4
l |
I l . .
| | Fig. 7.8 The pressure in the grand canonical
U

ensemble (solid lines).

at v; and v, have the same temperature, pressure, and chemical potential, a
system at v; can coexist with a system at v, with any relative amount of each
present.

It is an experimental fact that dP/dv < 0. It could not be otherwise, for
then the system would be in the highly unstable situation in which releasing the
pressure on it leads to a shrinkage. The quantity P,,, is the result of a (generally
approximate) calculation, and may or may not have this desirable property.
However, the corresponding pressure in the grand canonical ensemble always
satisfies the stability condition because the ensemble explicitly includes all
possible density fluctuations of the system.

PROBLEMS

7.1 (a) Obtain the pressure of a classicd ideal gas as a function o N, ¥, and T, by
calculating the partition function.

(b) Obtain the same by calculating the grand partition function.

7.2 Consider a classcd sysemdf N noninteractingdiatomic moleculesenclosed in a box
o volumeV at temperature T. The Hamiltonian for a single moleculeis taken to be

1
‘*(plva,rl’rZ) = E(p% +p%) + %Klrl - r2|2

wherep,,p,, 1, F,, ae the momentaand coordinates of the two atomsin a molecule. Find
(a) the Helmholtz free energy o the system;

(b) the specific heat at constant volume;

(¢) the mean sguare moleculediameter {|r, - r,|?).

7.3 Repeat the last problem, using the Hamiltonian
1
H (PP F2) = 5—(p] + p3) + €lna = nl
where € and r, are given positive constantsand 7= |1, — ry].

Answer.

v x2[2(x = 2) + (x + 2) ]

Nk (x2-+—2—e_")2

(x =en/kT)
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7.4 ProveVan Leeuwen’s Theorem: The phenomenon of diamagnetism does not exist in
classica physics.

The following hints may be helpful:
(a)If £(py,.--,Pn; Q- -->Qy) IS the Hamiltonian of a system of charged particles in
the absence of an externa magnetic fidd, then #[p, — (e/c)Ay,....,Py — (e/C)Ay;
4y, ---,qy] is the Hamiltonianof the same system in the presence of an external magnetic
fiddH = v X A, where A, isthevdue df A at the position g;.
(b) The induced magnetization of the system along the directiondf H is given by

M ol WP
_<_ 8H>_ ar 089y

where  is the Hamiltonian in the presence of H, H = |H|, and Qy is the partition
function of the system in the presencedf H.

7.5 Langevin's Theory d Paramagnetism. Consider a system of N atoms, each o which
has an intrinsic magnetic moment o magnitude x. The Hamiltonianin the presence of an
external magnetic fidd H is

N
H(p,q) _ pHY cose,

i=I
where 5 ( p, q) is the Hamiltonian of the system in the absence of an external magnetic
field,and a, is the angle between H and the magnetic moment of the ith atom. Show that

(a) The induced magnetic moment is
1
M=Np(coth0— 5) (0 =pH/KT)

(b) The magnetic susceptibility per atom is

2
g1
X = k_T(? - csch20)
(c) At high temperatures x satisfies Curie's law, namely x a 7~ !. Find the proportional-
ity constant, whichis called Curi€'s constant.

7.6 Imperfect Gas. Consider a sysem o N molecules (N — ) contained in a box o
volume ¥V (V - m).The Hamiltonian o the system is

N

p?
#=Y =+ Y,
im0
v, = v(|r, - rjl)
where p, and r, are, respectively, the momentum and the position o the ith molecule. The
intermolecular potential v{r) has the qualitative form shown in the accompanying figure.
Let

fij Ef(]". - "j|)
f(r) = e B0 -1
A sketch of f(r)isalsoshown in the same figure.
(a) Show that the equation of state of the system is
Puv 4Z(v,T)

— =1+
kT "o
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v(r)
f(r)
g
> r
ro
-1 M
where v = V/N and

1 1

= 3 3
Z(v,T) = Elog[—V—N/d rno-d rNE(l +£;)

(b) By expanding the product [ T(1 * £;,), show that
1 1
Z(v,T) = Flog[wfd%l d3’N(1+ Zfij+ )J

i<j

N 1/N
=10g[1 + E//d%f(r) + ]

(c) Show that at low densities, i.e.,
/v < 1
it isagood approximation to retain only the first two termsin the series appearing in the
expression Z(v, T).Hence the equation of state is approximately given by
Pv _ 1 oo 2
T 1- 2—0‘/(.) drdmrf(r)
The coefficient of | /v iscalled the second virial coefficient.

Note (i) Retaining the first two termsin the series appearing in Z(v, T) is a good
approximation because Z(v,T) is the logarithm of the Nth root of the series. The
approximation is certainly invalid for the seriesitself

@ii) If al termsin the expansion of [ +f,j) were kept, we would have obtained a
systematic expansion of Pv/kT in powers of 1/v. Such an expansion is known as the
virial expansion.

(iif) The complete virial expansion is difficult to obtain by the method described in this
problem. It is obtained in Chapter 10 via the grand canonical ensemble. See (10.27) and
(10.30).

7.7 Van der Waals Equation of State

(a) Show that for low densitiesthe Van der Waals equation of state (2.28)reduces to
Py

1 a’
Zoa1+ —(b’ - )
kT v kT
(b) Show that the imperfect gas of Problem 7.6 has an equation of state of the same form
as shownin (a),with

27
b = ___03

3
a’ —ZWkaoo drr(1 — e Pvin)
[
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u(r)

o

7.8 The equation of state for an N, gas can be written in the form
PV/NKT = 1%t a,(T)(N/V)

for low densities. The second viria coefficient a,(T) has been measured as a function of
temperature and is given in the accompanying table. Assume that the intermolecular
potential v(r) between N, molecules has the form shown in the accompanying sketch.
From the data given, determine what you consider to be the best choicefor the constants
a, ry, and e.

Temperature, K az(T), K/atm

100 - 180

200 -4.26 x 1071
300 —5.49 X 1072
400 112 x 107!
500 205 x 1071

7.9 A dilute mixture of H, and O, gasesis kept at constant temperature T. Initially the
density of H, was n,, the density of O, was n,/2, and there was no H,O present. After a
certain time, the mixture becomes an equilibrium mixture of H,, O,, and H,0. Find the
equilibrium densities of the three components »y, n,, n;, asafunction of T and n,.



QUANTUM STATISTICAL
MECHANICS

8.1 THE POSTULATES OF QUANTUM
STATISTICAL MECHANICS

All systems in nature obey quantum mechanics. In quantum mechanics an
observable of a system is associated with a Hermitian operator, which operates
on a Hilbert space. A state d the system is a vector {¥) in the same Hilbert
space. If |g) is an eigenvector of the position operators of all the particlesin the
system, then (g|¥) = ¥(q) is the wave function of the systemin the state | ¥ ).
The wave function furnishes a complete description of the state.

At any instant o time the wavefunction ¥ of atruly isolated system may be
expressed as a linear superposition of a complete orthonormal set o stationary
wave functions {®, }:

¥=>c9, (8.1)

where ¢, isacomplex number and isafunction of time. Theindex n standsfor a
set of quantum numbers, which are eigenvalues o certain chosen dynamical
operators of the system. The sguare modulus |c,|* is the probability that a
measurement performed on the system will find it to have the quantum
numbers n.

In statistical mechanics we always deal with systems that interact with the
external world. Here we can regard the system plus the external world as a truly
isolated system. The wave function ¥ for this whole system will depend on both
the coordinates of the system under consideration and the coordinates o the
external world. If {®,} denotes a complete set of orthonormal stationary wave
functions of the system, then ¥ is still formally given by (8.1), but ¢, is to be
interpreted as a wave function of the external world. It depends on the coordi-
nates o the external world as well as on the time.
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Suppose O is an operator corresponding to an observable o the system.
According to the rules o quantum mechanics, the average result o a large
number of measurements o this observable is instantaneously given by the
expectation value

(v.09) = lenen)(®,00,)
(V%) Y (e ) (82)

where (c,, ¢,,), the scalar product o the nth and the mth wave function o the
external world, is a function o time. The denominator of (8.2), being identical
with (¥, ¥), isindependent o time, because the Hamiltonian of the system plus
external world is Hermitian. When we actually measure an observable in the
laboratory, we measure not its instantaneous value but a time average. Thus the
directly measurable quantity is not (8.2) but the following quantity:

o) ZIlwe)(00,)

(0) = @) = ST o) (8.3)

where (c,, ¢,,) is the average o (c,,c,) over a time interval that is short

compared to the resolving time of the measuring apparatus but long compared to

molecular times (e.g., collison times or periods d molecular motion). We note

that Z(c,, c,) isidentical with }_(c, c,), because the latter is independent of
n

time. "

The postulates o quantum statistical mechanics are postulates concerning
the coefficients (c,, c,,), when (8.3) refers to a macroscopic observable of a
macroscopic system in thermodynamic equilibrium.

For definiteness, we consider a macroscopic system which, athough not
truly isolated, interacts so weakly with the external world that its energy is
approximately constant. Let the number o particlesin the system be N and the
volume of the system be V, and let itsenergy lie between E and E T A(A < E).
Let A" bethe Hamiltonian o the system. For such a systemit is convenient (but
not necessary) to choose a standard set o complete orthonormal wave functions
{®,} such that every ®, is a wave function for N particles contained in the
volume V and is an eigenfunctiond A" with the eigenvalue E,;:

HO, =EQD, (8.4)

The postulates d quantum statistical mechanicsare the following:

Postulate of Equal a Priori Probability

1 (E<E,<E+A)
0 (otherwise)

(c,.c,) = { (8.5)
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Postulate of Random Phases

(¢sem) =0  (n*m) (8.6)
As a consequence o these postulates we may effectively regard the wave
function o the system as given by

¥ =350, (8.7)

where

, [1 (E<E,<E+A)
16,/°=1{0 (otherwise) (8.8)

and where the phases d the complex numbers {b,} are random numbers. In this
manner the effect of the external world is taken into account in an average way.
The observed value d an observable associated with the operator @ is then
given by

216N, 00,)
(0) = - Zlb |2

(8.9)

It should be emphasized that for (8.7) and (8.8) to be valid the system must
interact with the external world. Otherwise the postulate of random phases is
false. By the randomness of the phases we mean no more and no less than the
absence o interference o probability amplitudes, as expressed by (8.9). For a
truly isolated system such a circumstancemay be true at an instant, but it cannot
be true for al times.

The postulate o random phases implies that the state d a system in
equilibrium may be regarded as an incoherent superposition of eigenstates. It is
possible to think o the system as one member o an infinitecollection of systems,
each of whichisin an eigenstate whose wave function is ®,. Since these systems
do not interfere with one another, it is possible to form a mental picture d each
system one at a time. This mental picture is the quantum mechanical generaliza-
tion o the Gibbsian ensemble. The ensemble defined by the previous postul ates
is the microcanonica ensemble.

The postulates of quantum statistical mechanics are to be regarded as
working hypotheses whosejustificationliesin the fact that they lead to resultsin
agreement with experiments. Such a point o view is not entirely satisfactory,
because these postul ates cannot beindependent of, and should be derivable from,
the quantum mechanicsof molecular systems. A rigorousderivationis at present
lacking. We return to this subject very briefly at the end o this chapter.

We should recognize that the postulates d quantum statistical mechanics,
even if regarded as phenomenological statements, are more fundamental than the
laws of thermodynamics. The reason is twofold. First, the postulates of quantum
statistical mechanics not only imply the laws d thermodynamics, they also lead
to definite formulas for all the thermodynamic functions of a given substance.
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Second, they are more directly related to molecular dynamics than are the laws o
thermodynamics.

The concept o an ensemble is a familiar one in quantum mechanics. A
trivial exampleis the description d an incident beam o particlesin the theory o
scattering. The incident beam of particlesin a scattering experiment is composed
o many particles, but in the theory o scattering we consider the particlesone at
a time. That is, we calculate the scattering cross section for a single incident
particle and then add the cross sectionsfor al the particlesto obtain the physica
cross section. Inherent in this method is the assumption that the wave functions
o the particles in the incident beam bear no definite phase with respect to one
another. What we have described isin fact an ensemble o particles.

A less trivial example is the description of a beam of incident electrons
whose spin can be polarized. If an electron has the wave function

R

where A and B are definite complex numbers, the electron has a spin pointing in
some definite direction. This corresponds to an incident beam o completely
polarized electrons. In the cross section calculated with this wave function there
will appear interference terms proportional to A*B + AB*. If we have an
incident beam that is partially polarized, wefirst calculate the cross section with a

wave function proportiona to (é) and then do the same thing for (1) , adding
the two cross sections with appropriate weighting factors. This is equivalent to

describing the incident beam by an ensemble d electronsin which the states (1)

and ( (1)) occur with certain relative probabilities.

8.2 DENSITY MATRIX

An ensembleis an incoherent superposition o states. Its relevance to physics has
been postulated in the previous section. We note that only the square moduli
|b,,|2 appear in (8.9). Henceit should be possible to describe an ensemblein such
a way that the random phases of the states never need to be mentioned. Such a
goal is achieved by introducing the density matrix.

Before we define the density matrix let us note that an operator is defined
when al its matrix elements with respect to a complete set o states are defined.
Its matrix elements with respect to any other complete set of states can be found
by the well-known rules o transformation theory in guantum mechanics. There-
fore, if al the matrix elements of an operator are defined in one representation,
the operator is thereby defined in any representation.

We define the density matrix p,,,, corresponding to a given ensemble by

pmn = (Qn’ p¢m) = Smnlbnlz (8'10)
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where @, and b, have the same meaningasin (8.7). In this particular representa-
tion p,,, is a diagonal matrix, but in some other representation it need not be.
Equation (8.10) aso defines the density operator p whose matrix elements are
Pmn- The operator p operateson state vectorsin the Hilbert space of the system
under consideration.
In terms o the density matrix, (8.9) can be rewritten in the form
Tr (0p)

2(®,, 0pd,)
- (8.11)

Y(®,,0®,) Trp

(0) =

The notation Tr A denotes the trace o the operator A and is the sum o al the
diagonal matrix elementsd A in any representation. An elementary property of
the trace is that

Tr(AB) = Tr(BA)

It follows immediately that Tr A isindependent of the representation; if Tr A is
calculated in one representation, its valuein another representation is

Tr(SAS™!) = Tr(S71S4) = Tr 4

The introduction of the density matrix merely introduces a notation. It does
not introduce new physical content. The usefulness of the density matrix lies
solely in the fact that with its help (8.11) is presented in a form that is manifestly
independent o the choice d the basis {®,}, athough this independence is a
property that this expectation value always possesses.

The density operator p defined by (8.10) contains all the information about
an ensemble. It is independent of timeif it commutes with the Hamiltonian o
the system and if the Hamiltonian is independent o time. This statement is an
immediate consequence d the equation of motion o p:

dp
iha—t =[s#,p] (8.12)

which is the quantum mechanical version d Liouville’s theorem.
Formally we can represent the density operator p as

p= 212,512, (8.13)

where |®,) is the state vector whose wave function is ®,. To prove (8.13), we
verify that it has the matrix elements (8.10):

Pmn = (q)m’ pd’n) = <q)m|p|q>n> = Z(q)mlq>k>|bk|2<q)k|q)n> = 6mnlbnl2 u
k
The time-averaging process through which we averaged out the effect o the

external world on the system under consideration may be reformulated in terms
o the density matrix.
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Formula (8.2) is a general formulafor the expectation value of any operator
O with respect to an arbitrary wave function ¥. It may be trivialy rewritten in
the form
R, O
(¥,0,¥) L LR, 0, Tr(RO)

_ n m

(\I,’\I,) - ZRHH - TrR

where R, ,, = (¢,,, ¢,) = (®,, R®,,), the last identity being a definition of the
operator R, and 0,,, = (®,, 09,,). Although R may depend on the time, Tr R is
independent o time. The density operator is the time average o R:

p=R

8.3 ENSEMBLESIN QUANTUM STATISTICAL MECHANICS
Microcanonical Ensemble

The density matrix for the microcanonical ensemble in the representation in
which the Hamiltonian is diagonal is

Omin = Onlbal’ (8.14)
where

Const. (E<E,<E+A)
|b,|% = {0 ﬁotherwise) (8.15)

where { E,,} are the eigenvaues d the Hamiltonian. The density operator is

p= T 19X, (8.16)
E<E,<E+A

Th-l? trace of pisegua to the number o states whose energy lies between E and
ETA:

Trp=Xp. T(E) (8.17)

For macroscopic systems the spectrum { E,} amost forms a continuum. For
A <« E, we may take
I'(E) =w(E)A (8.18)

where w(E) is the density of states at energy E. The connection between the
microcanonical ensemble and thermodynamicsis established by identifying the
entropy as

S(E,V) =klogT(E) (8.19)

where k is Boltzmann’s constant. This definition is the same as in classica
statistical mechanics, except that T'(E) must be calculated in quantum mecha-
nics. From this point on al further developments become exactly the same asin
classical statistical mechanics and so they need not be repeated. No Gibbs
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paradox will result from (8.19) because the correct counting o states is automati-
cally implied by the definition o T'(E) in (8.17).

The only new result following from (8.19) that is not obtainablein classica
statistical mechanics is the third law o thermodynamics, which we discuss
separately in Section 84.

Canonical Ensemble

The derivation o the canonical ensemble from the microcanonica ensemble
given in Chapter 8 did not make essential use o classica mechanics. That
derivation continues to be valid in quantum statistical mechanics, with the trivial
change that the integration over T space is replaced by a sum over al the states
of the system:

1
—N!h3N fdpdq — g (820)
Thus the canonical ensembleis defined by the density matrix
Pin = One FEn (8.21)

where 8 = 1/kT. This result states that at the temperature T the relative
probability for the system to have the energy eigenvalue E, is e £, which is
called the Boltzmann factor. The partition function is given by

On(V, T)=Trp= ) e % (8.22)

where it must be emphasized that the sum on the right side isa sum over statesand
not over energy eigenvalues. The connection with thermodynamics is the same as
in classical statistical mechanics.

The density operator p is

p=219,)e (D, = P¥Y 1D, (D,

n

where s# is the Hamiltonian operator. Now the operator ), |®,5(®,| is the
identity operator, by the completeness property of eigenstates.nTherefore

p=e ¥ (8.23)
The partition function can be written in the form
On(V,T)=Tre #* (8.24)

where the trace is to be taken over all states of the system that has N particlesin
the volume V. This form, which is explicitly independent o the representation, is
sometimes convenient for calculations. The ensemble averaged @ in the canoni-
cal ensembleis

Tr (0 e )

(O = T (8.25)
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Grand Canonicai Ensembie

For the grand canonical ensemble the density operator p operates on a Hilbert
space with an indefinite number of particles. We do not display it because we do
not need it. It is sufficient to state that the grand partition function is

"@(29 V’ T) = Z ZNQN(VaT) (826)

N=0

where @, is the partition function for N particles. The connection betweenlog £
and thermodynamics is the same as in classica statistical mechanics. The
ensemble average of @ in the grand canonical ensembleis

1 =4}
(O = §N§OZN<0>N (8.27)

where {0}, is the ensemble average (8.25) in the canonical ensemble for N
particles. These equations can be written more generdly in the forms

2(z,V,T) = Tre B M)

(O0) = éTr[@ e‘ﬂ(»*’—uN)] (8.28)

where N is an operator representing a conserved quantity (i.e., one that com-
mutes with the Hamiltonian), and the trace is taken over al states without
restriction on the eigenvalues of N. The only restrictions on the trace are
boundary conditions, which specify the volume containing the system, and the
symmetry property of the states under the interchange of identical particles.

8.4 THIRD LAW OF THERMODYNAMICS

The definition of entropy isgiven by (8.19). At the absolute zero of temperature a
system isin its ground state, i.e., a state of lowest energy. For a system whose
energy eigenvaluesare discrete, (8.19) implies that at absolute zero S = k log G,
where G is the degeneracy of the ground state. If the ground state is unique, then
S = 0 at absolute zero. If the ground stateis not unique, but G < N, where N is
the total number of moleculesin the system, then at absolute zero S < k log N.
In both of these cases the third law o thermodynamics holds, because the
entropy per moleculeat absolute zero isof order (logN)/N.

The energy eigenvalues for most macroscopic systems, however, essentially
form a continuous spectrum. For these systems the previous argument only
shows that the entropy per molecule approaches zero when the temperature T is
so low that

kT <« AE
where AE is the energy difference between the first excited state and the ground
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state. As an estimate let us put

h2
= Vs
where m is the mass of a nucleon, V=1 cm?®. Then wefindthat T =5 x 10~
K. Clearly this phenomenon has nothing to do with the third law of thermody-
namics, which is a phenomenol ogical statement based on experiments performed
abovel K.

To verify the third law of thermodynamics for systems having an amost
continuous energy spectrum we must study the behavior of the density of states
w(E)near E = 0. Most of the substances known to us become crystalline solids
near absolute zero. For these substances all thermodynamic functions near
absolute zero may be obtained through Debye’s theory, which is discussed in
Section 12.2. It is shown there that the third law of thermodynamicsis fulfilled.

The only known substance that remains a liquid at absolute zero is helium,
which is discussed in Chapter 13. There it is shown that near absolute zero the
density of states for liquid helium is qualitatively the same as that for a
crystalline solid. Therefore the third law of thermodynamicsis also fulfilled for
liquid helium.

Apart from these specific examples, which include al known substances, we
cannot give a more universal proof of the third law of thermodynamics. But this
is perhaps sufficient; after all, the third law o thermodynamicsis a summary o
empirical data gathered from known substances.

AE

8.5 THE IDEAL GASES: MICROCANONICAL ENSEMBLE
The simplest system of N identical particlesis that composed d N noninter-
acting members. The Hamiltonian is

N 2
D;

=1 2m

H= (8.29)
where p? = p,* p;, and p, is the momentum operator of the ith particle. The
Hamiltonian is independent of the positions of the particles or any other
coordinates, e.g., spin, if any.

In nature a system o N identical particles is one o two types. A Bose
system or a Fermi system.* A complete set o eigenfunctionsfor a Bose system is
the collection of those eigenfunctions o »# that are symmetric under an
interchange of any pair o particle coordinates. A complete set of eigenfunctions
for a Fermi system is the collection of those eigenfunctions of # that are
antisymmetric under an interchange of any pair of particle coordinates. Particles
forming a Bose system are called bosons, and particles forming a Fermi system
are caled jermions.

*See the Appendix, Section A.l
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In addition to these two types of systems we define, for mathematical
comparison, what is called a Boltzmann system. It is defined as a system o
particles whose eigenfunctions are all the eigenfunctionsdf »#; but the rule for
counting these eigenfunctionsshall be the " correct Boltzmann counting.” The set
of eigenfunctions for a Boltzmann system includes those for a Bose system, those
for a Fermi system, and more. There is no known system of thistypein nature. It
is a useful model, however, because at high temperatures the thermodynamic
behavior of both the Bose system and the Fermi system approaches that of the
Boltzmann system.

For noninteracting identical particles we have three cases: The ideal Bose
gas, the ideal Fermi gas, and the ideal Boltzmann gas. We first work out the
thermodynamics of these ideal gases in the formalism of the microcanonical
ensemble. For this purpose it is necessary to find out, for each of the three cases,
the number of states I'(E) of the system having an energy eigenvaue that lies
between E and E + A. That is, we must learn how to count.

To avoid all unnecessary complications we confine our discussion tO spinless
particles. Any energy eigenvalue of an ideal system is a sum of single-particle
energies, caled levels. These are given by

P2
©@= o (8.30)
where p = |p| and p is the momentum eigenvalue of the single particle:
27h
p= L (8.31)

in which n is a vector whose components are 0 or + integersand L is the cube
root of the volumedof the system:

L= V1/3
In the limit as V — o the possible values of p form a continuum. Then a sum
over p can sometimes be replaced by an integration

| 4
3
§—> 5[4 (8.32)
where h = 2«4 is Planck's constant.*

A state of an ideal system can be specified by specifying a set of occupation
numbers {n,} so defined that there are n,, particles having the momentum p in
the state under consideration. Obvioudly the total energy E and the total number
of particles N of the state are given by

E= Zepnp
)
8.33
N-Yn (8.33)
]

*For an explanation o (8.31) and (8.32), see the Appendix, Section A.2.
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For spinless bosons and fermions {n,} uniquely defines a state of the
system. The alowed valuesfor any n, are

2 . . (for bosons) (8.34)
n — -
? (for fermions)

For a Boltzmann gas n, = 0,1,2,..., but {n,} specifiessN!/ [ (n,!) states of
P

the N-particle system. This is because an interchange of the momenta of two
particlesin the system in general leads to a new state but leaves { n, } unchanged.

The total energy isa given number E to within a small uncertainty A, whose
value is unimportant. Hence I'(E) may be found as follows. As V = oo, the
levels (8.30) form a continuum. Let us divide the spectrum o (8.30) into groups
o levels containing respectively g,, g,,... levels, as shown in Fig. 8.1. Each
group iscaled a cdl and hasan averageenergy ¢;. The occupation number of the
ith cell, denoted by »n,, isthesum of n, over all thelevelsin the ith cell. Each g;
is assumed to be very large, but its exact valueis unimportant. Let

W{n,;} = no. of states of the system corresponding to the set of (8.35)
occupation numbers {n,} '

Then
T(E)= Y W{n,) (8.36)
{nl}
where the sum extends over all setsof integers{ n,) satisfying the conditions
E=Yen,; (8.37)
N=)n, (8.38)

Tofind W{n,} for a Bose gasand a Fermi gasit is sufficient to find w;, the
number of ways in which n, particles can be assigned to the ith cell (which

Fig. 8.1 Divison d the single-particle energy spectrum into
cdls
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contains g; levels). Sinceinterchanging particlesin different cellsdoes not lead to
a new state of the system, we have W{n,} = ]_ij. For a Boltzmann gas

interchanging particles in different cells leads to a Jnew state of the system, and
we consider all N particles together. The three cases are worked out as follows.

Bose Gas. Each level can be occupied by any number of particles. Picture the ith
cell to have g, subcdls, with g, — 1 partitions, as follows:

subcelll 2 3 g—-1 g

The number w, is the number of permutations of the n, particlesplusthe g, — 1
partitions that give rise to distinct arrangements:
_ (n1 t g - 1)'
- ni!(gi - 1)
Hence
(n.tg -1
win,} = Hw, = ]:[m (Bose) (8.39)

Fermi Gas. The number of particlesin each of the g; subcells of the ith cell is
either 0 or 1 Therefore w, isequal to the number of waysin which »n, thingscan
be chosen from g, things:

8i 8!
= = — 8.40
i (ni) n\(g; — n,)! ( )
Hence
8! .
{n’} [ i ;Mg - n,)! (Fermi) (8 4)

Boltzmann Gas. The N particles are first placed into cells, the ith cell having n,
particles. Thereare N!/ [ ](n,!) ways to do this. Within the ith cell there are g,

levels. Among the n; partiélesin the ith cells, thefirst one can occupy theselevels
g, ways. The second and all subsequent ones also can occupy the levels g, ways.
Therefore there are (g,)™ ways in which n, particles can occupy the g, levels.
The total number of ways to obtain { n,) is therefore

M1
, n!

However, W{n,} isdefined to be1/N! d thelast quantity:
W{n;} = ]_[% (Boltzmann) (8.42)

This definition corresponds to the rule of ** correct Boltzmann counting™ and does
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not correspond to any physical property of the particlesin the system. It isjust a
rule that defines the mathematical model.

Thefact that the rulefor the counting of statesis different for the three cases
gives rise to the terminology Bose statistics, Fermi statistics, and Boltzmann
statistics, which refer to the three rulesof counting, respectively.

To obtain the entropy S= k logT'(E) we need to sum W{n;} over {n;} in
accordance with (8.35). Thisis a formidable task. For the Boltzmann gasit was
explicitly done in Section 6.5. As we might correctly guess, however, I'(E) is
quite well approximated by W{n,}, where {#,} isthe set d occupation numbers
that maximizesW{n,} subject to (8.37) and (8.38). We adopt this approximation
and verify its correctness by showing that the fluctuations are small. Accordingly
the entropy is taken to be

S=klogW{n,} (8.43)
Tofind {7,} we maximize W{n;} by varying the n; subject to (8.37) and (8.38).
The details of this calculation are similar to that in Section 4.3 and will not be
reproduced. We merely give the answers:

& .
_ Boseand Fermi
ﬁi z"l eﬁ‘i F1 ( ) (844)
gize P (Boltzmann)
We deduce from this that
—_— Boseand Fermi
n,= z7lete T 1 ( ) (8.45)
ze B (Boltzmann)

The parameters z and B8 are two Lagrange multipliers to be determined from the
conditions

Zepﬁp =E
P (8.46)
YA, =N
P
Thefirst of theseleadsto theidentification 8 = 1/kT, and the second identifiesz

as the fugacity.
Using Stirling's approximation and neglecting 1 compared to g, we have
from (8.43) and (8.44),

. i
Z{ﬁilog(l + f—l) + g log|l + ;’)] (Bose)
i n; i
S = n = 8 ’_11‘ .
;—logW{ni}— Z ﬁilog(?—l)—g,log(l— ; (Femu)
i n; f
Y7, log(g,/7,) (Boltzmann)

(8.47)
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More explicitly,

Be, — log z e
;gi —z_leTi —_ |Og(1 — Ze ') (BOSC)
> P 1092 a1+ 268 (8.48)
= ( f gi[z_leﬂ(' I log(1 T ze A<)|  (Fermi) -
ng,.e‘ﬁ‘- (Be, - log z) (Boltzmann)

The validity of these equations depends on the assumption that
n? — i < i (8.49)

This is best discussed in the grand canonical ensemble (see Problem 8.4). From
(8.48) al other thermodynamic functions can be determined after z is determined
in terms of N from (8.46).

The Boltzmann gaswill be worked out explicitly. From (8.38) and (8.44) we
have

zV . 2 zV
N=:z)gePi=7z) e ho= F/ dp 4np?e PP /2m = ~ (8.50)
i p 0

where

N i 8.51
Vo mkT (8.51)
This quantity is caled the thermal wavdength because it is of the order o the
de Broglie wavelength of a particle of mass m with the energy k7. Writing
v=V/N weobtain

z=— (8.52)

v

The condition E = ) n,e; requiresthat
2

_ zV s P B2 im
E=z)geePi=z)e,ePo= ZB—L dp47rp2(ﬁ) e PP/2m = INKT
i p

(8.53)
Therefore T is the absolute temperature. The entropy is, by (8.48)and (8.46),
S
e z) e P%(Be, — logz) = BE — Nlog:
P
N [2ah?\3?

=N - - 8.54
SN — Nlog V(ka) (8.54)

This is the Sackur-Tetrode equation. The fact that the constant h = 27 A is



QUANTUM STATISTICAL MECHANICS 185

Planck's constant follows from (8.31), where A first makes its appearance. The
eguation of state is deduced from the function U(S, V), whichis E expressed in
terms of S and V. We straightforwardly find PV = NkT. It is to be noted that
(8.54) does not satisfy the third law of thermodynamics. This should cause no
concern, because a Boltzmann gas is not a physica system. It is only a model
toward which the Bose and Fermi gas convergeat high temperatures. This shows,
however, that the third law of thermodynamicsis not an automatic consequence
of the general principlesd gquantum mechanics, but depends on the nature of the
density of states near the ground state.

The Bose and Fermi gases can be worked out along similar lines. They are
more conveniently discussed, however, in the grand canonical ensemble, which
we consider in the next section.

8.6 THE IDEAL GASES: GRAND CANONICAL ENSEMBLE
The partition functions for theideal gasesare

0 (V. T) = ¥ g(n,) e FErs) (8.55)
{np}
where
E{n,} — Yen, (8.56)
P
and the occupation numbers are subject to the condition
Yn,=N (8.57)
P
For a Bose gasand a Boltzmanngasn, =0,1,2,... . For aFermi gasn, = 0,1.
The number of states corresponding to {n,} is
1 (Bose and Fermi)
=/ 1 N!
gl{np) ={ — (Boltzmann) (8.58)
Nt{ [In,!

P

We first work out the Boltzmann gas.

/e—ﬂnofo e—ﬂnm
o= LS
ng,np, ..\ 0 1:

Yn=N

1
= m(e'ﬁ‘o + e'ﬂ‘l + .- )N

This equality is the multinomial theorem. In the limit asV — e we can write

1%4 mkT \3/?
Y e P —/w dp dmp?e PV /2m = y| —
P R

e (8.59)
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Therefore

V { mkT \3/? 8 60
N ( 2'7Th2) (8.60)
from which easily follows the Sackur-Tetrode equation for the entropy and the
eguation of state PV = NkT. The grand partition function is trivial and will not
be considered.

For the Bose gas and the Fermi gas the partition function cannot be

evaluated easily becaused the condition (8.57). Instead of the partition function
we consider the grand partition function

1
—]\7 log Oy = log

m

2(z,V,T)= Y z2Y0,(V,T) = i y N o= By,

N=0 N=0 {”p}
Lny=N
=¥ X Il(ze )™ (8.61)
N+0 {(n,} p
Ln,=N

Now it is to be noted that the double summation just given is equivalent to
summing each r, independently. To prove this we must show that every term in
one case appears once and only once in the other, and vice versa. Thisis easily
done mentally. Therefore

"@(Z’V9T) = ZZ [(ze—ﬂco)"o(ze—ﬂq)"l ]

ng m

=[Sy S|

gz

where the sum X, extendsover thevaluesn = 0,1, 2, ... for the Bose gasand the
values n = 0,1 for the Fermi gas. The resultsare

PE——T (Bose)
2z, v, T)={ » 17 2¢ (8.62)
' [T(1 + ze A%) (Fermi)
P
The equations of state are
o (-Ylog(1 - ze #%) (Bose)
PV N
— =log 2(z,V,T) = 8.63
k 8 2(z ) Y log (1 + ze B%) (Fermi) (8:63)

P
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from which z is to be eliminated with the help of the equations

ze P

Z T=ze A% (Bos)

d
N=z—log2(z,V,T) = (8.64)
0z e Pe _
L1 zer, (Fom)
The average occupation numbers (»,) are given by
1 = 14
(npy=—Xz2" Y npeFromn=_ ___log9
N=0 {n,) B aep
Lnp,=N
ze P (Boseand Fermi) 8.65
S 1Fzo (8.69)

which are the same as (8.45). The equations (8.64) are non other than the
statement

N =3 (ny) (8.66)
P

The results here are completely equivalent to those in the microcanonical
ensemble, as they should be.

Now we let V — oo, and replace sums over p by integrals over p in the
manner indicated in (8.32), whenever possible. Such a replacement is clearly valid
if the summand in questionisfinitefor al p. In (8.63) and (8.64), thefugacity z is
nonnegative for both the ideal Ferrni gas and the ideal Bose gas becausg, if z
were negative, then (8.64) cannot be satisfied for positive N. We see immediately
that for the ideal Fermi gasit is permissible to replace the sums in (8.63) and
(8.64) by integrals over p. We then aobtain the following equation of state.

Ideal Fermi G&s
P 47 .0
= 2 —-Bp?/2m
— h3f0 dpp*log(1 + ze )
1 47 . 1 (8.67)

2
B S —
v nJy 2=1ehr?/2m 4 1
where v = V/N. It can be veified in a straightforward fashion that (8.67) can
also be written in the form

P 1
*T = FfS/Z(Z)

1

1 (8.68)
- = ﬁfyz(z)
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where A = {27h%/mkT and

4 2 w© +1_
fip(z) = ——\/;TT'/O dxx?log(l1 +ze ™)=Y ——15)/2— (8.69)
9 0 1 I+1 4
f3/2(2) = Za_zfs/z(z) ) (_"13/2— (8.70)
=1

For the ideal Bose gas the summands appearing in (8.63) and (8.64) diverge
as z — 1, because the single term corresponding to p = 0 diverges. Thus the
singleterm p = 0 may be asimportant as the entire sum.* We split off the terms
in (8.63) and (8.64) corresponding to p = 0 and replace the rest o the sums by
integrals. We then obtain the following equation of state.

Ideal Bose (&5
( P 477 [} s
T " —F/ dpp2log(1 —ze B m) ¥ log(1 - 2)
= + —
v h3 p Z—leBp/Zm_l V1-:z

where v = V/N. It can be veified in a straightforward fashion that (8.71) can
also be written in the form

P 1
kT }\3 85/2(2) 108 (1- z) (872
1 1 1 =z 72)
, ?83/2(2) + V1=,
where A = {2#h%/mkT , and
!
gs(z) = v f dxx*log(1 — ze ) = Yz (8.73)
B d o gl
83/2(2) = 2585/2(2) = Igfl 1372 (8.74)

As (8.65) implies, the quantity z/(1 — z) is the average occupation number {n,)
for the single-particlelevd with p = 0:

= (no) (8.75)
This term contributes significantly to (8.72) if {n,) /¥ is afinite number, ie., if a

*That this isin fact the case is shown in Section 12.3 in connection with the Bose-Einstein
condensation.
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finitefraction o all the particlesin the system occupy the singlelevel withp = 0.
We shall seein Section 11.3 that such a circumstance gives rise to the phenome-
non o Bose-Einstein condensation.

The internal energy for both the Fermi and the Bose gases may be found
from the formula

1 = ad
U(z,v,T) == Ny [e‘BZ"”P Zepnp] = — —[log 2(z,V, T)]
2 N=0 {np} p (?B
En,=N
(8.76)
Sincelog 3= PV /kT, we obtain from (8.68) and (8.72) the resullts
3 kT ]
1 5 '>\Tf5/2(2) (Fermi)
UV T) = 5 4p (8.77)

5 ng/z(z) (Bose)

ToexpressU intermsd N, V, and T, we must eliminatez. The result would bea
very complicated function. A comparison between (8.77), (8.68), and (8.72),
however, shows that U isdirectly related to the pressure by*

U=3PV  (Boseand Fermi) (8.78)

This relation also holds for the ideal Boltzmann ges.
The detailed study o theideal gasestogether with their applicationsis taken
up in Chapters 11 and 12.

8.7 FOUNDATIONS OF STATISTICAL MECHANICS

The present section contains no derivations. It merdly furnishes an orientation on
the subject of the derivation d statistical mechanicsfrom molecular dynamics.

It isrecalled that a specid case o statistical mechanics, the classical kinetic
theory o gases, can be derived almost rigorously from molecular dynamics. The
only ad hoc assumptionin that derivationis the assumption o molecular chaos,
which, however, playsa well-understood role, namely, the reduction o reversible
microscopic phenomena to irreversible macroscopicphenomena. Sinceirreversibility
is a necessary result o any successful derivation, an assumption o this kind is
not only unavoidable but aso desirable, because it serves to mark clearly the
point at which irreversibility enters. An improvement on the existing derivation
consists o replacing this assumption by one less ad hoc, but not of doing away
with it atogether.

*|t is assumed that the term V7! log(l - z) in (8.72) can be neglected. This is justified in
Section 12.3.

"For a source o literature see Fundamental Problems in Statistical Mechunics, edited by
E. G. D. Cohen (North-Holland, Amsterdam, 1962).
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The derivation of the classica kinetic theory of gases may be considered
largely satisfactory. When we consider the more general problem o the deriva-
tion o statistical mechanics, we may wel keep this theory in mind as a mode
example. From this example, we learn that a satisfactory derivation of statistical
mechanics must simultaneoudly fulfill two requirements:

(a) It must clearly display the connection between microscopic reversibility
and macroscopic irreversibility.
(b) It must provide a detailed description of the approach to equilibrium.

Thus a satisfactory derivation o statistical mechanics must satisfy not only
the philosophical desire of the physicis to base all natura phenomena on
molecular dynamics, but also the practical desire of the physicist to calculate
numbers with which to compare with experiments.

Logically speaking, it sufficesto derive quantum statistical mechanics, o
which classical statistical mechanicsis a specia case. If we want to understand
nonequilibrium phenomenon in the classical domain, however, it is expedient to
use classical mechanics as a starting point. For this reason attempts to derive
classical statistical mechanics from classical mechanics can be of great practical
value.

Attempts to derive statistical mechanics have so far been one d two types:
Some appeal to the ergodic theorem, whileothers aim at establishing the " master
eguation.” Only the latter seems capable o fulfilling both the requirements set
forth previoudy.

The master equation is an equation governing the time development of the
quantity P,(¢), whichis the probability that at the instant ¢ the system isin the
state n. If the word "state" is appropriately interpreted, P,(z) can be defined
either in classical or quantum mechanics. To justify statistical mechanics, we have
to show that P,(t) approaches the quantity (c,, c,) of (8.5) when ¢ is much
longer than a characteristic time o the system called the relaxation time, e.g.,
molecular collision time.

The master equationis

LD 5 1 (0) - W) -

where W, is the transition probability per second from the state » to the state
m. It was first derived by Pauli under the assumption that » refers to a single
quantum state of the system and that the coefficientsin the expansion (8.1) have
random phasesat al times. All subsequent work after Pauli's has been concerned
with the improvement of these assumptions and with the solution of the master
equation itself.

It can be shown that solutionsto the master equation approach the desired
limit as ¢t — co. Hence the task o deriving statistical mechanics reduces to the
justification of the master equation and the calculation o the relaxation time.
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The similarity between the master equation and the Boltzmann transport
equation may be noted, although we should remember that the latter refersto p
space whereas the former refers to I' space. The random-phase assumption here
is similar to the assumption of molecular chaos in the Boltzmann transport
equation. I'n both cases the solution for ¢ — oo is relatively easy to obtain, but
the relaxation time is difficult to calculate.

The approach involving the master equation seems to hold greater promise
for a satisfactory derivation of statistical mechanics and the concomitant under-
standing of general nonequilibrium phenomena. Further discussion of the master
equation, however, is beyond the scope of this book.*

PROBLEMS

8.1 Find the density matrix for a partially polarized incident beam of eectrons in a
scattering experiment, in which a fraction f o the electrons are polarized aong the
direction d the beam and a fraction 1 — f is polarized opposite to the direction of the
beam.

8.2 Derive the equationsdf state (8.67) and (8.71), using the microcanonical ensemble.
8.3 Prove (7.14) in quantum statistical mechanics.

8.4 Veify (8.49) for Fermi and Bose dtatistics, i.e., the fluctuations of cdl occupationsare
small.

Solution. By (8.65),

1 31 9
(ng) = ﬁ&kag

Differentiating this again with respect to ¢, leadsto

N 5 1 0
(ne) = (ne)" = _Ea_£k<nk>

from which we can deduce

(ney = (m ) = () £ (me Y (A)
with the plus sign for Bose statistics, and the minus sign for Fermi statistics. (For Fermi
statistics the results is obvious because n? = n,.) The fluctuations are not necessarily
small. Note, however, that (A) refers to the fluctuations d the occupation o individual

states, and not the cdl occupations.
As a calculation useful for later purposes, we note

1 4
<nknp>—<nk><np>=—§3—£k<"p>, (p# k)

The right side is zero because (n,) dependsonly on e,. Thus we have
(neny) = (mi)ny), (P #Kk) (B)

*For a general discussiond the master equation, see N. G. Van Kampen, in Cohen, op. cir. An
improvement on the random phase approximation is described by L. Van Hove, in Cohen, op. cit.
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In the infinite-volume limit the spectrum d states becomes a continuum. The
physicaly interesting question concerns the fluctuationsin the occupation d a group of
states, or acel. Let

n= Y
k

where the sum extends over agroup o statesin cell i. We areinterested in

(niy = (n;)" = <(§”k> > - <Xk:”k>
By using (B), it is eadly shown that the right Sde is equd to
Z(("b - <"k>2)

k
Hence using (A) we obtain

(n) — (n) = (np) & %(nkf

where the plus Sgn holdsfor Bose statistics, and the minussign for Fermi statistics. In the
infinite-volumelimit, the k sum is replaced by an integra over aregionin k space. No
matter how small thisregionis, theintegral is proportional to thevolumeV o the system.
(Thisis equivalent to the statement that a finite fraction o the particles occupies a cell.)
Thus the left sideis o order 172, but the right Sideis only of order V.

8.5 Calculate the grand partition function for a sysem d N noninteracting quantum
mechanical harmonic oscillators, al o which have the same natural frequency w,. Do this
for the following two cases:
(a) Boltzmann statistics
(b) Bose datitics.

Suggestions. Write down the energy levels of the N-oscillator system and determine
the degeneracies o the energy levels for the two cases mentioned.

8.6 What is the equilibrium ratio o ortho- to parahydrogenat a temperature d 300 K?
What is the ratioin the limit o high temperatures? Assume that the distance between the
protonsin the moleculeis0.74 A.

The following hints may be helpful.
(a) Boltzmann gtatisticsisvalid for H, molecules at the temperatures considered.
(b) Theenergy o asngleH, moleculeisa sum of terms corresponding to contributions
from rotational motion, vibrational motion, trandational motion, and excitation of the
eectronic cloud. Only the rotational energy need be taken into account.

(c) The rotational energies are
2

h
E. . =— = ..
S+ (1=0,2,4, )
hz
Eortho=§;l(l+ 1) (1=1,3,5,...)
where 1 is the moment d inertiadf the H, molecule.
Answer. Let T = absolutetemperatureand B = 1/kT. Then

3 Y (214 1) e~ BR2NDIIHY

Northo _ Todd
Noara Y (21 + 1) e B 2DIID
{ even



GENERAL PROPERTIES OF
THE PARTITION FUNCTION

9.1 THE DARWIN-FOWLER METHOD

Although the canonica ensemble may be derived from the microcanonica
ensemble, as we have shown in Section 7.1, it may aso be derived directly.
Indeed, if we are not too concerned with rigor, the derivation is very simple.
Consider an ensembled M systems such that the energy averaged over all the
systemsis a given number U. We wish to find the most probable distribution of
energies among these M sysems in the limit as M — oo. By definition of an
ensemble, the systemsdo not interact with one another; they may be considered
one at a time, and they are consequently distinguishable from one another.
Therefore our problem is mathematically identical with the problem of the most
probable distribution for aclassica idea gas o particles. The answer as we know
isthe Maxwell-Boltzmanndistribution, 1.e., the energy value E,, occurs among the
systems with relative probability e~#£-, where 8 is determined by the average
energy U. This ensemble is the canonical ensemble. It is obvious that this
derivation holds equally wel in quantum and in classica statistical mechanics.

We want to present here a more rigorous derivation that avoids the use o
Stirling's approximation, which is necessary in the usua derivation o the
Maxwell-Boltzmann distribution. The purpose o this presentation is not only to
derive the canonical ensembledirectly but also to introduce the method of saddle
point integration, which is a useful mathematical tool in statistical mechanics.
The considerations that follow hold equally wel for quantum and for classica
statistical mechanics.

The method we shall describe is due to Darwin and Fowler. Assumethat a
systemin theensemblemay haveany oned theenergy valuesE, (k = 0,1,2,...).
By choosing the unit of energy to be sufficiently small, we can regard E, as an
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integer. Among the systemsin the ensemblelet
m, Systemshaveenergy E,
m; Systems haveenergy E,

(9.1)

m, Systemshaveenergy E,

The set of integers {m, } describes an arbitrary distribution o energy among the
systems. It must satisfy the conditions

m,=M

»MS

=0

w (9.2)
Z E,m;
k=0

MU

I

where both M and U are integers. Our purposeis to find the most probable set
{m,}.

Given an arbitrary set {m, } satisfying (9.2) there are generally more ways
than one to construct an ensemble corresponding to (9.1), because the inter-
change d any two systems (which are distinguishable) leaves { m;) unchanged.
Let W{m,} be the number o distinct waysin which we can assign energy values
to systems so as to satisfy (9.1). Obvioudy

M!
Wim) mylmtm,! - - - ©-3)

For the present case the postulate d equal a priori probability states that all
distributions in energy among the systems are equally probable, subject to the
conditions (9.2). Thus {m, } isthe sat that maximizes(9.3). In anticipation d the
fact that in the limit as M — oo amost all possible sets {m, } are identical with
{m,}, we can aso find {m,} by caculating the vaue of m, averaged over all
possibledistributions in energy:

Z, mW{m}
{m}
(myy = —F " (94)
2 W{m;}
{m}
where a prime over the sums indicate that they are sums over al sets {m,}
subject to (9.2). We must aso calculate the mean square fluctuation (m3) —
(m, )2 If thisvanishesas M — oo, then in that limit (m,) — m,.
For conveniencewe modify the definitionof W{m,} to

Miglogm ...

Wime) = mylmy! .-

(9.5)
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where g, is a number which at the end of the calculation will be set equal to
unity. Let

I(M,U)= Y w{m,) (9.6)
{mi}
Then
3
(my) = gkglogf (9.7)

The mean square fluctuation can be obtained as follows:

1., 1 ad( ar
(mi) = {;}mkW{mi}: T8 5, |\ 8 3g.

d (1 4T ) ( 3 1 ) aT
~ 8k9g, | T8 3g, g, T L 38
9 ( 9 1 I‘) + ( 4 1 F)2
=g |87 1o 87— log
gk agk gk agk g k agk
Therefore
(mz) = (my)? ’ ( ’ 1 T) (9.8)
m - {m = - — 10 .
k k 8k 9z, 8k 3z, g

Thusit is sufficient to calculatelog I'
By (9.6) and (9.5)

r=Mm Y (géno-g{nl---) (9.9)

my!  my!

mg, my,...

This cannot be explicitly evaluated because of the restriction (9.2). We are,
however, only interested in this quantity in the limit as M — oco. To proceed, we
define a generating function for T' in the following manner. For any complex
number z, let

G(M,z)= f zMUT(M,U) (9.10)
U=0
Using (9.9) and (9.2) we obtain
o0 2 Eo ™o 25 ™
G(M,z)=M'Y, ¥ (g022)"  (8027)" (9.11)

U=0 mg,my,... mo! ml!
It is easily seen that the double sum in (9.11) is equivaent to summing over al

sets {m, } subject only to the condition Y} m, = M. To show this we need only
verify that every term in one sum appearsoncein the other and vice versa. Hence

M! -
= Eg)™Mo EN™ L.
G(M, Z) - mo,g,.., mo‘.mﬂ s [(802 0) (812 1) ]
Emy=M

(goz% + gyzf 4+ -+ )" (9.12)
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The last step follows by used the multinomial theorem. Let

f(z) = kigsz* (9.13)
Then
G(M,z) = [f(2)]¥ (9.14)

To obtain I'(M,U ) from G(M, z) we note that by definition I'(M, U ) is the
coefficient of zMY in the expansion of G(M z)in powersd z. Therefore

[f(z)]"

T OMU+1

T(M,U) = 2— dz (9.15)

i z
where the contour o integration is a closed path in the complex z plane about
z=0.

We may assumewithout loss o generdlity that the sequence E,, E,,... isa
sequence of nondecreasing integers with no common divisor, because any com-
mon division 7 can be removed by choosing the unit of energy = times larger.
Furthermore, we can s&t E, = 0, since this would only change the zero point of
the energy. In so doing U would be changed to U — E,, which we can again call
U. The numbers g,, g,,... are as close to unity as we wish. For the immediate
calculations we omit them temporarily. Hence

fz)=1+zB 4 2B 4 ... (E,<E,<E< ) (9.16)

where E,, E,,... areintegerswith no common divisor. When z isareal positive
number x, f(x) is a monaotonically increasing function o x with a radius o
convergenceat, say, X = R. The sameis true for [ f(x) P, asillustrated in Fig.
9.1. The function 1/z#Y+1 on the other hand, is a monotonicaly decreasing
function along the rea positive axis. The product of these two functions has a
minimum at x, between 0 and R, asshown in Fig. 9.1. Now f(z) is an analytic
function for |z| <R, and z"MY~! is anaytic everywhere except at z = 0.
Therefore the integrand of (9.18)

1(z) = [jz(wzu)le (9.17)

o™

xMU+1

Fig. 9.1 The function [ f()1™/xMY*! for red
ED) R postive x.
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is analytic at z = x,. An analytic function has a unique derivative at a given
point. Furthermore it satisfiesthe Cauchy-Riemann equation

x>  dy

o o, [ O 0 (9.19)
any _ T LE AT .
(az)Ho S P23 SR S B (

That is, in the complex z plane, I(z) has a minimum at z = x, along a path on
the real axis but hasa maximum at z = x,, along a path parall€l to theimaginary
axis passing through x,. The point x, isasaddle point, asillustrated in Fig. 9.2.
Let g(z) be defined by

(_‘9_2_ " -‘9—25)1(2) =0 (z=x+) (9.18)

Hence

I(z) = eMe®

g(z) =logf(z)- Ulogz
where we have neglected 1/M as compared to U. Then x, is the root of the
eguation

(9.20)

g’(xo) =0
or
LExg: (9.21)
k
- =U
2 xg
k
Furthermore
3%
o). " Mg (o) exp [Me(x0)] = oo (9.22)
|1(z)!
Saddle
point

Contour of integration

Fig. 9.2 Thesaddle point.
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Hence the saddle point touches an infinitely sharp peak and an infinitely steep
valey in the limitsas M — oo. If we choose the contour d integration to be a
circle about z =0 with radius x,, the contour will pass through x, in the
imaginary direction. Thus along the contour the integrand has an extremely sharp
maximum at the point z= x,. If elsewhere along the contour there is no
maximum comparable in height to this one, the contribution to the integra
comes solely from the neighborhood of x,. This is in fact true because for
z=x,€®

E;

1
11(2)1 = g1+ (xae®) + (xge®) 4 [ (923)
0
The series (9.23) is maximum when al terms are rea. This happens when and
only when 8E, = 2#n,, wheren, is0 or an integer. If 8 # 0, then 2« /8 must be
a rational number, and this would mean that E, = 2« /8)n,, which is impossi-
ble unless # = 2#, because the E, have no common divisor. Hence we conclude
that the largest value o I(z) occursat z = x,.
To do theintegral (9.15)we expand the integrand about z = x:

g(z) = g(x,) + 3z - xo)zg”(xo) t..
Hence

1
¢ dz eL/2Mg" (xoX(z—x0)?

1
P(M, U) = 2—Wi¢dzeMS(l) ~ eMg(xo) o

Putting (z — x4) = iy, we obtained

( ) = eMszo) L LMyt Y
T'(M,U) = ¢™8*0) — dye” 8"(x0)y" = 9.24
27 f_oo 4 J2TMg " (%) ( )
Hence
1 1 ,
7 10gT (M, U) = g(xo) — ——log[27Mg " (xo)] (9.25)

As M — oo thefirst term gives the exact result. To evaluate g(x,) wefirst obtain
from (9.20) the formulas

g(x,) = Ing(xo) — Ulog x,
/7(x)  UW-1)
f(xo) x%

Using f (x,) from (9.13)(restoring now the numbers g, ) and defininga parame-
ter 8 by

g"(x0) =

xo=e# (9.26)
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we obtain
g(xo) = Iog(kgogke‘“k + BU
ey gk(E,g - U2) e PE (9.27)
g”(x) = —=0 = e ((E-U)’)
Y ge Ph
k=0
Hence
1 od 1
—1og T(M, U) =log| Y g, e#5 | + BU — — log[2nMg"*(x,)] (9.28)
M = 2M
from which we find, using (9.7) and (9.8),
-BE,
) _ d (9.29)
M Y e BE
k=0
(mi) = (m* _ 1 (mo | (m) () (B U) (5.30)
M? M M M M ((E-u))|

This is an exact formula in the limit as M - «. We see that the fluctuations
vanish in this limit. Therefore {(m,) = m,. The parameter B is determined by
(9.21) and (9.26):

0
L E e Ph
v=X¥9  =<E) (9.31)
Z e*BEk
k=0

Hence B can be identified as 1 /kT, where T is the absolute temperature.

In the most probable distribution the probability of finding a system in the
ensemble having the energy E, is (9.29). The ensemble with such an energy
distribution is the canonical ensemble.

9.2 CLASSICAL LIMIT OF THE PARTITION FUNCTION

let 5# bethe Hamiltonian operator of asystem d N identical spinless particles.*
Let 5# be the sum o two operators, the kinetic energy operator K, and the
potential energy operator €:

H=K+Q (9.32)

*|t isstraightforward to generalizethe following considerations to the case of particles with spin
and to the case of a mixed system of two or more more different kinds of particles.
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If ¥(r,...,ry)isawavefunction o the system, then
2 N

K‘I’(l‘l,...,l'N) = _ﬁ Z Viz‘I’ (l'l,...,l'N) (933)
i=1
Q¥(ry,...,ry) = Qry, ..., tx)¥(rg,. .., 1Y) (9.34)

where misthe massd a particle, v,? is the Laplacian operator with respect tor,,
and Q(r,,...,ry) isasum o two-body potentials:

Qry,....ty) = 2, (9.39)
i<y
where
v;; = U(lri - rj‘) (9.36)

Whenever convenient, we use the abbreviation (1,..., N) for (r,...,Ty).
The partition function o the systemis

OV, T) =Tre #¥= 3 (®,, e F*0,) (9.37)
where @,(1,..., N) is a member o any complete orthonormal set o wave
functions of the system and ®*(1,..., N) is its complex conjugate. For any
operator @,

(2,,00,) = [t ox(1,...,N)0R,(1,...,A) (9.38)

Each @, sdtisfies the boundary conditionsimposed on the system and is normal -
ized in the box d volume V containing the system. It is a symmetric (antisymmet-
ric) function o ry,...,ry, if the systemisa system of bosons (fermions).

It will be shown that when the temperatureis sufficiently high we can make
the approximation

Oy(V,T) = F;Wfdwpdwre‘ﬁ”(”'” (9.39)
where h is Planck’s constant and s#( p, r) is the classcd Hamiltonian
¥ op}
H(p,ry= Y. Ey. + Qry,...,1y) (9.40)
i=1

This will prove that at sufficiently high temperatures the partition function
approaches the classica partition function with " correct Boltzmann counting.”
In the course d proving (9.39) we obtain the criterion for a " sufficiently high
temperature."

Free Particles

Let usfirst consider an ideal gas, for which Q(1, ..., N) = 0. The eigenfunctions
o the Hamiltonian are thefreeparticlewa/efunctionsfbp(l, ..., N) described in



GENERAL PROPERTIES OF THE PARTITION FUNCTION 201

the Appendix, Section A.2. They are labeled by a set of N momenta

P={p,....Py} (9.41)
and satisfy the eigenvalue equation
K®,(1,....N) = Kp(bp(l,..., N) (9.42)
where
1

For convenience we impose periodic boundary conditions with respect to the
volume V. It follows that each p, has the allowed values

27hn
P= i (9.44)
where n is a vector whose components may be 0, +1, +2,... . More explicitly,
®,(1,..., N)isgiven by
1
®,(1,...,N) = m@ap[upl(m) .. up (PN)]
1
= INT §8P[ul’p1(1) T uPpN(N)] (9.45)
1 .
where uy(r) = N eipr/h (9.46)

The notation is explained in the Appendix, Section A.2. A permutation o the
momenta p;, .. ., py does not produce a new state, for <I>p is either invariant or
changes sign. Therefore a sum over statesis 1/N! times a sum over al the
momenta independently. In thelimit V — « a momentum sum may be replaced
by an integral:

14
Yy - ﬁdep (9.47)

14
Therefore

VN
Tre PK= — oy [dpd™r[0,(1,.... N) [P e #% (9.48)
Using (9.45) we can write
1
2
|q)p(1, IS N)I = F Z Zapap/[u:l(})l)up;l(l)] A [u:N(PN)uPl;N(N)]
PP

(9.49)

Now every term in the P' sum will give the same contribution to the integral in
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(9.48). Thus we may replace the above by N! timesany one term in the P’ sum:

(1 M) = Zp [ (P ()] -+ [, (PN )ty (V)]

1 i
= Wzspexp E[pl “(rp = Pr) + -+ +py - (r; — Pry)]
P
(9.50)

When thisis substituted into (9.48), each momentumintegral can be expressedin
term of the function

dePe—ﬁ(P2/2m)+ip-r/h

= e /N (9.51)

f(r)
fd3pe—ﬁp2/2m

where r = |r| and A = y27h*/mkT, the thermal wave length. The result is

1 ) :
Tre AKX = N!hw/dwpdw,e—ﬁ(m +p3)/2
X 28 f(ry = Pry) -+ fex = Pry)] (9.52)
P

Thisis an exact identity. For high temperatures the integrand may be approxi-
mated as follows. The sum Y contains N! terms. The term corresponding to the

[3)
unit permutation P = 1is[f (0)]" = 1. The term corresponding to a permutation
which only interchanges r; and r, is [f(r;, — rj)]z. Thus by enumerating the
permutations in increasing order o the number of coordinates interchanged we
arrive at the expansion

gaP[f(rl_Prl)”'f(rN_PrN)] =1+ X i§+ )> fiifichis £ -
i<y i j,k

(9.53)

where f,; = f(r, — r;) and where the plus sign applies to bosons and the minus
sign to fermions. According to (9.51), f;, vanishes extremely rapidly if |r, — ;|
> A Therefore, when the temperature is so high that

(thermal wavelength) < (averageinterparticle distance) (9.54)
we have

Tre—AK = fdwpdwre_ﬁ(”%* o +pR)/2m (9.55)

N3N

which proves (9.39) for an ideal gas.
Itisdf someinterest to examine the first quantum correction to the classical
partition function of an ided gas. If [r, — r;| > A we may approximate the
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u(r)

For fermions

Fig. 9.3 The" statistical potential" between
particles in an ideal gas arising from the
symmetry properties o the N-particle wave
function.

= kTlog2

right side of (9.53)by 1+ ) ,f To the same order o approximation, however,
we can also write

1+ X3~ TI(1273) - ew(-BL 5, (9.56)
i<j i<j Jj<i
where

2
2ar; — 1

S (9.57)

0, = —kT log(l if,f) = —kT log ll + exp(

with the plus sign for bosons and the minus sign for ferrnions. Therefore an
improvement over (9.55)is the formula

_ﬁkz
Tre VIRV

(9.58)

2
fdwpdwrexp [—B(Zi + Zﬁ,j)
. 2m i<j

This shows that the first quantum correction to the partition function of an ideal
gas has the same effect as that of endowing the particles with an interparticle
potential* &(r) and treating the problems classically. The potential (r) is
attractive for bosons and repulsive for ferrnions, asillustrated in Fig. 9.3. In this
sense we sometimes speak o the " statistical attraction™ between bosons and the
"satistical repulsion™ between fermions. It must be emphasized, however, that
U(r) originates solely from the symmetry properties of the wave function.
Furthermore, it depends on the temperature and thus cannot be regarded as a
true interparticle potential.

Interacting Particles

We now turn our attention to the more general case in which the particlesd the
system interact with one another. For the calculation of traces we may continue

*First discussed by G. E. Uhlenbeck and L. Gropper, Phys. Rev. 41, 79 (1932)
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to use the free-particle wave functions @, becauseany complete orthonormal set
of wave functions will do.
First it is to be noted that in general K does not commute with . Hence

e B = o BK+T) o ,—BK ,—BQ (9.59)

because the left sideis invariant under the exchange d K and @ whereas the
right sideis not. To find a suitable approximation for e=#* when 8 — 0, let us
assume that the following expansion is possible:

e_ﬁ(’ﬁﬂ) — e—ﬁke—BQ eCo eﬁC1 eﬁzcz e (960)

where G, C,, C,,... are operators to be determined by taking the nth derivatives
of both sides of (9.60) with respect to B8 and then setting 8 = 0. Letting

n=20,1,2,..., wesuccessively find that*
G =0
C,=0
G, = -4[K.9] 61

If [K, €] commutes with both K and £, we would find that C, =0 (n > 2).1In
our case this is untrue but we shall assume that for g sufficiently small the
following is a good approximation:

e BK+DQ) o o= BK ,—BQ o~ 1/28(K, Q] (9.62)
Consequently
oN(V,T) zTr(e“‘”‘e”““2 e—1/2ﬁ2[1<,sz]) (9.63)
From (9.33)and (9.34)it can be easily verified that
2 N
[K.Q]= - m & viRt2aAv) v,
h2
=T om E}(Wij - 2F;* v,) (9.64)
where
wo=w,=w(r,-rl), w(r)=va(r)

(9.65)
F,= -F,; = viv(lri - rjl)

When we exponentiate (9.64), we may act asif the two termsin it commute with

*The exact expansion is known as the Baker-Campbell-Hausdorf theorem. For an elementary
derivation see R. M. Wilcox, J. Math. Phys. 8, 962 (1967).
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each other because the correction belongs to a higher order in B than we are
considering. With thisin mind, we substitute (9.64) into (9.63), and again use
free-particle states to calculate the trace. The operator v, may then be replaced
by ip,/h. Thus we have

N
2
Ov(V.T) = < [ @pd?r[8,(1,.... V)|
N
Z( p> Bk Bh’
xexp|=Bj=i\y-+ 3 0GR T 'BE A P
(9.66)
where
N
G= ) E; (9.67)
j=1
)

The momentum integrations can be done, again in term o the function f(r) o
(9.51). We then obtain

1 asin. e B
0u(r.7) = g | LTI

(9.68)
X=Y8[fep - Pyt Gf)..- f(xy - Pr, + G})]
P
where
h2
Q= 'B__ Z w.
2m i<j Y
J (9.69)
, _ BR?
G = T G

Making an expansion similar to (9.53), and an approximation similar to (9.56),
we write

(r,- -1+ G,.’)f(rj -1+ Gj’)

N f
X= [1/GHTT1 9.70
=1 ( )i<j 1(G))1(G/) (5:10)
The first product can be rewritten as
}\2
exp— 3 Fji *F,
16771,],k

which gives rise to an effective three-body force among the particles. The second
product is generally complicated, involving many-body forces. We shall assume
that the range and depth o the intermolecular potential is such that we can

206 STATISTICAL MECHANICS

neglect the terms G/ in this product. Then we can state
1

0y(V,T) = N!hwfdwpdwre_fwf“ (9.71)
Hy=H+Q + Q0+ Q (9.72)
Q,= )70, (9.73)

i<j

}\2
Q=—Xw,; (9.74)

4m i<j

}\2
Q=— F.-F 9.75
3 167 iv%?[( J ik ( )

9.3 SINGULARITIES AND PHASE TRANSITIONS

Phase transitions are manifested in experimentsby the occurrenced singularities
in thermodynamic functions, such as the pressurein a liquid-gas system, or the
magnetization in a ferromagnet. How is it possible that such singularities arise
from the partition function, which seems to be an analytic function o its
arguments? The answer lies in the fact that a macroscopic body is close to the
idealized thermodynamic limit—the limit o infinite volume with particle density
held fixed. As we approach this limit, the partition function can develop
singularities, because the limit function of a sequence o analytic functions need
not be analytic.

Yang and Lee propose a definite scenario for the occurrenceof singularities
in the thermodynamic limit, which we shall now describe. It is formal in
character, and belongs to a field sometimes known as "rigorous statistical
mechanics."*

As a concrete model consider a classical system consistingof N moleculesin
volume V, interacting with one another through a pairwise potential as depicted
in Fig. 94. Each molecule is taken to be a hard sphere surrounded by an
attractive potential o finite range. Thus, a finite volume V can accommodate at
most a finite number o molecules M(V'). For N > M(V') the partition function
vanishes because at least two molecules must *'touch,” rendering the energy
infinite:

oy(V)=0, forN>M(V) (9.76)

where we have suppressed the temperature to simplify the notation. The grand

*C.N.Yang and T. D. Lee, Phys. Rev. 87, 404 (1952); T. D. Leeand C. N. Yang, Phys. Rev.
87, 410 (1952). For rigorous stuff see also D. Ruelle, Statistical Mechanics (Benjamin, New York,
1969), Chapters 3 and 5; and J. Glimm and A. Jaffe, Quantum Physics (Springer-Verlag, New York,
1981), Chapter 2.
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v(r)

Fig. 9.4 |dealized interparticle potential.

partition function isa polynomia of degree M(V) in the fugacity z:
2(z,V)=1%:0,(v) t220,(v) + .-- +zM,, (9.77)

Since al the coefficientsQ (V') are positive, the polynomial has no real positive
roots. The parametric form of the equation of stateis

P

i V-'log 2(z,V)
] ) (9.78)
— =y,
— =V log 2(z,V)

For any finite value of V, however large, both P and v are analytic functionsof z
in a region o the complex z plane that includes the entire real axis. Therefore P
is an analytic functiond v in a region d the complex v plane that include all
physical values o v, i.e., thereal axis. Hence al thermodynamic functions must
be free d singularities. From (9.78) and (9.77) we see that P > 0, and

dP 9P 3z 1 kT
dJv 3z dv vz(du/dz)  v*[(n?) — (n)?]
where n is the density. To have the possibility d singularities, we must go to the
limit ¥— oo at fixed v— the thermodynamiclimit:
p

—_— = 1 ‘1]
7 Vh_{noo V-1log 2(z,V)

<0 (9.79)

1 . P (9.80)
- = lim ¥V '2—1log 2(z,V)
v Voo dz

Note that, in the second equation, the order o the operations lim and z(d/dz)

can be interchanged only if the limits above are approached uniformly. (For an

example see Problem 9.5.)

The above conclusions are valid also for a quantum mechanica system since
they depend only on the assumption that a finite volume can accommodate at
most a finite number of molecules, which is true for moleculeswith a hard core,
even in quantum mechanics.
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Y ang and Lee show that phase transitions are controlled by the distribution
o roots of the grand partition function in the complex z plane. A phase
transition occurs whenever a root approaches the real axis in the limit V — 0.
The precise results are stated in the form of two theorems.

THEOREM 1
The limit

1
F(z) = )im ylog2(z,V) (9.81)

existsfor all z > 0, and isa continuous nondecreasingfunction of z. Thislimitis
aso independent of the shape o V, if the surfacearea o V increases no faster
than V273,

THEOREM 2

Suppose R isa region in the complex z plane that includesa segment of the
positive real axis, and contains no roots of the grand partition function. Then in
this region the quantity ¥~! log 2 converges uniformly to its limit asV — oc.
The limit isanalytic for all zin R.

We refer the reader to the original literature for the proofs, and merely
discuss their consequences here.

A thermodynamic phase is defined by those values of z contained in any
singleregion R of theorem 2. Sincein any region R the convergence to the limit
F,_(z) is uniform, we can interchange the order o lim and z(d/dz) in (9.80). In
any single phase, therefore, the equation o state is given in parametric form by

P(z2)

i~ (2

1 3 _(?_F(
v(z) Tz 2)

(9.82)

The properties P > 0 and dP/dv < 0 are maintained in the thermodynamic
limit. We illustrate some possible behaviors o the equation of state.

Suppose the region R includes the entire positive z axis. Then the system
aways exists in a single phase. The equation state may be obtained graphically
by eliminating z. The situation isillustrated in Fig. 9.5.

If on the other hand a zero of the grand partition function approaches a
point z, on therea positive z axis, then there will be two distinct regions R, and
R, in which theorem 2 holds separately. At z = z,, P(z) must be continuous, as
required by theorem 1. However, its derivativemay be discontinuous. The system
then possesses two phases, corresponding respectively to the regions z < z, and
z> z,. Now 1/v(z) isa nondecreasingfunction of z:

a 1 d

d . i
29 o(e) el log2(z,V)=(n?) - (n)*=0 (9.83)
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s Zerosof 2 (z, V)
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Fig. 9.5 Region R that is free d zeros d 2(z, V), leading to an
equaion d date that exhibitsonly a sngle phase
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Fig. 9.6 TworegionsR,, R, eechfreed zaosd 2(z, V), corresponding to
an equation d date with two phases connected by a fird-order phese
trangition.
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1
P(z) v(z) P(v)

a a

K4
20 20

Fig. 9.7 Equation d state d sydem with two phases connected by a
second-order trangtion.

F4 v

Hence, if dP/dz is discontinuous, 1/v(z) must make a discontinuous
upward jump when z increases through z,. The result is a first-order phase
transition, as depicted in Fig. 9.6. The fact that 1/v(z) actualy assumes al the
values between the points a and b followsfrom the fact that thecurve d 1/v(z)
is the limiting curve of a sequence d continuous curves.

If in the same example dP/dz is continuous at z = z,, but 32P/9z* is
discontinuous, then we would have a second-order phase transition, asillustrated
in Fig. 9.7.

9.4 THE LEE-YANG CIRCLE THEOREM

The scenario for the occurrence d a phase transition proposed above can be
explicitly demonstrated in the case of a lattice gas with attractive interactions.
The system consists d point atoms located on the sitesd a discrete lattice, with
the condition that no two atoms occupy the same site, and that atoms on
different sites have attractive pairwise interactions. That is, the interatomic
potential « is such that

U= o0, (if the two atomsare on the samesite)
u <0, (otherwise)

The detailed nature o the interaction (e.g., whether it is d the nearest-neighbor
type) is unspecified, as is the dimensionality or structure o the lattice. For
example, the lattice does not even have to be periodic.

The Lee-Y ang circle theorem states that, for the lattice gas defined above, all
roots of the equation

2(z,v)=0

lie on the unit circlein the complex z plane.

For finite V the roots occur in complex-conjugate pairs, and none can
touch the real axis. Only in the limit V — oo is it possible for any o them to
approach the real axisat z = 1. Thus, there can be at most one transition point.
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Denoting the phase angles of the roots by 8,, we have
2(z,V) = €[ 1(z - &%), ¢=TI(-e®)" (9.84)
k k

In the thermodynamic limit the roots become continuously distributed on the
unit circle. We can define a distribution function g(#) by writing

V“Xk‘, - foz"d()g(a) (9.85)

The fact that the roots occur in complex conjugate pairs means that g(8) =
g(—8). Using this fact, we can deduce the equation of statein theform

f d6 g(8)log(1 - 2zcos8 T 27)

Z — cos8 (9.86)

7=
1 ™
- = dfg(8
v 22-/6; 8( )1—220050+22
We can see from this general form that, as z varies along the real axis, the
only point where singularities can occur is z = 1. A singularity at this point will
occur only if theintegralsdiverge at 8 = 0. Therefore, no phase transitions occur
if g(0) = 0. On the other hand, if g(0) # 0, then z = 1 will be a singular point,
and (9.86) will give different functions for z > 1 and for z < 1, which cannot be
analytically continued into each other.

PROBLEMS

9.1 Derive with the hdp d the saddle point integration method a formula for the
partition function for an ideal Bose gssd N particles.

9.2 (a) Find the equations d state for an ideal Bose ges and an ideal Fermi gasin the
limit of high temperatures. Include the first correction due to quantum effects. (Consulta:
tion with Problem 7.6 may be helpful.)

(b) Edtimate, for eech d thefollowingideal gases, the temperaturebeow which quantum
effects would becomeimportant: H,, He, N,.

9.3 Pair Corréation Function. The pair corrdation function D(r,,r,) of a sysem o
particlesis defined as follows:
D(r,,r,) d°r, d%, = probability & smultaneoudy finding a particle in the
volume dement d, about r, and a particle in the
volume eement d, and r,.

Caculate D(r,,r,) for an ideal Bose gas and an ideal Fermi gas in the limit o high
temperatures. Include quantum correctionsonly to the lowest approximation.

Solution. Classically we have

N(N = 1) [d®pdiry - dPry e A¥ 20
D(r,rp) =

/dSdif;NrefﬂM(p, "
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For our problem we use this formula with
2

H(p,r)= Z — + )20,
( m tE
To avoid complications assume that the densty d the gas is dmost zero. The limit
N — o0, ¥ = oo should be so taken that N/V — 0. Then

N(N - 1)V’”[1 +fh+ ——“N(N D /‘”rfz(r)]
D("u"z) -
1+ N(N /d3rf (r)

27
1+ CXP(_VM - 72|2)]

This result continues to hold for finite » with X* /v < 1, dthough our derivation did not
justify such a conclusion.

9.4 Show that the equation o state (9.86) o the LeeYang lattice ges has the following
electrostatic analog:

(a) Consider a circular cylinder d unit radius perpendicular to the complex z plane,
cutting it at the unit circle. Suppose the cylinder is charged with a surface charge density
that depends only on the angle 8 around the unit circle (with # = 0 corresponding to
z = 1). The charge density (per unit area) is equd to g(f), with g(8) = g(—0). Let ¢(z)
and E(z) be, respectively, the electrostatic potential and the dlectric fidd at a point z on
the real axis. Then

n

1
2

0

P/kT = —16(%)
= 32E(z)

where n = |/v is the density.
() Assume g(0) # 0. Show by electrostaticargument that P is continuousat z = 1, but
n jumps discontinuoudly. This shows that there is a first-order phase transition. Using
Gauss theorem in eectrostatics, show thediscontinuityin density is givenby An = 27g(0).
95 Consider the grand partition function

2(z,V) = (1+2)7a + 22
where ais a positive constant.
(a) Write down the equation o state in a parametric form, eliminate z graphicaly, and
show that there is a firs-order phase transition. Find the specific volumes o the two
phases.
(b) Find the roots o 2(z, V) =0 in the complex z plane, at fixed V. Show that as
V — o the roots converge toward the real axisat z = 1.
(c) Find the equation d state in the "gas' phase. Show that a continuation o this
equation beyond the phase-transitiondensty fails to show any sign o the transition. This
will demonstrate that the order of the operations z(d/dz) and V — oo can be inter-
changed only within a single-phaseregion.
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10.1 CLASSICAL CLUSTER EXPANSION

Many systemsof physical interest can be treated classically. A largeclassdf such
systemsis described by a classical Hamiltonian for N particlesd the form

% 2’; + Xy, (10.1)

i<j

where p, is the momentum o the ith particle and v;; = v(jr; — r,}) is the
potential energy of interaction between the ith and the jth particle. If the system
occupies a volume V, the partition function is

(10.2)

1 P!
174 _ 3N 3N — -
QN( ’T)_ N'h3N-/d pd rexp( 1821:2 IBZUU

i<j

where each coordinate r; isintegrated over the volume V. The integrations over
momenta can be immediately effected, leading to

0wV, T) = 3 [ v exp (B E v, (10.)

1<y

where A = y27h?/mkT isthe thermal wavelength. Theintegral in (10.3)iscalled
the configuration integral. For potentials u, of the usua type between molecules,
a systematic method for the calculation o the configuration integral consists of
expanding the integrand in powersof exp(—Bv;;) — 1. Thisleads to the cluster
expansion of Ursell and Mayer.* As we shall see, this expansion is of practical
useif the system is a dilute gas.

*For original literature, see J. E. Mayer and M. G. Mayer, Statistical Mechanics (Wiley, New
York, 1940), Chapter 13.
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-1
Fig. 10.1 Intermolecular potentid v, and
the function , .

Let the configuration integral be denoted by Z,,(V, T):

Zy(V,T) = fd3r1 rNexp( ,BZUU) (10.4)

i<y

in terms of which the partition function may be written as

1
vV T) = 5w Zu(V, T) (10.5)

and the grand partition function as

© Z\NZ(V,T)
2z,V,T)= Y (—) AR 10.6
NN N! (106)
Let f;; be defined by
e Pu=1+f, (10.7)

For the usual type o intermolecular potentials, u, and fi; have the qualitative
forms shownin Fig. 10.1. Thus f,; is everywhere bounded and is negligibly small
when |r, — r;| islarger than the ranged the intermolecular potentia. In terms of

/;; the configuration integral may be represented by
Zy(V.T) = [an - a*ry [T+ 1) (10.8)
i<y

in which the integrand is a product o 3N(N — 1) terms, one for each distinct
pair of particles. Expanding this product we obtain

ZN(V’T) = _/d3"1 d3"N [1 +(ft+/fiut )

+(frofis + frafra + ) ] (10.9)

A convenient way to enumerate all the terms in the expansion (10.9) is to
associate each term with a graph, defined as follows:

An N-particle graph is a collection of N distinct circles numbered 1,2,..., N,
with any number of lines joining the same number of distinct pairs of circles. If the
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digtinct pairsjoined by linesare thepairs a, 8,..., A, then the graph represents the
term

fd3r1 d3erafﬂ e f, (10.10)

appearing in the expanson (10.9).

If the set of distinct pairs{a, 8,...,y} is joined by linesin a given graph,
replacing thisset by aset{ a;, B7,...,y") that isnot identical with{a, 8,...,y)
gives rise to a graph that is counted as distinct from the original one (athough
the integralsrepresented by the respective graphs have the same numerical value).
For example, for N = 3, the following graphs are distinct:

TN

but the following graphs are identical:
@ 06 00O 0

We may regard a graph as a picturesque way d writing the integral (10.10).
For example, we may write, for N = 10,

i 6'(3

X

@6 & Ww|

With such a convention, we can state that

/d3r1 d3’10 fizfaoferfesfs,1006,10f 73 (10-11)

Z, = (sumaf al distinct N-particle graphs) (10.12)

The proof is obvious.
Any graph can in general be decomposed into smaller units. For example,
the graph (14.11) isa product of five factors, namely

D

@ 6 T

©—®
-[®]-[0] -[0-0] -[0-0] - 0)'4@)

Each factor correspondsto a connected graph, in which every circleisattached to
at least oneline, and every circleisjoined directly or indirectly to all other circles
in the graph.

It would facilitatetheanalysisof Z,, if wefirst defined the basic unitsout of
which an arbitrary graph can be composed. Accordingly we define an 1-clugter to
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be an 1 particle connected graph. For example, the followingis a 6-cluster:

0'9 ®
= fd3r1 dS"ﬁ fi2fasfratastse (10-13)
® @O

We define a cluster integral b,(V, T) by

b(V,T) = (sum o all possible1-clusters) (10.14)

N3y
The normalization factor is so chosen that

(a) b,(V,T) isdimensionless;

(b) 3(T) = VhPOO b,(V,T) isafinite number.

The property (b) follows from the fact that f;; has a finite range, so that in an
1-cluster the only integration that gives rise to a factor V is the integration over
the ""center of gravity” o the 1 particles. Some o the cluster integralsare

b, = %[@] = Ii/derl =1 (10.15)

1

1 1
b, = 2!>\3V[®_@] = Wfd%l d372 fiz= 2_>"3‘fd3r12 Ji2 (10-16)

b=§_§;[@5@ + @f}@ + @i@ + @&D](m.m

Any N-particle graph is a product d a number d clusters, d which m, are
I-clusters, with

N
Y Im, =N (10.18)
=1

A given st d integers (m,) satisfying (10.18), however, does not uniquely
specify a graph, because

(a) there arein genera many ways to form an 1-cluster, e.g.,

Lo &

(b) there are in general many ways to assign which particle belongs to which

cluster, e.g.,
Q@

Thus aset of integers {m,} specifiesa collection d graphs. Let the sum of all the
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graphs corresponding to {m,) be denoted by S{m,). Then

Zy= Y S{m)) (10.19)
{m}

where the summation extends over all sets{m,) satisfying (10.18).
By definition, S{m,} can be obtained as follows. First write down an
arbitrary N-particle graph that contains m, 1-clusters, m, 2-clusters, etc.; e.g.,

(o] [o]} {lo-o]-[o-ol)

m factors m, factors
Adoldbldo) |ob) -
O
m, factors

There are exactly N circles appearing in (10.20), and these N circles are to be
filled in by the numbers1,2,..., N in an arbitrary but definite order. We can
write down many more examples like (10.20); e.g., we may change the choice of
some o the 3-clusters(there being four distinct topologica shapesfor a 3-cluster).
Again we may permute the numbering of all the N circlesin (10.20), and that
would lead to a distinct graph. If we add up all these possibilities, we obtain
S{m,). Thuswe may write

S{m/} = Z[O

Lfo T3 b LI

(10.21)

The meaning of thisformulaisas follows. Each bracket contains the sum over al
I-clusters. If all the brackets] ... ™ are expanded in multinomial expansions, the
summand o Y. will itself be a sum of alarge number of termsin which every

term contai nsFéxactIy N circles. The sum ) extends over al distinct ways of
numbering these circlesfrom 1 to N. P

Now each graph is an integral whose value is independent of the way its
circles are numbered. Therefore S{m,} is equal to the number of termsin the

sum Y timesthevaued any termin thesum. The number of termsin thesum Y
P P
can be found by observing that

(a) there are m, I-clusters, and a permutation of these m, things does not
lead to a new graph;

(b) in the sum over al I-clusters, such as (10.17), a permutation of the |
particles within it does not lead to a new graph. Hence the number o
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termsin thesum ) is*
P

N1
™ "> 10.22
[ Tt~} (102)
and thevadued any termis
(1WB,) ™ (210VB, ) ™ (31AVb, )™ - - - (10.23)
Therefore

N ( 3I 3b) m

S{m;} =NIT] —mp— = N')\3N]_[ ( b,) (10.24)
=1 =1 MmN
From (10.5), (10.9), and (10.24) we obtain
V \m
0uv.1) = £ s (8] (10.25)
(myy =1 LK

This formula is complicated by the restriction (10.18). The grand partition
function is simpler in appearance:

1 /V mo1 V "2
2z,V, T — —| =22
(= )= mIZ:0m§0 [ml-(MZbl) mz!()\3z b2) ]
or
1 12
vlogQ(z,V,T) = 3 I;lb,z (10.26)
from which we obtain the equation of state in parametric form:

P 1 =

= {
kT~ N El biz

(10.27)
A byl
v N 1§1 o

Thisis known as the cluster expansion for the equation of state.

What we have described is historically the first graphical representation o a
perturbation series. Graphs have become indispensable tools in the many-body
problem and in quantum field theory, in which the analog o (10.26), known
generally by the name of the linked cluster theorem, plays an important role.
Generally it states that the sum of dl graphsis the exponential of the sum o al
connected graphs.

*To understand the method of counting the reader is advised to work out some simple
examples.
*Compare this derivation with that outlined in Problem 7.6.
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If the system under consideration is a dilute gas, we may expand the
pressure in powersd 1/v and obtain the viria expansion. For this purpose we
may take the equation of state to be

P 12
— =5 b7
kT N2

1 f;b [ (10.28)
v N = 2
where
5,(T) = lim b,(V,T) (10.29)

V— 00

The virial expansion of the equation of state is defined to be

Pv ® DA
R — 10.
7 Ela,(T)( ; ) (10.30)
where a,(T) is called the Ith virial coefficient. We can find the relationship
between the viria coefficients a, and the cluster integrals b, by substituting
(10.30) into (10.28) and requiring that the resulting equation be satisfied for
every z:

o0
0 0 -1 Z bz
Yal X nb,,z”) = 21 (10.31)
=1 I(n=l Y bzt
=1
This is equivalent to the condition
) ) 2
(byz + 26,2 + 3b,2° + -+ )| @y + a,| X, nb,z" | +ay| X bz | + -
n=1 n=1
=bz+ bz +bz23 + - - (10.32)
By equating the coefficient of each power of z we obtain
a,=b=1
a,= —b,
a, = 4b% — 2b, (10.33)

a, = —2083 + 185,b, — 3,

Each viria coefficienttherefore involves only a straightforward computation o a
number of integrals.

Note that (10.28) differsfrom (10.27)in that thelimit V — o is taken term
by termin (10.28).1n so doing we havelost al information about possible phase
transitions, as we have remarked earlier in Section 9.3. The equation o state
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P(v)

N
Fig. 10.2 Equatiion d date obtained by teking the

v ’ virial expangion to be exact.

(10.30) of the gas phase cannot tell usif and when a phase transition will occur.
Mayer* has demonstrated that the equation of state (10.30) has the general form
shown in Fig. 10.2. The portion o theisotherm marked A isvalid for v > v, but
the value o v, is unrelated to v,, and cannot be obtained from (10.30). The
portion marked B is purely mathematical, and unrelated to how the isotherm
actually behavesin that region.

10.2 QUANTUM CLUSTER EXPANSION

Kahn and Uhlenbeck’ develop a cluster expansion in quantum statistical me-
chanics. The method they introduce applies equally well to classica statistical
mechanics.

Consider N identical particlesenclosed in a volume V. Let the Hamiltonian
JH o the system have the same form as (10.1) but be an operator instead of a
number. In the coordinate representation, p, = —ikv,, and vu,; is the same
function of the number |r, —r;| as that shown in Fig. 10.1. The partition
function is

Qu(V,T) =Tre = [N Y Ux(1,...,N) e B¥,(1,...,N) (10.34)

where {¥,} is a completeset of orthonormal wave functions appropriate to the
system considered, and the set of coordinates {r,,...,r, } isdenoted in abbrevia-
tion by {1,..., N}. It is important to use symmetric or antisymmetric wave
functions, as required by the statistics of the particles(see Problem 10.4). Let us
define

Wy(l,...,N)= NINY¥*(1,..., N)e A¥¥ (1,...,N) (10.35)

The partition function can be written in the form
1
NIV

0y(V,T) = fd3Nr Wy(l,...,N) (10.36)

*See Mayer and Mayer, loc. cit.
¥B. Kahn and G. E. Uhlenbeck, Physica 5, 399 (1938).
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The integral appearing in (10.36) approaches the classica configuration integral
in the limit of high temperatures. Some properties of the function Wy (1,..., N)
are

(a) m(1)=1

Proof
}\3
W, (1) = Wy(r,) = — Y e Prn/h B /2mv> giperi/h
|14
P

A3

(b) Wy(1,...,N)isasymmetricfunction o its arguments.

(c) wWy(,...,N)isinvariant under a unitary transformation of the com-
plete set of wave functions { ¥, } appearing in (10.35).

Proof
Suppose ¥, = ). S,o@», where S,,, is a unitary matrix:
A

ZSa*S\Say = 6>\y
Then 2
Y (¥, e #¥T,) = ZASASM(@A, eB¥Q ) - ZA"((I)Me—BW(I)X) n

o

The following property appears to be intuitively obvious, but it isdifficult to
establish quantitatively. Suppose the coordinatesr,, . ..,r, have such values that
they can be divided into two groupscontaining respectively A and B coordinates,
with the property that any two coordinatesr; and r, belonging to different groups
must satisfy the condition

Ir, =1 >r,

[r,— 1] > A (10.37)
Then

Wy (ry,...,ty) = W(r ) Wy(ry) (10.38)

where r, and r, denote collectively the respective coordinatesin the two groups.

Consider first the case N = 2. According to (10.38) we should expect that as
Ity — 1] — o0,

W,(1,2) - w(1)w,(2) (10.39)
If we define a function U,(1, 2) by W,(1,2) = W, (H)W,(2) + U,(1, 2), we should
expect that, as |r; — 1,| — oo,
U,(1,2) = 0 (10.40)
Hence theintegral of U,(1, 2) over r; and r, should be the analog of the 2-cluster
in classical statistical mechanics.
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We proceed systematicaly in the following manner. Let a sequence d

cluster functions Uj(1,..., | ) be successively defined by the following scheme, in
which the Ith equation is a definition of U(1,...,|):

wi(1) = U, (1) =1 (10.41)

w,(1,2) = (DU, (2) + U,(1,2) (10.42)

W,(1,2,3) = U (1)U, (2)U,(3) + Ui (1) Uy(2,3)
+U,(2)U,(3,1) + U,(3)15(1,2) + U,(1,2,3) (10.43)

The last equation in this scheme, defining Uy (1, ..., N),is
wy(1,...,N)

= Z Z[U1( ) Ul( )] [Uz(’)"' UZ(’)L"'-[UN(”"")] (10-44)

{m) P
m,, factors

m, factors m, factors

where m, is zero or a positive integer and the set of integers { m,} sdatisfies the
condition

N
Y im,=N (10.45)
=1

The sum over {m,} in (10.44) extends over al sets { m,) satisfying (10.45). The
arguments o the U, are left blank in (10.44). There are exactly N such blanks,
and they are to befilled by the N coordinatesr,, . ..,ry in any order. Thesum Y
isasum over al distinct ways o filling these blanks. P

We can solve the equations (10.41)-(10.44) successively for U, U,, etc., and
obtain

U(1) = w,(1) =1 (10.46)
U,(1,2) = w,(1,2) — w(1)w,(2) (10.47)
U5(1,2,3) = W3(1,2,3) - W5(1,2)W,(3) — W,(2,3) (1)
=W, )wi(2) + 2w, ()W (2)w,(3) (10.48)
We see that Ug(l,...,1) is a symmetric function if its arguments and is de-

termined by all the W,. with N' < |. By the property (10.38) we expect that
U—-0as|r, -1} — oo, wherer, and r, are any two o the arguments of U,
The | cluster integral b,(V, T) is defined by

1
b,(V,T) = W]/d3rl d3r,U,(l,...,l) (10.49)

It is clear that b, is dimensionless. If U, vanishes sufficiently rapidly whenever
any two o its arguments are far apart from each other, the integral appearing in
(10.49) is proportional toV asV — oo, and the limit b,(c0, T ) may be expected
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to exist. Whether thisis true depends on the nature of the interparticle potential.
We assume that it is.

We now show that the partition function is expressible directly in terms of
the cluster integrals. According to (10.36) we need to integrate W, over dl the
coordinates. Let us make use of the formula(10.44). An integration over al the
coordinates will yield the same result for every term in the sum . Thus the

. . . . P,
result of the integration is the number o termsin thesum ) times the integral

o any term in the sum ) . The number of termsin the sPum Y is given by
(10.22). Hence P P

fdwrW(l,...,N)

> N!

= oy Ta™ @)™ = JOmytmy! )

de3Nr[(U1 Ul)(Uz UZ)...]

3 1 1 3, 13 "
Nt {mz} _[d "1U1(1) mzi %,Lfd rd’r,U,(1,2)
2. .

N (VA3 V ™
=N! Y, ]‘[ (—)— =NINV Y H (10.50)
{m;} = ml {m;} =1 ml
Therefore the partition function is given by
Vo o\
QN(V’ T) = Z [1_[ (}\3 /) (10-51)
{m}

Thisis df precisely the same form as (10.25) for the classica partition function.
The discussion following (10.25) therefore applies equally wel to the present case
and will not be repeated. We point out only the main differences between the
quantum cluster integralsand the classical ones.

For an ideal gas we have seen in earlier chapters that

]=5/2 (ideal Bose gas)
B9 = e (10.52)
(-1 5% (ideal Fermi gas)
Thus for a Bose and a Ferrni gas 5, does not vanishfor | > 1, evenin the absence
o interparticle interactions, in contradistinction to the classical ideal ges.

The calculation of 6, in the classica case only involves the calculation of a
number o integrals— afinitetask. In the quantum case, however, the calculation
o b, necessitates a knowledge of U, which in turn necessitates a knowledge of
W, for N' < I. Thus to find b, for 1> 1 we would have to solve an I-body
problem. There is no finite prescription for doing this except for thecase | = 2,
which is the subject o the next section.
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10.3 THE SECOND VIRIAL COEFFICIENT

To caculate the second virial coefficient a, for any system it is sufficient to
caculate »,, since a, = —5,. A genera formula for b, (in fact, for dl b,) has
dready been given for the classical case. Only the quantum case is considered
here*
To find 5, we need to know W,(1, 2), which is a property d the two-body
system. Let the Hamiltonian for the two-body system in question be
h2
H= — E(Vf + V) +o(r—1y) (10.53)

and let its normalized eigenfunctionsbe ¥ (1, 2), with eigenvalues E

#V¥,(1,2) = EY,(1,2) (10.59)
Let
R = %(rl + l‘2) (10 55)
r=r,—r, '
Then
v,(1,2) = e $,(r)
a ’ W n
p2 (10.56)
Ea = % + €,

where the quantum number a refers to the set of quantum numbers (P, n). The
relative wave function v,,(r) satisfies the eigenvalue equation

h2
[—;vz + u(r)]xpn(r) = 9,0 (10.57)
with the normalization condition
[drlp, @ =1 (10.58)

Using (10.56) to be the wave functions for the calculation o W,(1,2), we
find from (10.35) that

~AA 5 B 5 e
W,(1,2) = 206X | ¥,(1,2) |* e~ BE= = %sz(r)] o BP/Am o= Be,
« P n

(10.59)
In the limit as V — o the sum over P can be effected immediately:
1 4ar o] 3/2
— —BP Am — 2,-BP /Am .
SLe = /0 dPPe S (10.60)

P

*The following development is due to E. Beth and G. E. Uhlenbeck, Physica 4, 915 (1937).
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where A = {27h?/mkT , the thermal wavelength. Therefore
Wy(1,2) = 228 L |y, (1) | e B (1061)
n

If we repeat al the calculationsso far for a two-body system of noninter-
acting particles, we obtain

WO(1,2) = 2528 Y |yO(r) |2 o B (10.62)

where the superscript @ refers to quantities of the noninteracting system. From
(10.49) and (10.47) we have

1 1

52 = 2>\3V./'d3r1d3r2 U2(1,2) = 2>\3V_/d3Rd3r [W2(1,2) . 1]
Hence
0) 1 3 3 ©)
b, =B = o [ R [W4(1,2) - w10 (1,2)]
=22 [ @3 T[9, (0% e = YO e 5]
n
=2/2 Y (e Bn — 7 BY) (10.63)
where
| —5/2 :
2 ideal Bo=gas
B =| o5 ( ges) (10.64)

(ideal Fermi gas)

To analyze (10.63) further we must study the energy spectra ¢ and «,. For
the noninteracting system, €@ forms a continuum. We write
h2k?
m
which defines the relative wave number k. For the interacting system the
spectrum o €, in general contains a discrete set of values ¢, corresponding to
two-body bound states, and a continuum. In the continuum, we define the wave
number k for the interacting system by putting
h2k?
€, = (10.66)
m
Let g(k)dk be the number of states with wave number lying between k and
k *+ dk, and let g@(k) dk denote the corresponding quantity for the noninter-
acting system. Then (10.63) can be written in the form

b, — O = 23/2{Ze-ﬁfs + f°°dk [g(k) — g©@(k)] e-ﬂ"zkz/"'} (10.67)
B 0

where €, denotes the energy of a bound state of theinteracting two-body system.

€© =

(10.65)
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We remark in passing that the factor 2372 in front of (10.67) is the ratio
(A/A_,)*"%, where A is the thermal wavelength, and A _,, is the thermal wave-
length of the center-of-massmotion of the two-body system.

Let n,(k) be the scattering phase shift of the potential v(r) for the Ith
partial wave of wave number k. It will be shown that

1_, an,(k
g(k)—g®k)=-=Y (2/1+1) mi(k) (10.68)
T ak
where the sum Y_" extendsover the values
_]0,2,4,6,... (bosons)
B {1,3,7 . . (fermions) (10.69)

Therefore
1, , an,(k 2a
b, — b = 23/2{Zef“a = —f dk Y. (21 + I)Me’ﬁ" k /'"} (10.70)
B T Yo 7 dk
A partial integration leadsfinaly to the formula
Ao, P 2
b, — b = 23/2{Ze‘5‘3 + =2 2+ 1)/ dkkn,(k)e BPK /”'} (10.71)
B T 0

It remains to prove (10.68). We may choose both ¢, (r) and @ (r) to be pure
spherical harmonics, because v(r) does not depend on the angles o r with
respect to any fixed axis. Thus we write

()
ll/k[m(r) = Ak[mY[m(a’ ¢) k[r
(10.72)
uO(r)
©) = 4O ym ki
lI/klm(r) - AkImYI (07 ¢) ’
For bosons ¢/(r) = +(-r), and for fermionsy (r) = —¢(—r). Therefore
0,2,4,6,... (bosons)
| = ) (10.73)
1,3,5,7,... (fermions)

Let the boundary conditions be
u (R)=uP(R)=0 (10.74)

where R is a very large radius which approaches infinity at the end o the
calculation. The asymptoticforms o u,, and u{) are

Ik
Uy, (r)—— sin {kr t 5t n,(k)J
e (10.75)

© i o
uf) (r)r(:sm kr + 5
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This defines 5,(k). The eigenvalues k are determined by the boundary conditions
(10.74):

la
kRT - + (k) =an  (interacting system)
(10.76)

kR + I—Ze—l —an  (noninteracting system)
wheren=0,1,2,... . It isseen that the eigenvalues k dependson » and | but
not on m. Since there are 21+ 1 spherical harmonics Y™ for a given |, each
eigenvaue k is (21t 1)-fold degenerate.
For a given |, changing n by one unit causes k to change by the respective
amounts Ak, Ak©:
a

A= R T (k) ok]

(10.77)
Ak(o) = 1
R

These are the spacings o eigenvauesfor agiven |. Let the number of statesd a
given | with wave number lying between k and k * dk be denoted by g,(k) dk
and g{®(k) dk for the two cases. We must have
g(k) bk _ 4
20+ 1 )
80(k) Ak
2A+1

(10.78)

21+1

gl(k) =

-5

10.79
21+1 ( )

g (k) =

Therefore

21+1 dn, (k)
— o™ =
g/(k) 8i (k) 7 9k

Summing (10.80) over al | consistent with (10.73) we obtain (10.68).

For | > 2 there is no known formula for 5, comparable in simplicity to
(14.71), because there is no known treatment o the I-body problem for / > 2
comparable to the phase shift analysisdf the two-body problem.*

Lastly, we remark that there is no essentia difference between a sharp
scattering resonance and a bound state, as far as the second virid coefficient is
concerned. In the neighborhood o a sharp resonance, the scattering phase shift

(10.80)

*Ananalysisd B, isgiven by A. Pais and G. E. Uhlenbeck, Phys. Rev. 116, 250 (1959).
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increases by = over a small energy interval. In theideslized limit of an infinitely
sharp resonance, we can represent the phase shift by

an (k)
dk

where k, marks the position o the resonance. From (10.70), it is clear that each
sharp resonance contributes to the second virial coefficient a term of the same
form as that from a bound state. This supports what we expect, namely, that a
sharp resonance can be treated as a particle.

= 78(k - k) (10.81)

10.4 VARIATIONAL PRINCIPLES

In quantum mechanicswe are familiar with the variational principle, which states
that the lowest energy eigenvalue d the system is the minimum o the expecta-
tion value o the Hamiltonian, taken with respect to a wave function that is
completely arbitrary, except for normalization and the imposed boundary condi-
tions o the problem. By using a tria wave function with adjustible parameters,
one can use the variational principle to obtain an upper bound for the ground
state energy, and improve on the bound by giving the trial wave function more
freedom to vary. We shall describe here similar variational principles for the
partition function.

Gibbs Variational Principle

Let p denote a normalized density function for an ensemble, classical or
quantum mechanical. That is, it is a rea positive quantity in the classical case,
and a Hermitian operator with positiveeigenvaluesin the quantum case, and that

Trp=1 (10.82)
In the classical case the operation Tr meansfqodq. Now define

Y(p) = Tr(Hp) + B! Tr(plogp) (10.83)

where S is the Hamiltonian o the system under consideration, and 8 is a
constant. The Gibbs variational principle states the following:

(a) Minimize ¢ {p} by varying p, subject only to the condition that it be a
legitimate normalized density function. The function p that minimizes
Y (p) is the density function of the canonical ensemble with k7= 871,

(b) The Helmholtz free energy is given by A= (p).
To prove this, first calculate the variationsdf  when p changes by dp:
8¢ = Tr {[#+ B~Y(1 + logp)] 8p}

10.84
8% = Tr [(p) "(80)"] (105
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The second o these shows that 1) is a convex function, so that §¢ = 0 givesa
minimum. We now vary p, taking the normalization constraint into account
through a Lagrange multiplier A:

0 =68y +A8(Trp) = Tr {[o#+ B71(1 + logp) +A] 8p}  (10.85)
Solving for p, and determining A by (10.82), we obtain

p=e F¥/Tre F* (10.86)

which proves (a) . Substituting thisinto (10.83) gives
Y(p) = —B tlogTre &* (10.87)
which proves (b). u

Peieris Variational Principle

Consider a quantum mechanica system with Harniltonian 5#, and partition
function Q = Trexp(— Bs#). The Peerls variational principle* states that

Q= Y e FOn X0 (10.88)

n

where {®,} is an arbitrary set of wave functions o the system. Obviously, the
equality holds when {®,} is the set of eigenfunctions o “#. Note that the set
{®,} does not have to be complete, for the inequality holds a fortiori for an
incomplete set since the terms on theright side of (10.88) are all positive. Thusit
suffices to prove (10.88) under the assumption that {®,} is a complete set of
wave functions.

The Peierls variational principleis a specia case d a more general theorem
on convex functions. Suppose f( x ) isareal convex function o areal variable x,
(i.e.,, f* (x)=0.)Let usdenote by f/ the averaged f(x) over a selected set of
x's, with specified weights:

f(x) = Le f(x,) (10.89)

where {x,} isa arbitrary set o real numbers, and {c,} isaset d real numbers
such that

c, 20, Yc,=1 (10.90)
By the mean-value theorem, n
F(x) = () + 3(x = %)f"(x) (10.91)
for some x,. Now average both sides:
70 = £(R) + 3(x - 7 (%) (10.92)

*R. E. Peierls, Phys. Rev. 54, 918 (1938).
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Since " (x,) = 0, we have the following theorem:

f(x) = f(%) (10.93)

Now let {®,} beacomplete set d wave functions,and § the unitary matrix
which relatesit to the eigenfunctions { ¥, } of 2

Qn = ZSnm‘I,m
" 10.94
LIS 2=1 ( )
from which we can see that

where { E,, } are theeigenvaluesof »#. We can write the partition function in the
form

Q=Ye =Y YIS, % Fn (10.96)
and define

g=Ye FOnX¥®) =} exp [—BZlSnmlem] (10.97)
n n m

Let f(x) = exp(—Bx). For each n, the following definitions fulfill the require-
ments o the previous theorem:

En = ZlSnmlem

f(E), = ZISul’f(E,) 1029

Thus we can write "
¢-g=XI[f(E),-(E,)] (10.99)
According to the theorem, Q — q 2'2) term by term. ]

10.5 IMPERFECT GASES AT LOW TEMPERATURES

An imperfect gas is an extremely dilute sysem o particles that interact among
themselves through an interparticle potential o finite range and o such a nature
that there exists no two-particlebound state. The diluteness of the gas enables us
to treat the interparticle interaction as a small perturbation on the ideal gas. An
imperfect gas, therefore, is thefirst improvement on theideal gas as a model for a
physical gas. We shall consider an imperfect gas at extremely low temperatures.
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For such a system there are two important parameters o the dimension o
length: the thermal wavelength A and the average interparticle separation v'/3.
These two lengths may be of comparable magnitude, but they must be much
larger than the range o the interparticle potential, or any other length in the
problem, except that size o the container.

In quantum mechanics a particle cannot be localized within its de Broglie
wavelength, which in the present case may be replaced by the therma wave-
length. Thusin the present case a particle" spreads™ over a distance much larger
than the range o theinteraction potential. Within the ranged interaction o any
given particle, the probability of finding another particleis smdl. Therefore

(a) the effective interaction experienced by a particleis small, even though
the interparticle potential may have large values;

(b) the details o the interparticle potential are unimportant, because a
particle that is spread out in space sees only an averaged effect of the
potential.

In the quantum theory of scattering it is known that at low energies the
scattering of a particle by a potential does not depend on the shape o the
potential, but depends only on a single parameter obtainable from the potential
—the scattering length a. The total scattering cross section at low energiesis
4ma?. Hence roughly speaking a is the effective diameter of the potential. We
may also say that at low energies the scattering from a potential looks like that
from a hard sphere of diameter a. This makes it plausible that at extremely low
temperatures it is possible to describe an imperfect gas solely in terms o the
three parameters A, v*/?, and a. Our problem is to formulate a method by which
al the thermodynamic functions o the imperfect gas can be obtained to lowest
order in the small parametersa/A and a/v'/>.

We first show that, for the purposed calculating the low-lying energy levels
o an imperfect gas, the Hamiltonian o the system may be replaced by an
effectiveHamiltonian in which only scattering parameters, such as the scattering
length, appear explicitly. The partition function of the imperfect gas can then be
calculated with the help o the effective Hamiltonian. This method, first intro-
duced by Fermi,* is known as the method of pseudopotentials.

Consider firs a system o two particles interacting through a finite-ranged
potential which has no bound state. The object o the method of pseudopoten-
tials is to obtain all the energy levels o the system in terms of the scattering
phase shifts of the potential. For the sakedf concretenesswefirgt assume that the
potential is the hard-sphere potential with diameter a. The wave function for the
two particles may be written in the form

¥(r,r,) =e® R yY(r) (10.100)

*E. Fermi, Ricerca Sci. 7, 13 (1936). Our presentation follows that of K. Huang and C. N.
Yang, Phys. Rev. 105, 767 (1957).
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where
R=3(rn+r) (10.101)
=rhTn

and P is the total momentum vector. The Schrodinger equation in the center-of-
mass system is

(Vi+ kD)yY(r)=0 (r>a)
Y(r)=0 (r<a)

The hard-sphere potential is no more than a boundary condition for the relative
wave function ¢ (r). It is understood that some boundary condition for r = ¢ is
specified, but what it isisirrelevant to our considerations. The number k is
the relative wave number, and (10.102) presents an eigenvaue problem for k.
When the dlowed values of k are known, the energy eigenvalues o the system
are given by

(10.102)

P? h2k?
E(P,k) = ?AZ + 2

where M is the total massand p the reduced mass o the system.

The aim o the method of pseudopotentiasis to replace the hard-sphere
boundary condition by an inhomogeneousterm for the wave equation. Such an
idea is familiar in electrostatics, where to find the electrostatic potential in the
presenced a metalic sphere(with some given boundary condition at infinity) we
may replace the sphere by a distribution of charges on the surface o the sphere
and find the potential set up by the fictitious charges. We can further replace the
surface charges by a collection of multipoles at the center of the sphere with
appropriate strengths. If we solve the Poisson equation with these multipole
sources, we obtain the exact electrostatic potential outside the sphere. In an
analogous way, the method o pseudopotential sreplaces the boundary condition
on Y (r) by a collection o sources at the point r = 0. Instead of producing
electrostatic multipolepotentials, however, these sourceswill produce scattered S
waves, P waves, D waves, etc.

Let usfirst consider spherically symmetric (S wave) solutionsd (10.102) at
very low energies(k — (). The equations (10.102) become

1 d( dy
?E(’ Z) =0 (r>a) (10.103)
W) =0 (r<a)

The solution is obvioudy

¥(r) = {ConSt'(l - ;) (r>a) (10.104)
0 (r <a)
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Now define an extended wave function v, (r) such that
(V2 E2) g (r) =0

with the boundary condition

(everywhereexceptat r =0)  (10.105)

Yex(a) =0 (10.106)
For k — 0 we have
¢ex(r)——>(1 - f)x (10.107)
r—0 r

where x isaconstant that dependson the boundary condition at r = o0. We can
avoid explicit use of this boundary condition by writing

X = [%(npex)] (10.108)

r=0
which is an immediate consequenced (10.107).To eliminate the explicit require-
ment (10.106), we generdize the equation (10.106) to include the point r = 0.
This can be easily done by finding the behavior of (V2 + k¥, near r =0, as
required by (10.107).Since k = 0, it is sufficient to note that according to
(10.107)

F
V Ye(r)——>4mad(r)x = 4mad(r) (i) (10.109)

Therefore as k — 0 the function ¢, (r) everywhere satisfies the equation

(V2 + k), (r) =47ad(r) air(rt,bex) . (10.110)

The operator 8(r)(d/dr)r is the pseudopotential.* For smal k and for r > a,
V.. (r) satisfies the same equation and the same boundary condition as 4(r).
Therefore ¢, (r) = ¢(r)for r > a, and theeigenvaluesd k are the samein both
cases.

The equation (10.110)is not the exact equation we desire, because only the
S-wave solutions with small k coincide with the actual solutionsd the physical
problem. To obtain an equation for an extended wave function that rigorously
coincides with ¢(r) for r > a it is necessary to generalize (10.110) to arbitrary
valuesd k and to nonspherically symmetric solutions. It sufficesfor the present
to state that the result of the generalization consists o the following modifica-
tions of (10.110):

(a) The exact S'wave pseudopotential is

4q d
8(r) —r (10.111)

*Theforegoingderivation isdue toJ. M. Blatt and V. F. Weisskopf, Theoretical Nuclear Physics
(Wiley, New York, 1952), p. 74.
¥See Huang and Yang, op. cit.
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where 5, is the Swave phase shift for the hard-sphere potential:
1 tan ka

_ — = a|1+1(ka)’+ - 10.112
k cot 1 k a[ s(ka) ] ( )
(b) An infinite series d pseudopotentials is added to the right side o

(10.110), representing the effects of P-wave scattering, D-wave scatter-
ing, etc. The Ith-wave pseudopotential is proportional to a?/*1.

From these resultsit is seen that (10.110) is correct up to the order a2. That
is, if the wave function ¢ (r) and theeigenvalue k are expanded in a power series
in a, then (10.110) correctly gives the coefficientsd a and a2.

The differential operator (d/dr)r in the pseudopotential (10.110) may be
replaced by unity if ¢, (r) is well behaved at r = 0O, for then

o] =40+ [

If ‘pex(r)r—_'(;Ar‘1 + B, however, then

= ¥ex(0) (10.113)

[%("‘be")],=o =B (10.114)

An illustration of the effect of (d/dr)r isgivenin Problem 10.7.

We now turn to the method o pseudopotentialsfor the case of two particles
interacting through a generd finite-ranged potential which has no bound state.
Here (10.102)is replaced by the equation

h2 2 2 —
ZL(V + k2)y(r) = o(r)¢(r) (10.115)

with some given boundary condition for r — oc. At low energies only Swave
scattering is important. Therefore let us consider only spherically symmetric
solutions. Then (10.115)reduces to

w(r) + K2u(r) = %U(r)u(r) (10.116)

where

u(ry=ry(r) (10.117)
By assumption u(r) is finiteranged and has no bound state. Therefore, as
r — oo, u(r) approachesa sinusoida function:

u(r) ——ruy(r) (10.118)
where
u(r) = ry(r) = const. (sinkr t tany,coskr) (10.119)
where n, is by definition the Swave phase shift. For k — 0,
tan n,
Yo (r) — const. (1 + ) (10.120)
r—20 kr
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0 /¢ Range of >r  Fg 10.3 Wase function in a repulgve potentid with
potential positive scattering length.

In general n, is a function d k. For small k there is a well-known expansion
analogous to (10.112), known as the effective range expansion:
1
2 (10.121)
where a is called the scattering length and r, the effective range. The meaning of
the scattering length can be seen by substituting (10.121) into (10.119). For
k — 0 we obtain (10.117). As illustrated in Figs. 10.3 and 10.4, the scattering
length is the intercept of the asymptotic wave function ry (r) with the coordi-
nate axis. For the hard-sphere potential the scattering length is the hard-sphere
diameter. In general a may be either positive or negative. It is poditive for a
predominantly repulsive potential (Fig. 10.3) and negative for a predominantly
attractive potential (Fig. 10.4).

At low energies we may neglect al terms in (10.121) except —1/a and
obtain

1
kcot n, = -2 + k2r0+~-

1
kcotm, a

This approximation, known as the " shape-independent approximation,” states
that at low energies the potential acts as if it were a hard-sphere potential of

ry (r)~>/
/4
/
/)
/
/ ry(r)
/
/
/
/
nd | L .
% T Fg 10.4 Ware functionin an aitractive poten-
se 0 Range of . . . . p
potental tid with negative scattering length.
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Fig 10.5 The threelike hypersurface in the 3N-
dimengond configuration spece. The hard-sphere in-
teractions are equivdent to the boundary condition
that the wave function vanishes on the surface d the
"tree."

diameter a. Therefore (10.110) can be taken over.* In general (10.110) iscertainly
valid for the calculation o the energy to the lowest order in the scattering length
a. Whether it is still meaningful to use (10.110) for higher ordersin a depends on
the potential.

Having introduced the pseudopotentials in the two-body problem we are
now in a position to discuss the generalization to the N-body problem. The
considerations that follow are independent of stetistics.

Let usfirst consider the n-body problem with hard-sphere interactions. The
Schrodinger equation for the systemis

h2
——(vi+ - +V)¥=E¥Y  (r,—-1|>a, ali=*j)

2m (10.122)

¥=0 (otherwise)

We aso require that ¥ satisfies some boundary condition on the surface of a
large cube, e.g., that ¥ satisfies periodic boundary conditions. The hard-sphere
interactions are equivalent to a boundary condition that requires ¥ to vanish
whenever |r, — 1;| =a, for dl i # j. In the 3N-dimensiona configuration space
the collection o al points for which |r;, — r;| = a represents a tree-like hyper-
surface, a portion d which we schematically represent by Fig. 10.5. Thus we
draw a cylinder, labeled 12, to represent the surface in which |r; — r,| = &,
whereasr,,...,ry may have arbitrary values. The whole "'tree"” is the totality of
al such cylinders, 3N(N - 1) in number, which mutually intersect in a com-
plicated way. If the hard-sphere diameter a is small, these cylinders have a small
radius. To find the wave function outside the "tree," it is natural to replace the
"tree™' by a series of "multipoles” at the "'axes," L.e., a thelines |r, — r;| = 0.

It can be easily shown that replacing the effect of each cylinder by multi-
poles along its axis amount to introducing the two-body pseudopotentials de-
scribed in the previous section. Our extended wave function would then satisfy a

*Thederivation of (10.110) remainsvalid if a is negative.
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Schrodinger equation containing the sum of $N(N — 1) two-body pseudopoten-
tials. These two-body pseudopotentials, however, do not exactly replace the effect
o the'tree." Although they correctly give the behavior of ¥ near a cylinder and
far away from any intersection o cylinders, they do not necessarily give the
correct behavior of ¥ near an intersection of two or more cylinders. For
example, the intersection corresponding to |r; — r,| = a and |r; — r;| = a rep-
resents a configuration in which particles1, 2, and 3 collide smultaneousy —an
intrinsicaly three-body effect which has not been taken into account in the
two-body pseudopotentials. The sum of two-body pseudopotential s accounts only
for the effects of binary collisions.

Using our geometrical picture, we see that in addition to the two-body
pseudopotentials it may be necessary to place additional multipoles (pseudo-
potentials) at each intersection o two or more cylinders. To find the exact
magnitude of these three- and more-body pseudopotentials we would have to
solve three- and more-body problems. Their dependence on the hard-sphere
diameter a, however, can be found by a dimensiona argument.

As an example, the three-body pseudopotential needed at the intersection of
the lines |r, -1, =0 and |r; — ;] =0 must appear in the three-body
Schrodinger equation in the form

(vi+ v+ vi+k?)¥
= (sum of two-body pseudopotentials) + 6(r, — r,)6(r, — r3)KV¥

The quantity X must be o the dimension (length)*. At low energies (k — 0) the
only length in the problemis a. Therefore K must be of theorder a*. Inasimilar
way we deduce that four-body pseudopotentials are of the order a’, and so forth.
These pseudopotentials may be ignored, if we are only interested in an accuracy
up to the order a?. The necessity for such n-body pseudopotentials shows that
the pseudopotentials are not additive. This is analogous to the well-known
situation in electrostatics that image charges are not additive. For example, the
images d a point charge in front of two mutually orthogona plane conductors
are not simply the two images produced by each plane conductor taken sep-
arately.

If the interparticle potential is not the hard-sphere potential but a finite-
ranged potential that has no bound state, the considerations just given can be
taken over. The effective Hamiltonian for an imperfect gas of N identica
particles o mass m may be taken to be

h? 4mah?
H= P4 +ve) +
2m(Vl VN)

> 8(r, — rj)

i<y

?
5y (10123)
ij

where a is the scattering length. Thisisvalid for both fermionsand bosons. The
eigenvalues of this Hamiltonian will be the correct eigenvalues for an imperfect

hard-sphere gas up to order a?. For a general imperfect gas they will be correct to
the lowest order in a.
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We note that (10.123) is not a Hermitian operator because(d/dr)r isnot a
Hermitian operator. This need not cause concern because, by its derivation,
(10.123) has been shown to have rea eigenvaues that are the approximate
eigenvalues of the rea problem. The non-Hermiticity reflects the fact that the
eigenfunctions of (10.123) do not everywhere coincide with the eigenfunctionsof
the real problem, but do so only in the asymptotic region. The fact, however, that
(10.123) is not Hermitian means that we cannot find its eigenvaluesby variational
methods.

If the pseudopotentialsin (10.123) are regarded as small perturbations to be
treated only to thefirst order in perturbation theory, then the operators (d/dr)r
will always act on unperturbed free-particle wave functions, which are well-
behaved. Hence the operators (d/dr)r can be set equal to unity, and we can
work with the Hamiltonian

h? 4eah?
H = —;n—(v12+ e+ v2) +

Z 8(r, - l',)

i<j

(10.124)

It is to be emphasized that this Hamiltonian is valid only for the purpose d
applying first-order perturbation theory. We must not diagonalize (10.124) exactly,
because the exact eigenvaues are the same as those for a free-particle sysem—it
being wdl known that a three-dimensional S-function potential produces no
scattering.

The first-order energy levels of s#’ are calculated in the Appendix a. The
result for bosons is given in (A.36); that for fermionsin (A.42).

PROBLEMS

10.1 (a) Cdculate 8, and 3, for a dasicd hard-gphere ges with hard-sphere diam:
der a.

(b) Express the equation d date d a dasicd hard-gphere ges in the foom d a virid
expangon. Include terms up to the third virid coefficent.

10.2 Find b, for an ideal Bose ges and compareit with 8,. |s the difference sgnificant?
(See (8.72))

10.3 Cdculae the ssocond virid coefficientdor a spinless hard-gphere Boe ges and a
spinless hard-sphere Feemi ges to the two lowes nonvanishing ordersin a/A, where a is
the hard sphere diameter and A is the therma wavdength.

Answers.

b, =2"52_ —
2 A 3

2a 1072 a\$
(}\) + .. (Bos)

3 5
b, = —2*5/2—6'”(;) +187r2(—;) +. . (Fermi)
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10.4 In caculating Wy defined in (10.35), the symmetry or antisymmetry of the wave
function makes the calculation complicated. The followingis a method to deal with this
problem.

Let the free-particle wave functions for a system of distinguishable particles be

girnt o Hpyery)

xp(l,.--’N) = yN2

Let
(1,...,N|e#|1",...,N")
=2 - xxi(1,.. N)eB*x% (1,...,N")
Pi PN

The symbol |1,..., N) may be regarded as an eigenvector of the position operators of N
distinguishable particles. Show that with the help of this quantity (10.35)may be expressed
in the form

1
WWN(I,...,N) =Y 8(1,...,N| e #¥|P1,..., PN)
P

10.5 Models for Ferromagnetism. Consider a lattice of N fixed atoms of spin 1. The
quantum mechanical spin operators of the ith atom are the Pauli spin matrices a,.
Assuming that only nearest neighbors interact via a spin-spin interaction, we obtain the
Heisenberg model of ferromagnetism. The Hamiltonian is

N
‘}fHeisenberg = _‘Z 0.0 — “"Z g; * H
<ir) i=1
where (ij ) denotes a nearest-neighbor pair, »# is a uniform external magnetic field, and e
and p are positive constants.
Another model, the Ising model, is constructed by associating with the ith atom a
number s, that is either +1 or — 1 and taking the Hamiltonian to be
N
‘}flsing = _‘Z S8 — B Z s;H
i) i=1

where H is the z component of H
Using the Peierls variational principle prove that, for the same temperature, the
Helmholtz free energy of the Heisenberg model is not greater than that of the Ising model.

10.6 Mean-Field Approximation. Consider the Ising model, whose Hamiltonian is given
in the last problem. In the mean-field approximation one assumes that each spin sees a
mean field due to all its neighbors. Determine this mean field with the help of the Gibbs
variational principle, as follows:

(a) Assume a product form for the trial density function
p(s1,--ssn) = 8(s1) ... 8(sw)
g(s) = Ce?
Find C by normdizing g(s). The mean field B is to be determined.
(b) Instead of B, use as variational parameter the magnetization per spin

m = 3. s8(s)

s

Show that B = tanh™! m.
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(c) Show that the Gibbs function ¥(p), as defined in (10.83) is given by
¥ =N|[-Lleym® - pHm+ kT(Bm * log C)]
where y is the number of nearest neighbors.
(d) Show that ¥ is minimized by 1, which satisfies
m = tanh[(eym +uH)/kT]
(e) Show that the Helmholtz free energy per spin is given by
A l+m 1+ 1-m 1-7
N = Yteym® + pHm + kT 3 log 2 2 log > ]
These results are the same as those of the Bragg-Williams approximation, which we shall

derive and analyze in Chapter 14.

10.7 (a) Find al spherically symmetric solutions and corresponding eigenvalues of the
equation

(V+ &) (r) =0
in the region between two concentric spheres of radii R and a (R> a), with the
boundary conditions

Y(R) —y¥(a) =0
(b) Expand the eigenvalues k2 in powers of a, keeping terms up to order a2
(¢) Using the method of pseudopotentials, calculate the eigenvalue &2 up to order a2 and
show that it agrees with the answer to (b).
Reference. K. Huang and C. N. Yang, Phys. Rev. 105,767 (1957), §2(5).
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In this chapter we study various examples of systems of fermions. The dominant
common characteristic is the existence of the Fermi surface, which is a direct
consequence of the Pauli exclusion principle.

11.1 THE EQUATIONOF STATE OF AN IDEAL FERMI GAS

The equation of state of a spinless ideal Fermi gasis obtained by eliminating z
from Egs. (8.67). We first study the behavior of z as determined by the second
equation of (8.67), namely

)\3
7 =f3/2(z) (11.1)
where v = V/N, A = y2ah*/mkT is the therma wavelength, and
4 00 x2
)= — [ dx ——— 11.2
fial2) = 7= [" e = (112)

isa monotonically increasing function of z. For small z we have the power series
expansion

z? z? z*

f3/2(z) =z- 2372 + 3372 432

+ oo (11.3)

For large z an asymptotic expansion may be obtained through a method due to
Sommerfeld, as follows. For convenience put z = e”, so that v is related to the
chemical potential p by

v=logz=pu/kT (11.4)
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Then

2_
e '+1
3/2ey—v

- e

The last step is obtained through a partial integration. Expanding y32 in a
Taylor series about v, we obtain

hale) = 5= [

X[V3/2+%V1/2(y—v)+—3gv_1/2(y—v)2+ ]

(11.5)

y“l'

(e +1)°

/ p3/2 4 3P g 3y 122 ) (11.6)
(e' + 1)

=177

The second integral is of order e~”. Therefore

f3/2(z) = f+w

Now we write

t

—— (P U+ V4 )+ 0(e7)

-0 (e + 1
4 3/2 1/2 2
= ﬁ-(lov 24 P+ AUV )+ 0(e) (11.7)
where
+oo thet
L= "d——s (11.8)

~ 00 (e’+ 1)2

Apart from the factor t”, the integrand isan even function of t. Hence I,,= 0 for
odd n. For n = 0 we have

IO=—2/(;wdtgt{—e‘—l|'—1—}:1 (11.9)

and for even n > 0,

J 5 a ood gt 5 ood u
= =9 — [ — =
" 87\-/(; M+ 1], n/(; "

= (n—1)12n)(1 - 22"")¢(n) (11.10)
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£,

>Z  Fig. 11.1 The function f; ,(z).

where {(n) is the Riemann zeta function,* some special value of which are

2 4 6
Q=% W@W-g 86 - oz

Hence

4 s T -1 _
fin(z) = e (log z)* + ?(logz) 24 +0(z7") (11.11)

A graph of f;,,(z) isshown in Fig. 11.1. For any given positive value of X’ /v,
thevalue of z determined by (11.1)can be read off such a graph. It isseen that z
increases monotonically as A%u increases. For fixed v, z increases monotonically
as the temperature decreases.

High Temperatures and Low Densities (N /v < 1)

For A%u < 1 the average interparticle separation »*/? is much larger than the
thermal wavelength A. We expect quantum effects to be negligible. From (11.1)
and (11.3),

A z?

—_ =g - —

v 23/2
which may be solved to give

2

+ - (11.12)

z =

b 1 be
> T on

v
Thus z reduces to that of the Boltzmann gas (Eq.(8.52))when £ — 0 (T - m).
The average occupation number (8.65) reduces to Maxwell-Boltzmann form:

(nyy = —e ke (11.13)

*cf. Handbook of Mathematical Functions, M. Abramovitz and |I. A. Stegun, eds., (National
Bureau of Standards, Washington, D.C.,1964), Chapter 23.

244 STATISTICAL MECHANICS

The equation of state (8.67) then becomes

Pov v z? 1 »N
e 2_257}_ _—_1-;2TZU+-~ (11.14)

Thisisin theform of avirial expansion. The corrections to the classical ideal gas
law, however, are not due to molecular interactions, but to quantum effects. The
second viria coefficient in this caseis

2\ 1/{ ah? \3?
257 5( ka)

All other thermodynamic functions reduce to those for a classical ideal gas plus
small corrections.

(11.15)

Low Temperatures and High Densities (X /v > 1)

For A%u > 1 the average de Broglie wavelength of a particle is much greater
than the average interparticle separation. Thus quantum effects, in particular the
effects of the Pauli exclusion principle, become all important.

In the neighborhood of absolute zero we have, from (11.1) and (11.11),

1(2ak%\%?
- =~ —(1
(ka) 3\/;(ng)

- 3,2
5 (11.16)
Hence

z = eber (11.17)
where ¢, the chemical potential at absolute zero, is called the Fermi energy:

h2 ( 67T2 )2/3

= 11.18
€F 2m\ v ( )

To study its physical significance, let us examine {»,) near absolute zero:

(M) =~ i1 (11.19)

If €, < €, then the exponential in the denominator vanishesas T — 0 (8 — m).

Hence(np> = 1. Otherwise, (np> = 0. Thus

1 (e, <e€p)

<np>7'“=0 = {0 ((p > €,)

The physical meaning of this formula is clear. Because of the Pauli exclusion
principle no two particles can bein the same state. Therefore, in the ground state
of the system, the particlesoccupy the lowest possible levels and fill the levels up
to the finite energy level e.. Thus €, is simply the single-particle energy level
below which there are exactly N states. In momentum space the particles fill a
sphere of radius p ., the surface of which is called the Fermi surface.

(11.20)
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With this interpretation, let us now calculate the Fermi energy indepen-
dently, under more general conditions. Suppose al single-particle energy levels
are g-fold degenerate. For example, g = 2st 1 for a particle of spin s. The
condition determining e, is then

gY(nyro=N (11.21)
P

In view of (11.20), this states that there are N states with energy below the Fermi
energy. Putting € = p%/2m, we find

4 N
§ T2 (11.22)
(27h)” 3 v
Hence
B2 [ 6x2\*°
- — | 11.23
€r 2m( v ) ( )

which reduces to (11.18)when g = 1. We can aso interpret (11.21) as follows.
Particles with different quantum numbers are not constrained by any symmetry
requirement with respect to the interchange of their positions. Thus we may
consider a system of N fermions, each with degeneracy g, to be made up of ¢
independent Fermi gases each with N/g particles whose energies are nondegen-
erate.

To obtain the thermodynamic functions for low temperatures and high
densities wefirst obtain the expansion for the chemical potential from (11.1) and
(11.12):

+ } (11.24)

(kT
kTv = kT logz = e |1 —

12

€r

The expansion parameter is kT /e . If we define the Fermi temperature T, which
is a function of density, by

kTe= e, (11.25)

then low temperature and high density means T < Tp. In this domain the gasis
said to be degenerate because the particles tend to go to the lowest energy levels
possible. For this reason T is also called the degeneracy temperature.

The average occupation number is

(M) = a1 (11.26)
where v is given by (11.24).Since e, = pi/2m, n, depends on p only through p2.
A sketch of n, isshownin Fig. 11.2.

Theinternal energy is

V 47 ;0
U= Zep<np> = ;gﬁ/(; dpp4<”p>
P
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Fig. 11.2 Average occupation number in an
ideal Fermi gas.

3

p

After a partial integration we obtain

v o P a BV 0 pleBer
U= — | dp | -— -  (Tp-—="
4mimh’ /(; ? 5 ( ap <n">) 207 *m?h? -/(; ? (ePer + 1)2

(11.27)

It is apparent from Fig. 11.2 that d{n,)/dp is sharply peaked at p = p,. In
fact, at absolute zero it isa & function at p = p.. Therefore the integral in
(11.27) can be evaluated by expanding the factor p® about p = p,. The proce-
dureissimilar to that used in obtaining (11.11).After inserting v from (11.24) we
obtain the asymptotic expansion

2

+ -

kT
U= %Nel,[l + %772(— (11.28)

€r

Thefirst term is the ground state energy of the Fermi gas at the given density, as
we can verify by showing the following:

PL
) 2
ipl <pr <™

The specific heat at constant volume can be immediately obtained from
(11.28)

= 3Ne, (11.29)

ST (11.30)

It vanishes linearly as T — 0, thus verifying the third law of thermodynamics. We
know that C,,/Nk approaches 3 as T — oo. Thus a rough sketch of C,/Nk can
be made, as shown in Fig. 11.3. The fact that it is proportional to T at these low
temperatures can be understood as follows. At a temperature T > 0, (n ) differs
from that at T = 0 because a certain number of particles are excited to energy
levels €, > €. Roughly speaking, particles with energies of order kT below ¢,
are excited to energies of order kT above e, (see Fig. 11.2). The number of
particles excited is therefore of the order of (kT/e.)N. Therefore the total
excitation energy above the ground state is AU = (kT /e )NkT, from which
follows C, = (kT /€. )Nk.
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Fig. 11.3 Specific heat of an ideal Fermi gas.

From (8.78) and (11.28) follows the equation of state

» 2U 2, . Sa2 [ kT \?
= —-— = - — + — —
37V -5 0 + (11.31)

€F

This shows that even at absolute zero it is necessary to contain the ideal Fermi
gas with externaly fixed walls because the pressure does not vanish. Thisis a
manifestation of the Pauli exclusion principle, which allows only one particle to
have zero momentum. All other particles must have finite momentum and give
rise to the zero-point pressure.

To obtain the thermodynamic function for arbitrary valuesof A°/v numeri-
ca methods must be employed to calculate the functions f; ,,(z) and f; ,(z).

11.2 THE THEORY OF WHITE DWARF STARS

It isan empirical rulethat the brightnessof astar is proportional to its color (i.e.,
predominant wavelength emitted). The proportionality constant is roughly the
same for al stars. Thus if we make a plot of brightness against color, we obtain
what is known as the Hertzprung-Russell diagram, in which most stars fall within
alinear strip called the main sequence, as shown in Fig. 11.4. There are, however,
stars that are exceptions to this rule. There are the red giant stars, huge stars
which are abnormally bright for their red color; and there are the white dwarf
stars, small stars which are abnormally faint for their white color. The white

Brightness

\\ Red giants
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~N 9(/6’ ~
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AN

~ ~
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oor Flg. 11.4 Russell-Hertzprung diagram.
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dwarf star makes an interesting subject for our study, because to a good
approximation it is a degenerate Fermi gas.

A detailed study o the constitution o white dwarf stars leads to the
conclusion that they lack brightness because the hydrogen supply, which is the
main energy source o stars, has been used up, and they are composed mainly o
helium. What little brightness they have is derived from the gravitational energy
released through a dow contraction o the star. Probably these stars have reached
the end point o stellar evolution. One d the nearest stars to the solar system, the
companion o Sirius, 8 light years from us, is a white dwarf. So faint that it
escapes the naked eye, it was first predicted by the calculations of Bessdl, who
tried to explain why Sirius apparently moves about a point in empty space.

An idedlized model of awhite dwarf may be constructed from some typical
data for such a star:

Content: mostly hdium
Densty = 107 g/cm® = 107 pg,
Mass = 103 g= M,
Centrd temperaure = 107 K = T

where the subscript © denotes quantities referring to the sun. Thus a white dwarf
star is a mass o helium at an extremely high temperature and under extreme
compression. The temperature 107 K corresponds to a thermal energy of 1000 eV.
Hence the helium atoms are expected to be completely ionized, and the star may
be regarded as a gas composed of helium nuclei and electrons. We regard the gas
o electrons as an idea Fermi gas, with a density of approximately 10*
electrons/cm?®. This corresponds to a Fermi energy of

o1
€p = '2; m = 20 MeV
and a Fermi temperature of
T, = 10" K

Since the Fermi temperature is much greater than the temperature o the star, the
electron gasis a highly degenerate Fermi gas, which behaves no differently from
an electron gas at absolute zero. In fact we regard the electron gas to be an ideal
Fermi gas in its ground state. The enormous zero-point pressure exerted by the
electron gas is counteracted by the gravitational attraction that binds the star.
This gravitational binding is due almost entirely to the helium nuclei in the star.
The pressure due to kinetic motion o the helium nuclei, and to any radiation
that may be present, will be neglected.

Thus we arrive at the following idealized model: A white dwarf is taken to
be asystem o N eectronsin its ground state, at such a density that the electrons
must be treated by relativisticdynamics. The electrons movein a background o
N /2 motionless helium nuclei which provide the gravitational attraction to hold
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the entire system together.* This model must then exhibit properties that are the
combined effects of the Pauli principle, relativistic dynamics, and the gravita-
tional law.

First let us work out the pressure exerted by a Fermi gas of relativistic
electronsin the ground state. The states for a single electron are specified by the
momentum p and the spin quantum number s = + 1. The single-particle energy
levelsare independent o s:

€ps = \/( pc)2 + (mecz)2

where m, isthe mass o an electron. The ground state energy o the Fermi gasis

2V cpr
E,=2 Y \/(pc)2 + (mecz)2 = ~h-3—fp dp 47;'p2\/(pc)2 + (mecz)2 (11.32)
Ipl<pr °

where p, the Fermi momentum, is defined by

Vida | N
wl3mt) =3
32\ 1/3
v
Changing the variable o integration in (11.32) to X = p/m ¢ we obtain
E, mi’
~ - P—h—vi(xF) (11.34)
where
%x;(l +3xE+ 1) (xp<1)
XF
= dx x*1 + x? = 1 11.35
Jxr) -/;) o * X1+ =+ (x> 1) ( )
XF
and
h 3772 1/3
xpzﬁ——(——) (11.36)
m. mce\ v

*The temperature in an actual white dwarf star is so high that electron-positron pairs can be
created in electron-electron collisions. These pairs in turn annihilate into radiation. Therefore in
equilibrium there should be a certain number of electron-positron pairs and a certain amount of
radiation present. We neglect the effects of these. It has been speculated that neutrinos can aso be
created in electron-electron, electron-positron, and photon-photon collisions with appreciable prob-
ability. Thisleads to some interesting phenomena, for neutrinos interact so weakly with matter that
they do not come to thermal equilibrium with the rest of the system. They simply leave the star and
cause a constant drain of energy. (H. Y. Chiu and P. Morrison, Phys. Rev. Lett. 5, 573 (1960).) Our
model is based on the neglect of these effects.
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If the total mass of the star is M and the radius of the star is R, then
M= (m,+ 2mp)N = 2m,N

(3V 173 (11.37)
R=|—
47
where m , is the mass o a proton. In termsof M and R we have
87 m,R?
b=y (11.38)
and
ho1(9n M\ M~
Xp=——| —— = —
F meR\ 8 m, R (11.39)
where
— 97 M
M= ——
5 (11.40
R= N *
 (h/my)
The pressure exerted by the Fermi gasis
dE, mid f(xyp) dxp
Py=——7= 23_(XF)~ v——
v =wh dxp  dv
mic3[1
T 2R [Ex;\ﬂ + X7 _f(xF)] (11.41)
The nonrelativistic and extreme relativisticlimits o P, are given by
mic’ . M>3/3
0= | Tsp273 |XF = K5~ (nonrel.: xp < 1) (11.42)
mec” M43 M2/3
Py = \ B2a2h |(x} - x2) =K\ = T & ) (extremerel.: x> 1)
(11.43)
where
mc?m,c\? 1144
- 12w2( h ) (11.44)

A qualitative plot of P, against R for fixed M isshownin Fig. 11.5. It is seen
that, for small R, P, becomes smaller than what is expected on the basis of
nonrelativistic dynamics.

The condition for equilibrium o the star may be obtained through the
following argument. Let usfirst imaginethat thereis no gravitational interaction.
Then the density of the system will be uniform, and external wallswill be needed
to keep the Fermi gas at a given density. The amount of work that an external
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Flg. 11.5 Pressure of an ideal Fermi gas at absolute
> R Zero.

agent has to do to compress the star o given mass from a state of infinite
diluteness to a state d finite density would be given by

- fRP047rr2dr (11.45)

where P, is the pressured a uniform Fermi gasand R isthe radiusd the star.
Now imagine that the gravitational interaction is " switched on."” Different parts
o the star will now attract one another, resulting in a decrease of the energy o
the star by an amount that is called the gravitational saf-energy. On dimensional
grounds the gravitational salf-energy must have the form

ayM?
R
where y is the gravitational constant and a is a pure number o the order o
unity. The exact vdue d a depends on the functional form o the density as a
function of spatial distance and cannot be determined by our argument. If R is
the equilibrium radius o the star, the gravitationa sdf-energy must exactly
compensate the work done in bringing the star together. Hence
ayM?
R

Differentiating (11.47)with respect to R we obtain the condition for equilibrium:

a YM?  a (8m,\’ mec)“]W2
_477R4_47ry(9w)(h R*
Strictly speaking, (11.47) merdly defines a. Its physical content is furnished by
the assumption that a is o the order d unity. We now determine the relation
between M and R by inserting an appropriate expression for P, into (11.48).
This will be done for the following three different cases:

(11.46)

[ Ppartar = - (11.47)

Py (11.48)

(a) Suppose the temperature of the electron gas is much higher than the
Fermi temperature. Then the electron gas may be considered as an idea
Boltzmann gas, with

kT  3kT M
p0= —

v - 87rmpF
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Substitution o thisinto (11.48)yieldsthe linear relation
2 mpY
R =§(1Mﬁ (11.49)
This case, however, is never applicablefor a white dwarf star.

(b) Suppose the eectron gas is at such a low density that nonrelativistic
dynamics may be used (x, <1). Then P, is given by (11.42), and
(11.48) leads to the equilibrium condition

M3/3 M?
K KR
where
Ca (8m,\}mcd
K =Ev( 97 )( P ) (11.50)
Thus the radius o the star decreases as the mass o the star increases:
— = 4 K
M /3R=g}<~, (11.51)

This condition is valid when the density is low. Hence it is vdid for
smal M and largeR.

(c) Suppose the electron gasis at such a high density that relativistic effects
are important (x> 1). Then P, is given by (11.43). The equilibrium
condition becomes

M M e
K(?—?)=Kw? (1152)
or
D — A2/3.01 _( wxsxg 273
R=M**1-(M/M,) (11.53)
where
_ K\32 2707\ he \*/?
M, = == |—3 11.
P e RS
Numericaly,
hc 0%
- (11.55)

This interesting pure number is the rest energy o X divided by the gravitational
attraction of two protons separated by the Compton wavelength of X, where X is
anything. The mass M,, corresponding to the reduced quantity M, is (taking
a=1):
= 8 A 33
M, = gmpM0 = 10" g = M, (11.56)
the mass of the sun. The formula(11.53)is vaid for high densitiesor for R — O.
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\ gy Flg. 11.6 Radius-mass relationship of a white dwarf

My star.

Henceit isvalid for M near M. Our modd yields the remarkable prediction that
no white dwarf star can have a mass larger than M, because otherwise (11.53)
would give an imaginary radius. The physical reason underlying thisresult is that
if the massis greater than a certain amount, the pressure coming from the Pauli
exclusion principle is not sufficient to support the gas against gravitational
collapse.

The radius-mass relationshipd a white dwarf star, according to our model,
has the form shown in Fig. 11.6, wherethe solid linesindicate the regions covered
by formulas (11.51) and (11.53). We have not been able to calculate a, so that an
exact vaue d M, cannot be obtained. More refined considerations* give the

result
M, =14M, (11.57)

This massis known as the Chandrasekhar limit. Thus according to our mode no
star can become awhitedwarf unlessits massislessthan 1.4M,. Thisconclusion
has so far been verified by astronomical observations. If the mass o a star is
greater than the Chandrasekhar limit then it will eventually collapse under its
own gravitational attraction. When the density becomes so high that new
interactions, dormant thus far, are awakened, a new regime takes over. For
example, the star could explode as a supernova.

11.3 LANDAU DIAMAGNETISM

Van Leeuwen's theorem' states that the phenomenon o diamagnetism is absent
in classical statistical mechanics. LandausS first showed how diamagnetism arises
from the quantization d the orbits o charged particlesin a magnetic field.

The magnetic susceptibility per unit volume d a systemis defined to be

oM

== 11.58
o (11.58)

*S. Chandrasekhar, Stellar Structure (Dover, New York, 1957), Chapter XI
*See Problem 8.7.
*L. Landau, Z. Phys. 64, 629 (1930).
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where /# is the average induced magnetic moment per unit volume of the system
along the direction of an external magnetic field H:

P I
=I—/< —31—1—> (11.59)

where 57 is the Hamiltonian o the system in the presence of an externa
magnetic field H. For weak fidds the Hamiltonian 5# dependson H linearly. In
the canonical ensemble we have

d logQy
M= kT-—
H v (11.60)
and in the grand canonical ensemblewe have
= kT d (log 2
= 8H( v )TVZ (11.61)

where z isto be eliminated in termsd N by the usual procedure.

A system is said to be diamagneticif x < 0; paramagneticif x > 0. To
understand diamagnetism in the smplest possible terms, we construct an ideal-
ized modd of a physica substance that exhibits diamagnetism. The magnetic
properties d a physical substance are mainly due to the electrons in the
substance. These electrons are either bound to atoms or nearly free. In the
presencedf an external magnetic field two effects are important for the magnetic
properties o the substance: (a) The electrons, free or bound, move in quantized
orbits in the magnetic fidd. (b) The spins o the éectrons tend to be aligned
paralel to the magnetic field. The atomic nuclei contribute little to the magnetic
properties except through their influence on the wave functionsd the eectrons.
They are too massive to have significant orbital magnetic moments, and their
intrinsic magnetic moments are about 103 timessmaller than the electron's. The
alignment d the eectron spin with the external magnetic fied gives rise to
paramagnetism, whereas the orbital motionsd the electrons give rise to diamag-
netism. In a physical substance these two effects compete. We completely ignore
paramagnetism for the present, however. The effect of atomic binding on the
electrons is aso ignored. Thus we consider the idealized problem o a free
spinless electron gasin an external magnetic field.

Landau Levels

The Hamiltonian d a nonrelativistic electron in an externa magnetic fied is

- —(p + ZA)2 (11.62)

where e is poditive, (i.e., the charge d the electron is —e). The Schrodinger
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equation sy = ey isinvariant under the gauge transformation
A(r) - A(r) - vo(r)
ie (11.63)
o) = o | - 100|400

where w(r) is an arbitrary continuous function. We consider a uniform external
magneticfield H pointing along the z axis, and choose the vector potential, viaa
gauge transformation if necessary, such that

A,=—-Hy, A,=4,=0 (11.64)
Thisis caled ""choosing the gauge." The Harniltonian then reads
1
= E{[px— (eH/c)y]* + p? + p2} (11.65)
We solve the Schrodinger equation by assuming a wave function of the form
v(x, y, z) = erTED(y) (11.66)

Then f (y) satisfies the equation for a harmonic oscillator:

1 2
| 5203 + tmeis = 302|100 = 1)
Yo = (he/eH )k, (11.67)

where e’ = ¢ — h*k?/2m. The natura frequency d the harmonic oscillator w, is
the "cyclotron frequency,” that d a classica charge moving in a circular orbit
normal to a uniform magneticfield. The energy eigenvalues are thus

wy, = eH /mc,

P2
e(p,,Jj)= T hoo(J + 5),
where p, = hk,. These are the Landau energy levels. Since they are independent
d k., they have a degeneracy equal to the number of alowed valuesd k., such
that y, lies within the container o the system.

Let us put the system in a large cube o size L, and impose periodic
boundary conditions. The alowed vaues o k&, are d the form 2#n, /L, where
n,=0,+1,+£2,.... For y, to lie between 0 and L, the vaues d n, must be
positive and bounded by

(7=0,1,2,...) (11.68)

g = (eH/hc)L* (11.69)

which is the degeneracy o a Landau level. The proportionality to L? reflects the
fact that the projection d the electron orbit onto the xy plane can be centered
anywherein the planewithout changing the energy. Thus, when the external field
is turned on, the energy spectrum associated with the motion in the xy plane
changes from a continuous spectrum to a discrete one, and the level spacing and
degeneracy increaseswith the external fidd. Thisisillustrated in Fig. 11.7.
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Fig. 11.7 Compaisond the energy spectra
d a charged patide with and without
megnetic fidd.

Flux Quantization

The Landau levels and the degeneracies derived above are al we need to
calculate the partition function. However, we take the opportunity to discussflux
quantization briefly, to help us better understand the wave functions.

Consider a plane with a hole in it, which contains a certain amount of
magnetic flux @, as shown in Fig. 11.8. Suppose there is no magnetic fied
anywhere else. Then the vector potential in the plane must be " pure gauge,” i.e.,
d the form

A=vow

We cannot transform this to zero through any continuous gauge transformation,
because necessarily

[ds-a=0 (11.70)
C

Flg. 11.8 Charged particle moving in plane
with a hole containing magnetic flux. The
particde will not notice the flux if dther (a) it
is in a locdized date, or (b) the flux is
quantized in unitsd Ac/e.
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where the closed path C enclosesthe hole, asindicated in Fig. 11.7. A solution to
(11.70) is

w=®0/2m (11.71)

where 8 is the angle around the hole, measured from some arbitrary axis.

Now consider an electron moving in the plane, with the boundary condition
that its wave function vanish in the hole. In general it is affected by the flux,
because the Schrodinger equation involves A, which is nonzero where the electron
moves. But since A is pure gauge, we are tempted to try to remove it from the
Schrodinger equation through the gauge transformation

A->A—vVo

In so doing, the wave function of the electron acquires the phase factor
iew 4 e® 17
exp(— hc)—exp —i (Tc—) (11.72)

which is generally unacceptable because it will render the wave function discon-
tinuous in space (for 8 increasesby 2« each time we go around the hole). The
objection is circumvented under either of the following circumstances:

(a) The electron islocalized,” i.e., its wave function is nonvanishing only
in the neighborhood o some point. In this case, where (11.72) might
lead to a discontinuity, the wave function vanishes anyway. This is not
relevant to free electrons, but may be relevant, for example, for an
electron trapped by an impurity in a metal.

(b) The electron is™ extended,” with a wave function that is phase-coherent

around a closed path about the hole, but the flux is quantized in integer
multiples of the flux quantum

O, = he /e (11.73)

In this case, (11.72) becomes a periodic function d 8 and represents a
legitimate gauge transformation. Thus, the vector potential can be
transformed away, and the electron does not "know™ there is flux
through the hole. This is the basis o the Aharanov-Bohm effect,* and
the flux quantization in superconductivity,” which have been experimen-
tally verified.

The relevance of flux quantization to the Landau levels liesin the fact that
the degeneracy (11.69) isjust the total magnetic flux measured in units o the flux
quantum:

g=2/9, (11.74)

*Y . Aharanov and D. Bohm, Phys. Rev. 115, 465 (1959).
¥See P. G. De Gennes, Superconductivity of Metul und Alloys (Benjamin, New York, 1966),
p. 149.
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We have been working in a gauge in which the wave functions have definite
linear momentum in the x direction. Thus the probability densities are indepen-
dent of x, and peaked about parallel ridges at y = y,. The spacing between
successivevalues o y, is he/eHL, and hence the area o the strip in the xy plane
between two neighboring ridges is sc/eH. Thus, exactly one flux quantum hc/e
goes through the strip.

Since the energy levels are highly degenerate, we can make linear transfor-
mations on the wave functions belonging to the same Landau level to obtain
equivaent sets. Such transformations are equivalent to gauge transformations.
We can make them eigenfunctions of angular momentum about the z axis, in
which case the probability distributions will be peaked about circles in the xy
plane about the z axis, with exactly one quantum o flux going through the
annular ring between two successive circles. We can also make them into
individual orbitals, whose centers form a regular lattice in the xy plane. In this
case each orbital will link exactly one flux quantum (a“ vortex.") These different
bases areillustrated in Fig. 11.9.

The qualitative fact relevant to our immediate purpose is that the flux
guantum sets a finite minimum size of an orbit, and thereby provides the escape
from Van Leeuwen's theorem.
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Magnetic Susceptibility
The grand partition function is
2=1101 + ze Fo) (11.75)
X
where A denotes the set of quantum numbers{ p,, j,a), witha=1,..., 9. Thus
£ %]
log2= Y Y Y log[l t ze=Ber:]
a=l j=0 p,
2L 2 om .
- f dp |Og[1 + ze‘ﬂ‘(P,J)] (1176)
h 2%

The average number of electronsis
2gL *® © 1

N=Z dp —————
n Sl F R

(11.77)

To calculate the magnetizationin the classical domain we take the high-tem-
perature limit. The condition (11.76) requiresthat z — 0 to keep N finite. Thus
we expand the above equations in powers of z, and retain only the first-order
term:

o0
log9 = 22_gL Y fwdpe-ﬂ[p2/2m+hwo(j+1/z)]
ho 267

zgl,  e™*
S 11.78
Al—e % ( )
where A = y27h*/mkT and X = hw,/2kT. We keep only the lowest-order
contribution in x:

zgL 1 x? zv 1 ( hwy\?
IOggz_}\_Z(l_?)=F[l_ﬁ(ﬁ):| (11.79)
from which follows
z eh \?
X= 73N (Z_rnc) (11.80)

To eliminate z, we note from (11.77) that to first order in z, N is the same as
log 9. Hence

N2 11.81
vy (11.81)
Solving for z and substituting the result into (11.80), we obtain the final answer

L[y (11.82)
x~_3kTv(2mc) '
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which conforms to Curie's 1/T law. Since the lowest energy of an electron is
hwy/2 = (eh/2mc)H

we see that the magnetic moment of the minimal orbit is just the Bohr magneton
eh/2me.

11.4 THE DE HAAS-VAN ALPHEN EFFECT

We now turn to the low-temperature limit of electrons in Landau levels. The
electrons will tend to occupy the lowest available levels. As the magnetic field is
decreased, each Landau level can accomodate fewer electrons because the degen-
eracy is decreased. Consequently, some electrons will be forced to jump up to a
higher level. This causes the de Haas-Van Alphen effect, the oscillation of the
low-temperature magnetic susceptibility as the magnetic field is decreased. To
study this effect in a simple context we shall assume k7 < hw,, SO that we can
set T = 0. We shall also ignore the motion in the z direction.*

Our problem is to calculate the ground state energy of a two-dimensional
electron system of total area L? in a uniform magnetic fiedld H. We write the
Landau levels e and their degeneracy g in the following notation:

ej=2u0H(j+ 1), po = eh/2mc
g=NH/H,, H, = nhc/e
where n = N/L? is the number of electrons per unit area. The fidd H, is the
value of H above which the Landau level can hold al the N particles.
If H/H, > 1, then al particles can be accommodated in the lowest Landau
level, and the ground state energy per particle is
E,/N=p,H, (H/H,>1) (11.84)
If H < H,, then some particles will have to occupy higher levels. Suppose H is

such that the j lowest Landau levels are completely filled, the (j T 1)th leve is
partidly filled, and al higher levels are empty. The condition for H is

(J+Dg<N<(j+2)g

(11.83)

or

! i ! 1185
J+2 " H, S+t (11.85)

For H in this interval,
Eo/N = géei + [N =+ Dglen
= po( H/H)[2j + 3 = (j+ 1)(j + 2(H/Hy)]  (11.86)
*The experimental effect was discovered by W. J. De Haas and P. M. Van Alphen, Leiden

Commun., 212 (1931). Our simplified model is that of R. E. Peierls, Z. Phys. 81, 186 (1933). For a
more realistic treatment see J. M. Luttinger, Phys. Reu. 121, 1251 (1961).
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Fig. 11.10 De HaasVan Alphen effect.
Introducing the parameter
x = H/H, (11.87)
we can summarize the results as follows:
poHox  (x>1)
1 Hox|(27+3)—(j+ 1){(J+2)x
(B - poHox[(2j +3) = (J + D(J + 2)x] (11.58)

<x <
j 2 ] 17] s Ly &y

The magnetization per unit volume and the magnetic susceptibility per unit
volume are respectively given by

—pon  (x>1)
pon[2(j + 1)(j + 2)x = (2/ + 3)]

M= 1 1 (11.89)
—_— —, j=0,1,2,...
j+2<x<]+1,j s Ly &y )

0 (x>1)
={ 2ugyn 1 1

X Ko . . .

1 + 2 — <x<——,j=0,1,2,...
H, (j+1)(+2) (j+2 X< )
(11.90)

These are shown in Fig. 11.10

11.5 THE QUANTIZED HALL EFFECT

The Hall effect was discovered in the nineteenth century: When crossed magnetic
and electric fields are applied to a metal, a voltage is induced in a direction
orthogonal to the crossed fields, as evidenced by an induced current flowing in
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that direction— the Hall current. This effect is easy to understand on the basis of
the free electron theory of a metal, as follows. Crossed magnetic and electric
fields, denoted, respectively, by H and E, act as velocity filters to free charges,
letting through only whose those velocity v is such that E + (v/c)B =0, or

v FE

=3 (11.91)
For free charge carriersin a metal, the current density is

j = gnv (11.92)

where ¢ is the charge, and n the density. The Hall resstivity p, , is defined as the
ratio of the electric fidd (in the y direction) to the Hall current density (in the x
direction):

j=— (11.93)

Substituting this into (11.92) and then into (11.91), we obtain

H
[ o~ (11.94)
Measurements of the Hall resitivity in various metals has yielded charge carrier
densities and provided the first demonstrations that there are not only negative
charge carriers (electrons), but also positive ones (holes).

The two-dimensional electron system used as a model in the last section can
now be created in the laboratory, thanks to developments in the transistor
technology. It can be made by injecting electrons into the interface d an aloy
sandwich, which confines the electronsin a thin film about 500 A thick. The Hall
experiment has been performed on such two-dimensional electron systems at very
low temperatures, and the direct resstivities p,, and the Hall resistivities p,,
have been measured, asindicated in Fig. 11.11.

The experimental results are quite dramatic, as shown in Fig. 11.12. As the
magnetic field H increases the degeneracy of the Landau levels increases. Since
the electron density does not depend on the field the filling fraction » o the
lowest Landau level decresses:

hen
eH

M

v (11.95)
The Hall resistivity exhibits plateaus at » = 1, 2, 3, with values equal to 1/», in
units of h/e2. At the same time, the conventional resitivity p, , drops to very low
values. This indicates that in the neighborhood of these specid filling fractions
the two-dimensional electron fluid flowswith almost no resistance. The value at
v = 1, called the integer quantized Hall effect, was first observed in a MOSFIT
(metal-oxide semiconductor field-effect transistor) at T = 1.5 K. The Hall resis-
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Uniform
magnetic field

- [
/ Y Hall current

—

Appl’ied

voltage

Fig. 11.11 The Hal dfect. A current | flows in a
direction orthogond to crossed dectric and magnetic
fids The Hal restivity is defined &s p,, = V/I. The
conventiond resigtivity p, . can be obtained by measuring
the voltage drop dong the direction d the current.

tivity was found to be quantized with a precision of one part in 10°* The
fractional values were found soon after.?

The integer effect is easy to understand on a naive basis. Since at » = 1 the
lowest Landau level is completely filled, there is an energy gap above the Fermi
level. Low-energy excitations are therefore impossible, and so the centers o the
electron orbits flow like a free gas. Using (11.94) with n = eH /hc, the Landau
degeneracy per unit area, we immediately obtain the desired resuilt.

Py =3 (11.96)

But this does not explain why the Hall resistivity continues to be quantized even
when the fidd is changed somewhat, so that there is a plateau of the quantized
value, as seen in the data.

Laughlin* offers the important insight that the integer effect is due to the
phase coherence of the electronic wave function over the entire sample, and that
the effect of impurities are important in producing the observed plateau. Con-
sider a sample in the form o a ribbon forming a closed loop, as shown in Fig.
11.13. A magnetic field H pierces the ribbon everywhere normal to its surface,
and avoltage V is applied across the edges o the ribbon. Our object is to deduce
the relation between the Hall current | and V.

The Hall current produces a magnetic moment u = 14 /c, where A is the
area enclosed by the ribbon loop. Imagine that a small amount of magnetic flux
8@ isintroduced through the loop, corresponding to an increase in the magnetic

*K. V. Klitzing, G. Dorda, and M. Pepper, Phys. Rev. Lett. 45, 494 (1980).

fD. C. Tsui, H. L. Stormer, and A. C. Gossard, Phys. Reu. Lett. 48, 1559 (1982).

*R.B. Laughlin, Phys. Reu. B 23,5632 (1981). See also B. |. Halperin, Phys. Reu. B 25, 2185
(1982).
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Conventional
resistivity
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Magnetic field H ———=

Fig. 11.12 Quantized Hdl effect: Schematic representation
d expeimentd data. Thefilling fraction v is the fraction d
degenerate dates in the lowest Landau levels occupied by
eectrons. The Hall resdtivity exhibits plateau d vdue 1/,
a v=1,%1 (inunitsd h/e’) The conventiond residivity
becomes vay andl at these vdues. The quantization is
accurate to at least one part in 10%.

Magnetic field

Fig. 11.13 Hdl efect in idedized geometry.
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field 8H = 8®/4 normal to the plane of the loop. The energy of the system
increases by 8E = u 8H = (IA/c)(6®/A4). Hence we can find the current from
the formula
OF .
I/c 50 (11.97)

We recall from our discussion of flux quantization in Section 11.3 that the
"localized" electrons will not respond to the flux, but the " extended™ ones may.
Electrons in Landau levels do have extended wave functions, and thus will
respond to the flux and contributeto the Hall current. Acrossthe ribbon, in they
direction, the wave function of an electron is peaked about some vaue of vy, say
¥,- The dlowed values of y, extends from one edge of the ribbon to the other.
(We are using here the "' strip™ representation of the wave functions, as shown in
Fig. 11.9a.)

Consider now a completely filled Landau level. The electron density across
the ribbon may be represented schematically as in Fig. 11.14. The electrons lying
closer to the right edge have a higher electrostic energy because of the applied
voltage. Now imagine that the flux through the loop is increased dowly from
zero. The electrons will respond to the change until the flux reaches the quantum
value Ac /e, at which point they cannot fed the flux. During the ow increase, the
energy o the electrons must rise by the transfer o electrons from one edge of the
ribbon to the other. When the flux reaches one quantum, the electron distribution
must look exactly the same as before. Overall, therefore, the electrons play
musical chairs, moving up one position per quantum of flux penetration, as
indicated in Fig. 11.14. Since the gain in energy is 8E = eV, and the change in
flux is 8® = hc/e, we have from (11.97) | = (e?/h)V, whence

h

Applied voltage V

//fl y
p Edges of ribbon — ___f/
Fig. 11.14 Schematic representation d electron density across the ribbon
in Fg. 11.13, when the lowest Landau levd is completdy filled. The
eectrons move to the right by one "musica char,” when one unit d test
flux pushes through the loop in Fig. 11.13.
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Density of states

Energy
(a)

(b)
Fig. 11.15 Dendty d date of an éectron in a magnetic
fidd. (a) In a pure metd, asriesof ddtafunctionsmark the
postions d the Landau levds (b) In the presence d
impurities, the Landau levds broaden to bands (shaded
region). Locdized dectrons dates fill the gap between
Landau bands. E, denotes the Fermi levd.

If the total number of electronsis fixed, then changing the magnetic fidd
will change the filling fraction. A filled level will either become underfilled, or it
will spill electrons over to a higher level. In either case, the previous analysis
breaks down. However, in a physical sample there are awaysimpurities that trap
electrons into localized states. It is the presence of impurities that give rise to the
stability of the effect, as shown by the plateau in the data.

In Fig. 11.15 we show the density df states in a pure sample as compared
with one with impurities. In a pure sample we have a series of 6 functionsat the
Landau levels, whilein the presenced impurities each Landau levd is broadened
to a band, shown shaded in Fig. 11.15. At low impurity densities these bands do
not overlap. The important point is that between the Landau bands the density
o states is not zero, as would be the case for a pure sample, but is filled by
contributions from localized states. The Fermi level can lie in a continuum
between Landau bands, and it can shift in response to a changein the occupancy
o thefilled Landau band, so that the band beneath it remainsfilled. Thus, for a
certain range of the external magnetic field the lowest Landau band remains
completely filled, and our argument applies.

The fractional effectsare more intriguing. What accounts for the stability of
the electron film when the Landau leve is only one-third full? The answer must
lie in the Coulomb interaction among the electrons, but so far we only have
preliminary guesses.*

*R. B. Laughlin, Phys. Rev. Lett. 50, 1395 (1983).
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11.6 PAULI PARAMAGNETISM

The Hamiltonian of a nonrelativisticfree electronin an external magneticfiedd B
is given by

1 e \?
g(p + ;A) —uo*H (11.99)

where u, = eh/2me, and a are the Pauli spin matrices. The first term gives rise
to diamagnetism, as we have studied. The second term gives rise to paramagne-
tism. We now consider its effect alone, and take the single-particle Hamiltonian
to be*
p?.
H=——peo-H (11.100)
2m
The eigenvaluesof a+ H are sH, where s = +1. Hence the single-particleenergy
levels are
€p,s = ﬁ - S‘LOH (11101)
An energy eigenvalue o the N-particle system may be labeled by the occupation
numbers n, , of the single-particlelevels ¢,

2 2
p p
En = EEC ,sn .5 = El:( - “’OH)n L+l + (— + MOH)}’I _1]
p s P P 2m P 2m P

P

(11.102)
where
n,,=0,1
ZZ"p,s= N (11.103)
s p
Let
Ry 1 =1,
np,_l = n;
Yn, . =N, (11.104)
P

Xn, ;=N =N-N,
P
Then an energy eigenvalued the system can aso be written in the form

2

N\ P
E,= Y(ny +n,) 5~ poH(N, = N.) (11.105)
P

*Following W. Pauli, Z. Phys. 41, 81 (1927)
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The partition function is

pA

Ov= X exp|-BX(ny + ";);_m + BpoH(N, - N)J (11.106)

{ng 3 {ng} P

where the prime over the sum denotes the restrictions (11.103). The sum can be
evaluated as follows. First we choose an arbitrary integer ¥, and sum over dl
sets {ny},{n;} such that }n; =N, and Y n; = N - N,. Then we sum

P P
over al integers N, from 0 to N. In thismanner we arrive at the formula

N p2 p2
Q,= L eMoeN T exp (—BZ z—n:)Z"’ exp (—BZ T"E)
N,=0 {(n}} p <M {ng} p <M
[ P

(11.107)
where Y.” is subject to the restriction Xp‘,n; = N+,and Y. issubject to the
restriction Zn; = N_=N _ N+.Let 9 denote the partition function of the

P

ideal Fermi gasdof N spinless particlesof mass m:

2
P .
oY = ) ZN exp (—B% mnp) = ¢ BAM) (11.108)
ny=
Then
N
Oy = e MtV Y 2BuHN. 0000
N.=0

1 1 N
~ log Qn = —BuH +  log Y, ePumoHN —BANH=BAN (11.109)
N,=0

Thereare N * 1 positive termsin the sum just given. The logarithm of this sum
isequal to thelogarithmof thelargest term in the sum plus a contribution of the
order of log N. Therefore, neglectinga term of order N~! log N, we have

1 _

5 log 0y = B/(N ) (11.110)

where

f(N,) = max [f(N,)]

POV = ot S35 =1 = AN + 4 - X,

(11.111)

Obviously we can interpret N, as the average number of particles with spin up.
If N, isknown, the magnetization per unit volume can be obtained through the
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formula
po(2N, — N
M= Il (11.112)
V
We now explicitly find N . The condition (11.111) is equivalent to the condition*
laf(M)] »
IN, N,=N,
dA(N’) dA(N - N")

poH — - | =0 (11.113)

dN N=N, dN NN,

Let kTv(N) be the chemica potential of an ideal Fermi gas of N spinless
particles:

dA(N)
kTv(N) = N (11.114)
Then
dA(N') _
[ N |wer = kTV(N+)
dA(N — N’) _ [ea(nv-N) _
[ aN’ ]N'=17+ - _[ (N - N’) ].1v~1v'=1v—ﬁ+ - _kTV(N B N+)
Thus (11.113) becomes
kKT[v(N,) —»(N=N_,)] =2p,H (11.115)

This condition states that at a given temperature the average number of particles
with spin up is such that the chemical potential of the particles with spin up is
greater than that of the particleswith spin down by 2u,H. We solve (11.115)in
the low-temperature and high-temperature limits.

Let the Fermi energy for the present system be

372N\ B2
eF(N)E( ” ) — (11.116)

2m
In the low-temperature region (kT < €), we can use the expansion (11.24) for
kTv(N):

72 kT P
kTv(N) =eF(2N){1 - E[m} + }

*We should make sure that (11.113) determines a maximum and not a minimum and that N,
liesbetween 0 and A. It can be verified that (11.113)hasonly onereal root that automatically satisfies
these requirements.

"Note that in (11.24) the symbol ¢, stands for the Fermi energy of N spinless particles and
does not have the same meaning as ¢, here.
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Thus (11.115) becomes

_ _ 72(kT)?
er(2N,) — (2N -2N,) - 1
1 1 -
X = — = + - = 11.117
er(2N,) er(QN —2N ) Fo ( )
Let
IN,
rs— -1 (-1<r<+1) (11.118)

Then (11.117) becomes

(1 +r)2/3— (1- r)2/3— W_Z(E)Z

12\ ex
x[(l n r)_z/a -1- r)—z/z] + - = ?’_{1 (11.119)
F
At absolute zero, r satisfiesthe equation
A+’ -1-r)"= 2%11 (11.120)
F

This may be solved graphically, as shown in Fig. 11.16. For < e;/2p an
approximate solution is

3ugH
r =
2¢p
(11.121)
— N 3uH
N, = —
2 2€p
2B — - 2 2
4 ns = (=0
7/
uB| 7‘{ |
F v //I’/\Slope=4/3
/// | |
1 Z
= L ! ,
l ro+1
| //
| /////
: ////
r /
|
,/ _________ —2%

Fig. 11.16 Graphical solution of (11.122).
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Thus when H = 0 hdf the particles have spin up, and the other hdf spin down.
When H > 0 the balance shifts in favor of spin up. From (11.112) and (11.121)
we obtain, for absolute zero,

g B

v 2e v

3uiH
X z

(11.122)

2e0

For 0 < kT < ¢, and p << ¢, we can solve (11.119) by expanding the left side
in powers of r, and we obtain

3poH w2 [ kT\?
r= 1- —|—
2ep 12 ep

_ (11.123)
3} ) 72 [ kT\?
x= 2ev 12\ ep
For high temperatures (kT > €,) we use (11.12):
(N) =1 NN
v = log ”
Hence (11.115) gives
N1 +r) N(1-r) 2uoH
log| ——~ 1 — log =
v v kT
poH — woH
=tanh — = ——
r=tanh —— T (11.124)
The magnetic susceptibility per unit volumeis then given by
2
Ko
= — 11.125
X= ( )

A qualitative plot of kTx isshown in Fig. 11.17.

| .
kT Fig. 11.17 Pauli paramagnetism.
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11.7 MAGNETIC PROPERTIES OF AN IMPERFECT GAS

How would interparticle interaction affect the magnetic properties of an electron
gas? Qualitatively speaking, the effect of a repulsiveinteraction will enhance the
paramagnetism, because two electronswould prefer to be in a spatially antisym-
metric wave function to minimize the repulsive energy. But an antisymmetric
spatial wave function requires a symmetric spin wave function, which is a triplet
state. Thus the repulsion tends to align the spins of the electrons.

We demonstrate this effect by considering an imperfect gas of spin- !
fermions at very low temperatures, so that the repulsive interaction can be
characterized by a single parameter, the scattering length a, or effective hard-
sphere diameter. To first order in a, the energy for an N-particle systemis given
by (A.41)in the Appendix. We take our model to be defined by (11.102) plus the
interaction energy:

2 2
p 47ah
E, = C ot ng)i—
" Zp:(np n")Zm * mV
The condition for the validity of thisformulais that kz|a| <« 1 where k. is the
wave number of a particle at the Fermi level: k2= (37%n)¥* Thus, the
condition for validity islow density, i.e., na® < 1.
The partition function is

N.N_ —(N,— N_)p,H (11.126)

2 2
r 47ah*N_ N _
Ov= ¥ exp|-B|E(n +n) L - pon(n, - Ny + TN
(. (ng) » 2m mV J
(11.127)

The notation is the sameas that of (11.106). Proceedingin the sasmeway asin the
evaluation of (11.106), we obtain

o0, = Bg(,) (11.128)
where
g(N,) = max [g(N )]
2N, 4mah?
g(N,)= uoH(T - 1) - N.(N-N,)
—%[A(NQ +A(N - N )] (11.129)

Thus N, istheroot of the equations

[ag(M)] o

IN ¥

L A (11.130)
[9 g(M)] -0

aNi N N+
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It must be noted that (11.130) locates the point at which the curve g( N, ) passes
through a maximum. It is conceivable (and in fact true) that N, may occur not
at amaximumdf thecurve g(N ) but at the boundary of theranged N _,ie., at
N,=0o0r N, = N. Wekeep thisin mind as we proceed. With »(N) defined as
in (11.114), we rewrite (11.130) as

2

KT[(N,) =5 (N = B )] = 2 + L (2, ~ N)

(11.131)
_ _ 8wah?
kT[v'(N.,)+»(N-N,)] - — >0
where v’(N) = dv(N)/IN. Let
2N,
re=—r—1 (-lsrs+]) (11.132)
Then (13.131) becomes
N N an?
kT{V 3(1 Nl -» 3(1 -n]) =2uoH + —-2kTr
(11.133)

d N
griv 30 |-
r
where v[x] = »(x) and A = y27h?/mkT , the thermal wavelength. The low-tem-

perature and high-temperature approximations for »( Nx /2) are obtainable from
(11.24) and (11.12), respectively. They are

N s 72 kT\* 1 kT
kTv 3x)~x EFl_E : Y :<<1

N he kT
kTV(—x)'zlog— — > 1
2 2v

€F

(11.134)

Spontaneous Maghetization
We first consider the case H = 0. At absolute zero, (11.134) reduces to

(l+r)2/3—(1—r)2/3=§'r

1 1 1 3 (11.135)
5 it |~ -
21(1+7r) 1-r) 4
where
8
{= —kra (11.136)
3

Equation (11.135) isinvariant under a changedf sign of r. Thisisto be expected;
in the absence of field, no absolute meaning can be attached to " up™ or "down."

274 STATISTICAL MECHANICS

Thus it is sufficient consider r > 0. We may solve (11.135) graphically by
referring to Fig. 11.16, where (1t r)>® — (1 — r)2/3 is plotted against r. We
need only obtain the intersection between the curvein Fig. 11.16 and the straight
line {r. It is seen that for { < §, r = 0 is theonly intersection. If ¢ is such that

d<¢<2¥? (11.137)
then there is an additional intersection r > 0, and the value r > 0 corresponds to
a maximum, whereas the value r = 0 corresponds to a minimum. If ¢ > 22/3,
then (11.135) has no solution. In this case the maximum of g(~ ) must occur
eitherat N, =0orat N, = N, unlessg(N ) isaconstant. Since g(N, ) isnot a
constant, and since thereis no distinction between N, = 0 and N. = N, wecan
choosetolet N, = N,or r =1 Thevadued r at absolute zero as a function o
the repulsive strength ¢, is summarized as follows:

r=20 (£ <% (no spontaneous magneti zation)
0<r<1 (%<¢<2%%) (patial spontaneous magnetization) (11.138)
r=I (¢>2°7) (saturated spontaneous magnetization)

That is, if the repulsive strength is sufficiently strong, the system becomes

ferromagnetic. The critical value o a at which ferromagnetism first sets in

(¢ = %) corresponds to
m

kea = - (11.139)

The foregoing resultshold at absolute zero. At a finite but small temperature
we have, instead of (11.135),

2/3 _ _r2/3_ﬁk_Tz ! — ! ={r
T+ = =r) 12(EFH(1+r)2/3 (1—r)2/3l§

1 1 o 3
(1+r)5/3+(1—r)5/3 } 4§
(11.140)

1 1 1 72 kT\?
211+ )" 1- Y120 e

Let »(T) be the solution at absolute temperature T. It is easily seen that if
r(0) = 0, then »(T) = 0; if (0) >'0, then r(T) < r(0). Thus, if thereis sponta-
neous magnetization at absolute zero, the magnetization decreases with tempera-
ture. The spontaneous magnetization vanishes above a critical temperature 7.
(the Curie temperature), which is the value of T at which both equations in
(13.45) are satisfied for ¢ > § and r = 0. We find that

K. 3,/ 4 2 \/zk 1 11.141
eF-wga_m@ wFa (11.141)

A qualitative plot of the magnetization pr/v isshownin Fig. 11.18.

It must be pointed out that the model we have used is a physical model only
if kgpa < 1 Thereforethe caseof ferromagnetism,which requires k a > 7 /2, is
beyond the domain of validity of themodel. It isinstructive, however, to see how
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M = pgr/v

7 (0)

_ T Fig. 11.18 Spontaneous megnetization d an im-
kTclep € perfect Fermi gas with repuldve interactions.

the spatial repulsion between the fermions can enhance the spin aignment to
such an extent that, if we are willing to extrapolate the results of a weak
interaction model, ferromagnetism results.

Paramagnetic Susceptibllity

We now consider thecaseof H > 0. Let »(T') be the valuedf r for H = 0, but
for an arbitrary temperature. Putting

v
r=r(T)* ’;—H (11.142)
0
and treating xvH /p, asasmall quantity, we can solve (11.134) and obtain
2p5/€ pv
X= wTT = ~ (11.143)
> F {V'[z(l +r)| + v 7(1 - ro)]} - gklya
The low- and high-temperature limits are
3ug/€ pv
X —1/3 -1/3 (11.144)
T-0 (14 r) +(1-1r) —(4/m)kra
2
Ko
—_—— 11.145
X o kTv ( )
Hence Curie's constant is
C= ko (11.146)
kv )

Note that r, depends on k .a. It approaches unity when k .a exceeds a certain
value. Thus is can be seen from (11.143) that in general x > 0. The system is
either ferromagnetic or paramagnetic, never diamagnetic.

Consider now the case of paramagnetism, for which we require r, = 0 for all
temperatures. This means that

m
kpa < 5 (11.147)
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Ix
c
1 ____________ :::
_ =7 Ideal Fermi gas Fig. 11.19 Paranagnenc; wscqot!bn!ty of
- an imperfect Fermi gas with repulsiveinter-
a | L actions. The modd used is well founded
0 1 er onlyfor kT/e, < 1.

Here (11.143) becomes
Tx 3kT 1

A, 11.148)
C 2ep f— (2/7)kra (
where
_ KN Y (11.149)
f=2a77 ( 2) '
The function (Tx /C) riseslinearly at T = 0, with a slope given by
a [ Tx 3 1
_(_) . S (11.150)
At\ C Jreo 21— (2/m)kga

It reaches a maximum value, which is greater than unity, at k7' /e, = 1. Then it
approaches unity as T — oo. A qualitative plot of Tx/C isshown in Fig. 11.19.
If we calculate x for an ideal Fermi gas endowed with the same magnetic
moment, we find the slope

9 (Ix > (ideal Fermi gas) (11.151)
—| —= = — [ [ .
8T( c )H 2 °

The imperfect gas has a steeper dope, as (11.150) shows, which is again a
reflection of the enhancement of spin alignment by the repulsiveinteraction. The
result is sometimes described by saying that imperfect gas behaves like an ideal
gas with a higher Ferrni energy.*

PROBLEMS

11.1 Give numericd etimatesfor the Fermi energy d
(a) eectronsin atypicd metd;
(b) nucleonsin a heavy nucleus,

(c) He® aomsin liquid He® (atomic volume = 46.2 A? /atom). Treat &l the mentioned
particles as free particles.

*See, however, Problem 11.7.
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11.2 Show that for the ideal Fermi gas the Helmholtz free energy per particle at low
temperatures is given by

A, Sat [ kT

_— = 2 —_ —] —_— + ...

N 3 12 \ e,

11.3 A collection of free nucleonsis enclosed in a box of volume V. The energy of a
single nucleon of momentum p is

where mc? = 1000 MeV.

(a) Pretending that thereisno conservation law for the number of nucleons, calculate the
partition function of a system of nucleons (which obey Fermi stetistics) at temperature T.
(b) Calculate the average energy density.

(c) Calculate the average particle density.

(d) Discuss the necessity for a conservation law for the number of nucleons, in the light
of the foregoing calculations.

11.4 (a) What isthe heat capacity C,, of a three-dimensional cubic lattice of atoms at
room temperature? Assume each atom to be bound to its equilibrium position by Hooke's
law forces.

(b) Assuming that a metal can be represented by such alattice of atoms plus freely moving
electrons, compare the specific heat due to the electrons with that due to the lattice, at
room temperature.

11.15 A cylinder is separated into two compartments by a free sliding piston. Two ideal
Fermi gases are placed into the two compartments, numbered 1 and 2. The particles in
compartment 1 have spin 1, while thosein compartment 2 have spin 2. They all have the
same mass. Find the equilibrium relativedensity of thetwo gasesat T=0andat T — 0.

11.6 Consider a two-dimensional electron gasin a magnetic field strong enough so that
al particles can be accommodated in the lowest Landau level. Taking into account both
orbital and spin paramagnetism, find the magnetization at absolute zero.

11.7 (a) Show that for the imperfect Fermi gas discussed in Section 11.6 the specific
heat at constant volumeis given by
- ar
oT

N N
I(r) = v[;(l + r)] - V{E(l - r)]
(b) Show that when there is no spontaneous magnetization
Cy= (CV)ideal gas

and hence the interpretation that the imperfect gas behaveslike anideal gas with a higher
Fermi energy cannot be consistently maintained.

2 d%r
+ —_—
"ar?

d

v

' = — 7 T2__
N 2k8T (r) aT mo

87‘] 32qah?
+

where

BOSE SYSTEMS

The dominant characteristic of a system of bosons is a " statistical™ attraction
between the particles. In contradistinction to the case o fermions, the particles
like to have the same quantum numbers. When the particle number is conserved.
this attraction leads to the Bose-Einstein condensation, which is the basis o
superfluidity. In this chapter we illustrate various bose systems, discuss the
Bose-Einstein condensation, and introduce the notion o the superfluid order
parameter.

12.1 PHOTONS

Consider the equilibrium properties of electromagnetic radiation enclosed in a
volume V at temperature 7, a system known as a " blackbody cavity.” It can be
experimentally produced by making a cavity in any material, evacuating the
cavity completely, and then heating the material to a given temperature. The
atoms in thewalls o this cavity will constantly emit and absorb electromagnetic
radiation, so that in equilibrium therewill bea certain amount of electromagnetic
radiation in the cavity, and nothing else. If the cavity is sufficiently large, the
thermodynamic propertiesd the radiation in the cavity should be independent o
the nature o the wall. Accordingly we can impose on the radiation fied any
boundary condition that is convenient.

The Hamiltonian for a free electromagnetic field can be written as a sum o
terms, each having the form o a Hamiltonian for a harmonic oscillator o some
frequency. This correspondsto the possibility of regarding any radiation fied as
a linear superposition of plane waves of various frequencies. In quantum theory
each harmonic oscillator o frequency w can only have the energies(n + Dho,
wheren = 0,1,2,... . Thisfact leads to the concept o photons as quanta o the
electromagnetic field. A state of the free electromagneticfield is specified by the
number n for each o the oscillators. In other words, it is specified by enumerat-
ing the number of photons present for each frequency.
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According to the quantum theory d radiation, photons are masdess bosons
o spin A. The masdessnessimplies that a photon always moves with the velocity
o light ¢ in free space, and that its spin can have only two independent
orientations: parallel and antiparallel to the momentum. A photon in a definite
spin state corresponds to a plane electromagnetic wave that is either right- or
left-circularly polarized. We may, however, superimpose two photon states with
definite spins and obtain a photon state that is linearly polarized but that is not
an eigenstate of spin. In the following we consider linearly polarized photons.

For our purposeit is sufficient to know that a photon o frequency « hasthe
following properties:

Energy = Aw
w
Momentum = AKk, k| = = (12.1)
Cc
Polarizationvector = r, le| =1, kee=0

Such a photon corresponds* to a plane wave d electromagnetic radiation whose
electric field vector is

E(r, 1) = e it (12.2)

Thedirection of e isthedirection o theelectricfield. Theconditione« k = 0isa
consequence of the transversality o the electric field, i.e., V < E = 0. Thus for
given k there are two and only two independent polarization vectors r. If we
impose periodic boundary conditions on E(r, t) in a cube d volumeV = L3, we
obtain the following alowed values o k:

27n

L (12.3)
n = avector whosecomponentsare0, + 1, +2,.

Thus the number o alowed momentum values between k and k + dk is

s4mk? dk (12.4)

(27)
Since atoms can emit and absorb photons, the total number of photons is not a
conserved quantity.
The total energy d the state d the electromagneticfidd in which there are
N, . photons of momentum k and polarization e is given by

E{nk,:} = Zhwnk,t (125)

k, e

where w = cl|k|
Mee=0,1,2,... (12.6)

*For a precise meaning of this statement, we refer the reader to any book on the quantum
theory of radiation.
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Since the number o photons is indefinite, the partition function is
Q= Y ¢ AE(mMY (12.7)
{n, o}
with no restriction on {n, . }.* Thecalculationd Q istrivial:

d 1
0= ¥ ew(-BThom =TI L e =TT
{ny e) k, ¢ K, € ;=0 Kk, € e
l0gQ = — ¥ log (1 e #) = 2} log(1 — ™) (12.8)
k, ¢ K

The average occupation number for photons o momentum k, regardless o
polarization, is

- _ _ 1 = 12.9
(mo B 9(hw) 0g 0 efho 1 (12.9)
where the factor 2 comesfrom the two possible polarizations.
Theinternal energy is
d
U= - —logQ= Y hw(ny) (12.10)
B K
To find the pressure, we express Q in the form
logQ = -2 log (1 — e prczamp- ") (12.11)
from which we obtain
1 4 1
P=——1 =—)h
B av og Q 3V§ w(n)
Comparison between this equation and (12.10) leads to the equation o state
PV =13U (12.12)

We now calculate U in thelimit asV — oc. From (12.10), (12.9), and (12.3)
we have

U 2y oodk4 X2 hck Vh ood w?
= (277)3'/(; TR BRek 1 chs'/(; @ GBhe _
Hence the internal energy per unit volumeis

U oo

~ =f0 dou(w, T) (12.13)
where

A w’
u(w,T) — PN B (12.14)

1

*One could say that the chemica potentia is 0, because a photon can disappear into the
vacuum.
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This is Planck’s radiation law, which gives the energy density due to photons o
frequency o, regardless d polarization and direction of momentum. The integra
(12.13)can be explicitly evaluated to give

U =*(kT)*
% = EW (12.15)
It follows that the specific heat per unit volumeis
4t T3
Cy = m (1216)

The specific heat is not bounded as T — oo, because the number o photons in
the cavity is not bounded.

Both (12.14) and (12.15) can be verified experimentally by opening the
black-body cavity to the external world through a small window. Radiation
would then escape from the cavity with the velocity c. The amount o energy
radiated per second per unit area of the opening, in the form o photons o
frequency o, is

dQ c
(0, T) = C/Eu(w,T yost = —u(w, T) (12.17)

where the angular integration extends only over a hemisphere. Integrating over
the frequency, we obtain
I(T) = [~ dol(e,T) = oT*
0
72kt
~ 60R
This is known as Stefan'slaw, and ¢ is Stefan's constant. The function I(w, T )is
shown in Fig. 12.1, showing that the radiation peaks at a frequency that is an
increasing function of T. The area under the curves shown in Fig. 12.1 increases
like T*. All these conclusionsare in excellent agreement with experiments.
It should be noted that although the form of u(w, T ) can be arrived at only
though quantum theory the equation of state PV = U/3 and the fact that
U o T* can be derived in classical physics.

(12.18)

o

I, T)
T3s>To>T

w .
w) w2 w3 Fig. 12.1 Planck’s radiation law.

282 STATISTICAL MECHANICS

The equation o state may be derived as follows. Consider first a plane
wave whose electric and magnetic fidd vectors are E and B. The average energy
density is

LB+ p7) = F?
The radiation pressure, which is equal to the average momentum flux, is
|E X B| = E?

Thus the energy density is numerically equal to the radiation pressure. Now
consider an amount of isotropic radiation contained in a cubical box. The
radiation field in the box may be considered an incoherent superposition o plane
waves propagating in all directions. The relative intensities of the plane waves
depend only on the temperature as determined by the wals of the box. The
radiation pressure on any wal of the box isone-third o the energy density in the
box, because, whereas al the plane waves contribute to the energy density, only
one-third o the plane waves contribute to the radiation pressure on any wall o
the box.

Toderive U a T*, recall that the second law of thermodynamicsimplies the
following relation, which holds for al systems:

au apP
(W)T—__T(ﬁ)V_P (12.19)
From PV = U/3 and thefact that P depends on temperature alone we have
au U
(W)T=3P= % =u(T) (12.20)
Using (12.19)we have
T du
“3ar
du _ dar
w T
Hence
u=CT* (12.21)

The constant C cannot be obtained through classical considerations.

If the photon had afinite rest mass, no matter how small, then it would have
three independent polarizationsinstead d two.* There would be, in addition to
transverse photons, longitudinal photons. If this were so, Planck's radiation
formula (12.14) would be altered by a factor o 2. The fact that (12.14) has been
experimentally verified means that either the photon has no rest mass, or if it
does the coupling between longitudinal photons and matter is so small that

*If the photon had a finiterest mass, it could be transformed to rest by a Lorentz transforma
tion. We could then make a second Lorentz transformation in an arbitrary direction, so that the spin
would lie neither parallel nor antiparallel to the momentum.
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thermal equilibrium between longitudinal photons and matter cannot be estab-
lished during the course d any o our experiments concerned with Planck's
radiation law.

12.2 PHONONS IN SOLIDS

Phonons are quanta d sound waves in a macroscopic body. Mathematically they
emerge in a dmilar way that photons arise from the quantization o the
electromagnetic field. For low-lying excitations, the Hamiltonian for a solid,
which is made up d atoms arranged in a crystal lattice, may be approximated by
a sum of terms, each representing a harmonic oscillator, corresponding to a
normal mode o lattice oscillation.* Each normal mode is classically a wave o
distortion of the lattice planes—a sound wave. In quantum theory these normal
modes give rise to quanta called phonons. A quantum state o a crystal lattice
near its ground state may be specified by enumerating al the phonons present.
Therefore at a very low temperature a solid can be regarded as a volume
containing a gas o noninteracting phonons.

Since a phonon is a quantum o a certain harmonic oscillator, it has a
characteristic frequency «, and an energy Ao,. The state o the lattice in which
one phonon is present corresponds to a sound wave o the form

eeikor—wn (12.22)
where the propagation vector k has the magnitude

w
k| = — (12.23)
4

in which c is the vdocity d sound.? The polarization vector € can have three
independent directions, corresponding to one longitudinal mode o compression
wave and two transverse modes of shear wave. Since an excited state d a
harmonic oscillator may contain any number o quanta, the phonons obey Bose
statistics, with no conservation o their total number.

If asolid has N atoms, it has 3N normal modes. Therefore there will be 3N
different types d phonon with the characteristic frequencies

@1, @gyeen, Wy (12.24)

The values of these frequencies depend on the nature o the lattice. In the
Einstein model of a lattice they are taken to be equal to one another. An
improved model is that of Debye, who assumed that for the purpose of finding
the frequencies (12.24), one may consider the solid as an elastic continuum o
volume V. The frequencies (12.24) are then taken to be the lowest 3N normal
frequencies of such a sysem. Since an elastic continuum has a continuous

*|n as much as anharmonic forces between atoms, which at high temperatures allow the lattice
to melt, can be neglected.
TWe assume an isotropic solid, for which ¢ isindependent of the polarization vector .
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distribution of normal frequencieswe shall beinterested in the number of normal
modes whose frequency lies between « and « + do. To find this number we
must know the boundary conditions on a sound wave in the elastic medium.
Taking periodic boundary conditions, we find as usual that k = (2« /L)n, where
L = ¥'!/3 and n has the components0, +1, +2,... . The number we seek is then

no. of normal modeswith 3v
f(w)do frequency betweenw and » + do ~ (2—77)’4”k2dk (12.25)

wherethe factor 3 comesfrom the three possiblepolarizations. Sincek = w/c we
have

3w?
flw)dw = Vm dw (12.26)
The maximum frequency w,, is obtained by the requirement that
[77(w) do = 3N (12.27)
0
which gives, withv = V/N,
6772 1/3
w,, = c(—) (12.28)
v
The wavelength corresponding to w,, is
Am = 2me - (§7,U)1/3 ~ interparticle distance (12.29)
w

m

This is a reasonable criterion because for wavelengths shorter than A, a wave of
displacements of atoms becomes meaningless.

We now calculate the equilibrium properties of a solid at low temperatures
by calculating the partition function for an appropriate gas d phonons. The
energy o the state in which there are n, phonons o the ith typeis*

3N
E{n} =Y nho, (12.30)
i=1
The partition function is
BE{n,} - !
0= 2 e =Tl
Hence
3N
logQ = — ) log(1 — e #he) (12.31)

i=1

*We should add to (12.30) an unknown constant representing the ground state energy of the
solid, but this constant does not affect any subsequent results and hence can be ignored.
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The average occupation number is

1 ad |
(ny=- E 3(’“’-’,’) 0gQ = ehhe _
The integral energy is
P 3N N ho,
U= —g5le0= Lhotny= L ooy

Passing to the limit V — oo we obtain, with the help of (12.26),

3V W, hw
_ " 2
v= 27r2c3f0 do e G

N (ko
We define the Debye function D(x) by

u 9(kr)* phon 13
= t
m)3/0 e'—1

3 @ 1-x Tt (xx1)
D(x) — dt =( g4
X e —1 S —x x> 1
iy O(e ™) ( )
and the Debye temperature 7, by
6772 1/3
kTp = hw, = hc(—)
v
Then
3T,
=2 4. T> T,
U 3kT(1 ST + ) (T>Tp,)
FV— = 3kTD(}\) = 774 T 3
T | — | —| +0(e™/T)| (T<Tp)
where A = T, /T. Then the specific heat is given by
C, -+ dD(X) [ A ]
—~ =3D(\) + 3T = 3|4D(X) -
The high- and low-temperature behaviors o C, are as follows:
1o (22 2 T> T),)
-—=] + - >
Cy 20( T) (T
Nk | 120t T\
”(~ +0(e ) (T = Ty)
5 \1,
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(12.32)

(12.33)

(12.34)

(12.35)

(12.36)

(12.37)

(12.38)

(12.39)

(12.40)
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| »p Fig. 12.2 Specific heat of a crystal lattice in
Ty Debye’s theory.

A plot of the specificheat is shown in Fig. 12.2, which agrees quite wel with
experimental findings.

At low temperatures C,, vanishes like T3, verifying the third law of
thermodynamics. When the temperature is much greater than the Debye temper-
ature the lattice behaves classically, as indicated by the fact that C,, = 3NK. For
most solids the Debye temperature is o the order o 200 K. This is why the
Dulong-Petit law C,, = 3Nk holds at room temperatures. At extremely high
temperatures the modd o noninteracting phonons breaks down because the
lattice eventually melts. The melting o the lattice is made possibly by the fact
that the forces between the atoms in the lattice are not strictly harmonic forces.
I n the phonon language the phonons are not strictly free. They must interact with
each other, and this interaction becomesstrong at very high temperatures.

12.3 BOSE-EINSTEIN CONDENSATION

Equation (8.71)gives theequation of statefor theideal Bosegasdof N particlesd
mass m contained in a volume V. To study in detail the properties of the
equation o state we must find the fugacity z as a function o temperature and
specific volume by solving the second equation o (8.71), namely
1 1 1 =z
PR ES

where v = V/N, and A = y27h*/mkT, the thermal wavelength. To do this, we
must first study the propertiesof thefunction g, ,,(z), whichisaspecial cased a
more general classd functions

(12.41)

w0
g.(z) = El -

These functions have been studied* and tabulatedt in the literature.

It isobvious that for red valuesdf z between0 and 1, g; ,(z) isa bounded,

positive, monotonically increasingfunction of z. To satisfy (12.41)it is necessary

(12.42)

*J. E. Robinson, Phys. Rev. 83,678 (1951).
TF. London, Superfluids, Vol. II (Wiley, New York, 1954), Appendix.
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8y, (2)

2612 |———————

Fig. 12.3 The function g; ,(2).

that

O0<zx<l1
For comparison we recal that 0 I z < oo in the case o Ferrni statistics. For
small z, the power series (12.42) furnishes a practical way to caculate g; ,(z):

z? z?
g3/2(z)=z+m+m+--- (12.43)
At z = 1 its derivativediverges, but its valueis finite;
|
g,(1)= X A ¢(2) =2612... (12.44)
=1
where {(x) is the Riemann zeta function o x. Thus for al z between 0 and 1,
g3(z) 1 2.612... (12.45)

A graph o g; ,(z) isshown in Fig. 12.3.
Let us rewrite (12.41) in the form

n, A
o ) (1246

This impliesthat {n,)/V > 0 when the temperature and the specific volume are
such that

}\3

3
ke 832 (1) (12.47)

This means that a finite fraction o the particles occupies the level with p = 0.
This phenomenon is known as the Bose-Einstein condensation. The condition
(12.47) defines a subspace d the thermodynamic P-u-T space of the ideal Bose
gas, which corresponds to the transition region o the Bose-Einstein con-
densation. As we see later, in this region the system can be considered to be a
mixture o two thermodynamic phases, one phase being composed o particles
with p =0 and the other with p # 0. We refer to the region (12.47) as the
condensation region. It is separated from the rest of the P-u-T space by the
two-dimensional surface

}\3

~=8,(1) (12.48)
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Fig. 12.4 (a) Graphicd solutiond (12.41);(b) the fugacity for an ided
Bose ges contained in a finite vaume V.

For a given specific volume v, (12.48) defines a critical temperature T;

N, = vg; (1) (12.49)
or
27h*/m
kT.= —/2/3 (12.50)
[vg3/2(1)]

Asindicated by (12.49), T, isthe temperature at which the thermal wavelength is
of the same order of magnitude as the average interparticle separation. For a
given temperature T, (12.48) defines a critical volume v,:

}\3
v, =
ga/z(l)
Intermsof T,and v, theregion d condensationistheregioninwhich T < T, or
v<uv,.
Tofind z asafunctiond T and v we solve (12.41) graphically. For alarge

but finite vaue o the total volume V the graphical construction in Fig. 12.4a
yields the curvefor z shown in Fig. 12.4b. In thelimit as V — o we obtain

(12.51)

>\3
1 (7 2 83/2(1))
2= (12.52)

}\3
theroot of g5 ,,(z) = N/v (7 < 83/2(1))

For (A%u) < g, (1), the vaue o z must be found by numerical methods. A
graph d z isgivenin Fig. 12.5.
To make these considerations more rigorous the following point must be
noted. It is recalled that (12.41)is derived from the condition
N (ng)

1
=7 L (np
vioov v




BOSE SYSTEMS
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i
|
|
‘1 L Hg. 12,5 The fugadty for an ided Boeges d infinite
7612 ' voume

by replacing the sum on the right side by an integral. It is clear that this integral
is unchanged if we subtract from the sum any finite number o terms. More
generaly, (12.41) should be replaced by the equation

N 1 (no) + (ny) + (ny) ‘..
Vv

—I; = ﬁgs/z(z) + % %

where, in the parentheses, there appear any finite number o terms. Every termin
the parentheses, however, approaches zero as V — co. For example,

(ny 1 1 11
= — < —
V. VizlePa_1 7 Veha_1

where
[1
V2/3
|, = sum of thesguaresd threeintegersnot al zero

2me, = (27wh)’

Hence

2/3
(m) 1 2'"32/ o (12.53)
vV vV (27Th) lel V- oo
This shows that (12.41) isvalid.
By (12.52) and the fact that (n,) = z/(1 — z) we can write

}\3
(no) ) 0 (—v— 583/2(1))

N T3/2 v >\3
1—(}') =1-- (7283/2(1))

< UC

(12.54)

A plot d (ny)/N isshown in Fig. 12.6. It is seen that when T < T, a finite
fraction d the particlesin the system occupy the single level with p = 0. On the
other hand (12.53) shows that (n,)/N is dways zero for p # 0. Therefore we
have the following situation: For T > T. no single leve is occupied by a finite
fraction d all the particles. The particles " spread thinly" over al levels. For
T < T, afinitefraction 1 — (T/T,)*? occupiesthelevel with p = 0 whilethe rest
o the particles " spread thinly” over the levels with p # 0. At absolute zero all
particles occupy the levd with p = 0.
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1 v fixed

r Fig. 12.6 Average occupation number of the level with
T P =0.

The Bose-Einstein condensation is sometimes described as a ** condensation
in momentum space.” We shall see, however, that its thermodynamic manifesta:
tions are those of a first-order phase transition. If we examine the equation o
state alone, we discern no difference between the Bose-Einstein condensation and
an ordinary gasliquid condensation. If the particles of the idea Bose gas are
placed in a gravitationa fidd, then in the condensation region there will be a
spatial separation o the two phases, just asin a gasliquid condensation.* The
term " momentum-space condensation™ merely serves to emphasize the fact that
the cause d the Bose-Eingein condensation lies in the symmetry of the wave
function and not in any interparticle interaction.

By virtue of (12.52) al thermodynamic functions o the ideal Bose gas will
be given by different analytical expressions for the region of condensation and
for the complement o that region. Only in the condensation region will these
analytical expressions be smple. In the other region numerical computations
would be necessary to obtain explicit formulas.

Throughout the remainder of this sectionlet z be defined only for the region
(A%lu) < g5 ,,(1). Some equivalent definitionsdf z are

A3
gs/z(z) = 7
v
£(2) _ b (12.55)
ga/z(l) v
83/2(2) _ (5)3/2
g3/2(1) T
In the region (A%/u) > 83,,(1), z need not be mentioned because z = 1.
The equation o state can be obtained from (8.71):
1
P ?gs/z(z) (v>v,)
— = (12.56)

1
ﬁgS/Z(l) (v<uv,)

*W. Lamb and A. Nordsieck, Phys. Rev. 59, 677 (1941).
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li \ Transition line:
e o 27k &,(1)
\ Put= e
\ lgs, (N5

A s, ()

Fig. 12.7 Isothemsd the ided Bose ges

where

gs,(1) =¢(3) = 1.342... (12.57)
Theterm ¥V~ ! log(1 — z)in (8.71)iszeroas V — . For v > v, this is obvious.
For v < v, itisalso true, because (1 — z) & V1. It isimmediately seen that for
v <, Pisindependent d u. Theisothermsare shown in Fig. 12.7, and the P-T
diagram is shown in Fig. 12.8. We may, as in the case of a gasliquid con-
densation, interpret the horizontal portion o an isotherm to mean that in that
region the system isa mixture of two phases. In the present case these two phases
correspond to the two points labeled A and B in Fig. 12.7. We refer to these
respectively as the condensed phase and the gas phase. The horizontal portion of
the isotherm is the region o phase transition between the two phases. The vapor
pressureis

kT
Py(T) = ?85/2(1) (12.58)
Differentiation of this equation leads to
dPy(T) 5 kgS/Z(l) _ L[Sk 85/2(1)}

2 83/2(1)

dT 2 N Tv (12.59)

Transition line:

3,
P=(325)"8,M*D*

Gas
phase

T
Fig. 12.8 P-T diagran d the ided Bose ges
Note that the space above the trangtion curve
does nat correspond to anything. The condensed
phese lies on the trangtion line itsdlf.
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When the two phases coexist the gas phase has the specific volume v,, whereas
the condensed phase has the specific volume 0. Hence the difference in specific
volume between the two phasesis

Av =0, (12.60)

In fact (12.59) is the Clapeyron equation, and the latent heat of transition per
particle is

_ 85/2(1) E

83/2(1) 2

Therefore the Bose-Einstein condensation is a first-order phase transition.

Other thermodynamic functions for the ideal Bose gas are given in the
following. For each thermodynamic function the upper equation refers to the
region v > v, (or T > T,) and the lower equation refers to the region v < v, (or
T<T):

(12.61)

3 kTv (2)
v 2% sl
— =3 —
N sPv 3 kTv (12.62)
57\3"&/2(1)
v
A ﬁgS/z(z) —log z
“ N er (v (12.63)
EES/z(l)
G
= log z
= 1 .6
NkT {0 (12.64)
S () -1
Ry Eﬁgs/z z) — logz
e V50 (12.65)
5?85/2(1)
Eig (2) - ggs/z(z)
& - 4 N2 4 gl/Z(z) (12.66)
Nk 15 v )

7{ ﬁgS/Z(l)

The specific heat is shown in Fig. 12.9. Near absolute zero, C,, vanisheslike
T 372, This behavior is to be contrasted with a photon gas or a phonon gas, for
which C,, vanisheslike T3 near absolute zero. The reason for this difference lies
in the difference between the particle spectrum ¢, = p%/2m and the photon or
phonon spectrum €, = cp. At the same energy the particle spectrum has a higher
density of states than the photon or phonon spectrum. Consequently there are
more modes of excitation availablefor a particle, and the specific heat is greater.
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Te T Fig. 12.9 Specific heat of the ideal Bose gas.

From (12.65) we see that § = 0 at T = 0, in accordance with the third lav
d thermodynamics. This means that the condensed phase (which existsat T = 0)
has no entropy. At any finite temperature the total entropy is entirely due to the
gas phase. The fraction d particlesin the gas phase in the transition region is
v/v,, or (T/T.)*?. If werewrite S in the transition region in the form

S T\ v
_ﬁ=(F) S=(—)S (12.67)
C UL'
we find that
1) 5
_ a3 (12.68)
83/2(1) 2

which is the entropy per particle o the gas phase. The difference in specific
entropy between the gas phase and the condensed phase is

1) 5
As=s= 8s2(1) 5 (12.69)
gs/z(l) 2
Comparing this with (12.61), we find that
L = TAs (12.70)

This shows that the interpretation o the Bose-Einstein condensation as a
first-order phase transition is self-consistent.

The only Bose system known to exist at low temperaturesis liquid He*. At a
temperature of 2.18 K, He* exhibits the remarkable A transition, at which the
specific heat becomes logarithmically infinite. Since He* atoms obey Bose statis-
tics, it is natural to supposethat this transition is the Bose-Einstein condensation
modified by intermolecular interactions. This is supported by the fact that no
such transition occursin liquid He?, whose atoms obey Fermi statistics. Further-
more, substituting the mass o He* and the density of liquid helium into (12.50)
leads to the transition temperature 7, = 3.14 K, which is o the right order o
magnitude.

Finally, we must re-emphasize that Bose-Einstein condensation can occur
only when the particle number is conserved. For example, photons do not
condense. They have a simpler alternative, namely, to disappear into the vacuum.
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We have pointed out in Section 7.5 that heavy-particleconservation as physically
observed is a low-energy approximation to the real conservation law, which says
that the conserved quantity is the number o particles minus the number o
antiparticles. Thus, any discussion of the Bose-Einstein condensation for a
relativistic Bose gas must take antiparticlesinto account.*

12.4 AN IMPERFECT BOSE GAS

The ideal Bose gasis an artificia example in that the particles condense into a
highly idealized phase with infinite compressibility. That is, the Bose-Einstein
condensate is unphysical and uninteresting. We now study an interacting Bose
gas in a crude approximation, to see how the nature of the Bose-Einstein
condensation changes.

The Energy Levels

We consider a dilute system of N identical spinless bosonsd mass m, contained
in a box of volume V, at very low temperatures. The bosons interact with one
another through binary collisions characterized by the scattering length a which
is assumed to be podtive. The energy leves to the firs order in a may be
obtained from (10.124) through the use of first-order perturbation theory.

Let the unperturbed wave functions be free-particle wave functions ®,,
labeled by the occupation numbers {...,n,,...}, where n, is the number o
bosons with momentum p. The energy levels to the first order in a are

2 2
) P 4mah
E,= (2, #'0) =¥ 2 n,+ (@n, ¥ 8(r, - rj)q>") (12.71)
p i<j
The second term is calculated in (A.36) o the Appendix. With that, we have
p? 47ah?
E,=) —n,+ N2 - 1%"n? )
, %an — ( 2%;11,) (12.72)
This formulais vaid only under the conditions
2 1
BV (12.73)
ka <1

where k is the relative wave number of any pair o particles. Thus (12.72)
becomesinvalid if there are excited particlesd high momentum.

Let us first study the implications of (12.72). The ground state energy per
particle is obtained from (12.72) by settingall n, = 0 for p # 0, and n, = N:
E, 2mah? h\?

(;) 2map (12.74)

N muv

*H. E. Haber and H. A. Weldon, Phys. Rev. Lett. 46, 1497 (1981)
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where p is the mass density. It is proportional to the scattering length a and to
the mass density, and it may be interpreted to be the energy shift of an average
particle in the "optical approximation,” whereby the effect of the rest o the
system is replaced by a medium havingan index o refraction. Thisinterpretation
can be judtified as follows. In the shape-independent approximation we may
replace a scattering potential by one of any shape, provided it gives the same
scattering length. Let us replace the interparticle potential by a very shalow but
very long-ranged sguare well such that the scattering length is still a. Now a
particle moving through the system essentially ""sees™ a uniform potential o an
appropriate depth. Thisgives(12.74).

For an excited state in which the particles have vanishingly small momenta
the energy per particleis

E h\? n,\?2

m_ = 4 _1 _Pr .

N (m) wap[ 2%(}\})} (12.75)

The second term is most negative when all the excited particlesare in the same

momentum state. Thus we may say that " spatial repulsion leads to momentum

space attraction.” Thisis a consequence o the symmetry of the wave function.*
The " momentum space attraction™ just mentioned also leads to an "energy

gap" in the spectrum (12.72). This may be seen as follows. The energies o the
very low excited states d the system are approximately given by

r ’ 24 L 12.76
— | 4map 5 ( I ) (12.76)
According to this formula, the excitation of one particle from the momentum

E,=) —n +N
P> 2m P

state p = 0 to a state d infinitessimal momentum changes the energy by the finite
amount

P

B2
A= (—) 27ap (12.77)
m

Thus the single-particle energy spectrum is separated from the zero point o
energy by the amount A. This "energy gap,” however, is a feature only o the
lowest-order formula. When the energy levels are calculated to higher ordersin
perturbation theory,! the energy gap disappears. Instead, thereis only a decrease
o level density just above the ground state, changing the single-particlespectrum
p?/2m into a phonon spectrum #cp/2m, where ¢ is a constant. The "energy
gap,” which implies that the level density is strictly zero just above the ground
state, is a crude approximation to the actual state o affairs.

The foregoing discussions make it clear that the energy levels (12.72),
athough not exact, possess many qualitative features o the effect of a repulsive
interaction among bosons. We use them to calculate the partition function. The

*See Problem 12.7.
¥See Section 13.8.
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validity of this calculation is discussed as we proceed. We introduce a further
simplification, namely, we take the energy levels to be

p? 4mah?

E = i
: Xp‘,zmnp+

The behavior o the model defined by (12.78)should be qualitatively the same as
that by (12.72) when the temperature is so low that few particles are excited.*

(N? - 1n2) (12.78)

The Equation of State

For the calculation d the partition function, we confine our considerations to the
region in which

a/A < 1, aX/v < 1 (12.79)
because these are the only dimensionless parameters in the problem involving a.
and our mode is valid only to thefirst order in a.

Let n be an abbreviation for {n,), and let ¢, denote the firs term o

(12.78), the unperturbed energy. Introducing the parameter
=0
N

and denoting, as usud, the therma wavelength by A= \/27rh2/ka, we can
write the partition function in the form

(12.80)

Qn = ¥ g Bew g NN /0)2=8) = Qﬁg)@—makz/v)(z—sz))o (12.81)
n
where Q@ is the partition function of the ideal Bose gas, and ( ), denotes the

thermodynamic average with respect to the ideal Bose gas. Hence the free energy
per particle is

A A9 kT -
_ N log (&7 nan soya-£2)

N N
AO kT aN ,
MR A (R (128

It can be easly verified that the fluctuationsdof {(n,) are small. In fact, for
any k
(Yo = (Mo = (Mido (12.83)
Hence the mean-square fluctuation o (), is of the order 1/N. Hence
A A9 K’ 4qq

N T 1) (1284

*For a detailed study of the equation of state based on the more accurate energy levels(12.72).
see K. Huang, C. N. Yang, and J. M. Luttinger, Phys. Rev. 105, 776 (1957).
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Imperfect
Bose gas
= = _‘—\
Ideal/_ |
Bose gas l
l ~
{ Fig. 12.10 Isotherm d an imperfect Bose ges with
0¢ v repuldve interactions.
Condensed Transition
phase: line
>0
cos ohase: Fig. 12.11 P-T diagran d the imperfect Bose ges
f’sgﬁgse' In contradidtinction to that d the diagram d the
- idedl Boee gas Fg 128, the space above the
trangtion now corresponds to the condensed phease.

where £ = (&) = (no/N), isgiven by (12.54). This result is extremely simple,

being the free energy of theided gas plus the interaction term in (12.78), except

that the quantum number n, is replaced by its thermodynamic average with

respect to the ideal gas, thereby turning it into a thermodynamic parameter.
The pressure can be immediately obtained:

dmah® | 1 - 1_9¢
[F(l —38) + ;55]

where P© isthe pressure o the ideal Bose gas. Using (12.54) to evaluate £ and
d¢/dv, we obtain

P=PO 4

(12.85)

4mah?
P(O) + 2 (U > U¢s T> Tc)
muv
P = ymah? | 1 1 (12.86)
PO 4 " ;2—4-;)? (U<UC,T<TC)

An isotherm is shown in Fig. 12.10, and the P-T diagram is shown in Fig. 12.11.
The Bose-Einstein condensation is here a second-order transition. The specific
heat decreasesacross the transition point by the amount

&, _ %4 12.87
Nk 2}\683/2( ) ( 87)
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We cannot deduce from these results that an imperfect Bose gas with
repulsive interactions generally exhibits a second-order transition. The present
model merely shows that the transition appears to be a second-order transition ii
higher-order effectsin a/A and aA?/v are neglected.

The model here is more redlistic than the ideal Bose gas in that the
condensed phase now has finite compressibility. We see from (12.86) that the
isothermal compressibility increases discontinuously by a factor of 2 when we ge
from the gas to the condensed phase.

In a nonequilibrium situation, the condensed phase presumably can flow like
a real substance. Since the system has a paucity d energy levds just above the
ground state, we expect it to flow with little or no dissipation. This is the
phenomenon of superfluidity that we shall discuss at greater length in the nest
chapter.

12.5 THE SUPERFLUID ORDER PARAMETER

We have suggested that the Bose-Einstein condensate is a "' superfluid™ in more
realistic systems than the ideal Bose gas. Thisidea will be taken up in the next
chapter. Here we shall analyze in greater depth the implications of the existence
o a condensate. It will be necessary to use the quantized-field description of a
many-body system (sometimescal: 1" second quantization'), as discussed in the
appendix.

Identifying the Order Parameter

Let us begin by examining the one-particle density matrix
1
pr(xy) = (PE)H()) = 5 K e e (agan) (12.88)
k.q

where () denotes ensemble average, and y(x) is the quantized boson fidd
operator, whichisexpanded in termsdf annihilation operators a, for a plane-wave
state of wave vector k (see (A.65)). Roughly speaking, this is the probability that.
having lost a particle at x, you will find one at .

Consider first a trandationally invariant system. Using the fact that the total
momentum operator P commutes with the Hamiltonian, we can verify

([P, a:flak]> -0

by writing out the trace and using Tr(AB) = Tr(BA). On the other hand, a
direct calculation gives

[P,a’{lak] = h(k - q)ala,
Hence for a trandationally invariant system

(ala,) = 8, (ny) (12.89)
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where n, = afa,. Thus

1 ; - —_
p(x,y) = I—/Z ey )
k

(ng) [ d%
= + eV (p 12.90
v oy (m) (12.90)
where we have separated out the k = 0 term before passing to the limit V — co.
The second term in (12.90) vanisheswhen |X — y{ — co, becausein that limit the
integral gets contributions only from the neighborhood o k = 0 (see Problem
12.9). Thus

(12.91)

This does not imply a positional correlation over infinite distances, as it might
sem at first sight. It saysonly that thereis a constant density of zero-momentum
particles over the entire system.

Note that in a generd interacting system, the single-particle momenta are
not good quantum numbers. In particular n, does not commute with the
Hamiltonian. But {(n,)/N can still be used as a characterization d a Bose
Einstein condensate.

In analogy with (12.91), Penrose and Onsager* proposed the following
general criterion for Bose-Einstein condensation:

W (y) F*®f () (12.92)

To be o practical vaue, this criterion must be applicable to real systems with
nontranslationally invariant geometry, and under nonequilibrium situations. It is
then not obvious (in fact, it is somewhat o a mystery) how the criterion can be
satisfied. Consider, for example, a Bose fluid contained in two separate tanks
connected by a pipe a milelong. (For added realism, have an experimentalist kick
the apparatus from time to time.) Suppose x liesin one tank, and y the other. It is
physically absurd to suppose that there can be any correlation between X and y.
But then how does it come about that these separate points are characterized by
the same function f?

The way out is to make f dependent only on loca dynamical variables. It is
now generally accepted that the correct choiceis f = (¢ ). Thus the Penrose-
Onsager criterion takes the more specificform

(V¥ 2 (V)W) (1293)

[x —y| = o0

*Q. Penrose, Philos. Mag. 42, 1373 (1951); O. Penrose and L. Onsager, Phys. Rev. 104, 576
(1956).

" The first use of this was implicit in N. N. Bogoliubov, J. Phys. USSR 11, 23 (1947). I.
Goldstone, N. Cim., 19, 154 (1961), clarified its meaning in terms of "broken symmetry." For a
review see P. W. Anderson, Rev. Mod. Phys. 38, 298 (1966).
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We call the complex number
(Y (%)) = r(x) e*® (12.94)
the superfluid order parameter. The fact that r(x) > 0 implies the existence of

momentum-space order, i.e., a Bose-Einstein condensate. As we shall seein the
next chapter, the phase ¢(x) is the velocity potential for superfluid flow.

Spontaneous Symmetry Breaking

The ensemble average (1)) should be taken in a grand canonical ensemble.
because we are interested in open systems, where the number o particles is not
definite. Thus,

Tr[e Py ()]
<¢(X)> = Tr o~ FELY] (12.95)
Ely] =#— pN
where 57 is the Hamiltonian and 4" is the number operator. The notation & |
indicates that ¢ is a functional o ¢. The immediate question is why the
ensemble average above should not be always zero. Thereis a trivial and a subtle
aspect to this question.

First, the trivial aspect. Since y annihilates a particle, its expectation value
with respect to any eigenstate o 4" is zero. This makes one fed uneasy about
taking its ensemble average. In the grand canonica ensemble, however, the
relevant basis are not the simultaneous eigenstates o 5 and A4”, but those of
2- p A", and the latter need not be eigenstates of 4. In the infinite-volume
limit, the eigenvaluesdf »#— pA" are highly degenerate: systems with different
particle numbers can maintain the same eigenvaue by going into different energy
levels. One can form a new basis by superimposing these degenerate states (of
different particle numbers), with respect to which the expectation vaue o  will
have the form (12.94). The phase ¢ labels the degenerate states.

But, one argues, the ensembled  is till zero, because one has the freedom
to calculate the trace using a basis with definite particle numbers. This is true.
and is a reflection o the fact that particle number is conserved, which can be
expressed formally by saying that the Hamiltonian has a "'globa gauge invari-
ance” —an invariance under the transformation

Y (x) = ey (x) (12.96)
where a is an arbitrary real number. Thus, in the ensemble average, every vaue
Y = rexp(ia) will be canceled by a vadue ¢ = rexp(ia + im) o equa weight.
This argument is technically correct, and illustrates the need to redefine the
ensemble average more carefully. Thisis the subtle part of the problem.

There is a parald between (1)) and the spontaneous magnetization of a
ferromagnet:

(My = ————— (12.97)
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where M is the total magnetic moment. Since the Hamiltonian 5# in the absence
of external field isinvariant under rotations, the ensemble averaged M isaways
zero because M and - M occur with equal probability. The mathematical
correctness of this statement is irrefutable. But we know that it is physically the
wrong answer, for we do have ferromagnetsin nature.

The resolution of the apparent paradox lies in the recognition that the
symmetry of a system may be " spontaneously broken," in that the ground state
of a Hamiltonian does not possess the symmetry of the Hamiltonian. This
requires that the ground state be degenerate. The symmetry isredized by the fact
that any one of the degenerate ground states is equally as good as the physicd
ground state, and by theexistenceof characteristic' Goldstone excitations."* For
a ferromagnet, the ground state is not rotationally invariant, because the magne-
tization points along a definite axis in space. The Goldstone excitations in this
case are the spin waves.

The essential point in the present context is that, once the system magnetizes
along a certain direction it cannot make a transition to another direction, even
though doing so requires no expenditurein energy. For to do so requires that all
the atomic magnetic moments in the system spontaneously and simultaneously
rotate through exactly the same angle. The probability for this to happen is
essentially zero for a macroscopic system. (One would have to wait for a time of
the order of a Poincaré cycle to see this happen.) The ensemble average has
physical significance only if it corresponds to time averages over microscopic
relaxation times. One must therefore redefineit in such a way that M and - M
are not both included among the configurations. This can be done most ssmply
by placing the system in an external field H pointing along an arbitrary but fixed
direction, and calculating the ensemble averagein thelimit H — 0. To emphasize
the importance of various limiting processes, we explicitly indicate the infinite-
volume limit:

(M) 1 Tr[e FOMID M |

\ - ILIIITO Vll—r:rl; V. Tre BOFMH) (12.98)

The thermodynamic limit of (12.97), which is not physically relevant, correspond-
ing areversal o the limiting process above':

Tre Ao MM pr]

lim lim B =0 12.99
Vow Hoo IT€ Ao M) ( )

Returning to the Bose system, we see that Bose-Einstein condensation
corresponds to a spontaneous breaking of the global gauge invariance. | n analogy
with ferromagnetism, we imagine subjecting the system to an external fied
coupled to y(x), calculate the ensemble average of ¢ /(x) in the thermodynamic

*J. Goldstone, op. cit. A brief discussion of this phenomenon will be given in Section 16.6.

"Note that in calculating the spontaneous magnetization in the model in Section 11.6, we in
effect used the correct average (12.98) instead of (12.99), because we ignored the — M solution (by
common Sense).
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limit, and then let the external field go to zero:

Tr [e—ﬂé’w,n] ¥ (X)]
Tr e_/gé’[\pr 7)]

(¢(x)) lim lim

(12.1001
-0 Voo

where
&y, nl =o#- pr— [ [p(x)n(x) + Y7’ (x)] (12101
The only essentia difference with the ferromagnetic case is that, unlike the

magnetic field, the external field n(x) hereis a mathematical device that cannot
be redlized experimentally.*

PROBLEMS

12.1 (a) Show that the entropy per photon in blackbody radiation isindependent o the
temperature, and in d sdia dimendonsis gven by

Y gt
s=(dt i ——

n—d

18

n

(b) Show that the aswer woud have been d+ 1 if the photons obeyed Boltzman
datigtics.

12.2 Some expeimentd values’ for the spedfic heat d liquid He! are given in the
accompanying table. The vaues are obtained dong the vgpor pressure curve o liquid

He, but we may assume that they are not vary different from the vduesd ¢, a the same
temperatures.

Temperature (K) SpecificHeat (joule/g-deg)
0.60 0.0051
0.65 0.0068
0.70 0.0098
0.75 0.0146
0.80 0.0222
0.85 0.0343
0.90 0.0510
0.95 0.9743
1.00 0.1042

*The Bose-Einstein condensation of theideal gas has been reanalyzed in terms of the superfluid
order parameter by J. D. Gunton and M. J. Buckingham, Phys. Rev. 166, 152 (1968).

¥ Taken from H. C. Kramers, ' Some Properties of Liquid Helium below 1°K,” Dissertation.
Leiden (1955).
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(a) Show that the behavior of the specific heat at very low temperatures is characteristic
of that of a gasof phonons.

(b) Find the velocity of sound in liquid He* at low temperature.
12.3 Equation (12.64)statesthat G = 0 for v < v,. Usingtheformula S = —(3G/dT)p,

we would obtain S =0 for v < ,, in contradiction to (12.65).What is wrong with the
previous statement?

12.4 In the neighborhood of z = 1 the following expansion may be obtained (F. London,
loc. cit):

gs,2(2) =2.363v>7 +1.342 — 2.612» ~ 0.730»* + -
where v = —log z. From this the corresponding expansions for g; ,,, g1,,, and g 1,

may be obtained by the recursion formula g,_; = —dg,/dv. Using this expansion show
that for the ideal Bose gas the discontinuity of dC,,/dT at T = T, is given by

3 C,,) ) C,,) 3.66
(aTﬂ rots (aTNk -1 T,

c

12.5 Show that the equation of state of theideal Bose gasin the gas phase can be written
in the form of a virial expansion, i.e.,

Py . 1 (X 1 2\ [ X\

- = - | — + 1 - - — J— —

kT 42 \ v 8 93 v
2+2.6 (a) Calculate the grand partition function 2(z, ¥, T ) for a two-dimensional ideal
Bose gas and obtain the limit

1

lim — |og,@(z, V,T)

Vow V
where V = L2 is the area available to the system.
(b) Find the average number of particles per unit area as a function of z and T.
(¢) Show that there is no Bose-Einstein condensation for a two-dimensional ideal Bose
gas.
12.7 Consider two free bosons contained in a box of volume V with periodic boundary
conditions. Let the momenta of the two particles be p and g.
(a) Write down the normalized wave function y, (r;,r,) for both p # q and p = q.
(b) Show that for p # q

[¥pa(r.0) " > ¥ (1, )]

(c) Explain the meaning of the statement " spatial repulsion leads to momentum space
attraction."

12.8 For the imperfect Bose gas discussed in Section 12.4, show that in the gas phase

P . 1 24\ N 1 1 M2
= + ——t — | —+ | = - — J— —
kT ( 42 Ao 3 3\/5) v

Thus we can conclude that the third and higher virial coefficients, if they depend on a,
must involve orders of a? or higher.
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12.9 Consider an ideal Bose gas. Let ¢(x) be the boson field operator.
(a) Show

(V@) = <n;> G )
where
e _ mkT e /"
f(r) = f(27)3 M) = e

with ry = i/ /2mkT|log z|
(b) Let T — T, from the high-temperature side. Find r, asafunctionof ¢t = (T - T,)/T,
ast—0.

(c¢) The density-density correlation function is defined as
I(x) = (p(x)p(0)) - (N/V)’

where p(x) = ¢/ (x)¢(x) is the density operator. Show
2

1o 1o
T =3 L “"'(k“”"‘<nq(nk+1>>m}?§e’k (mo
#*q

Work out T'(x) more explicitly, using the results of (a)and (b).



