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6.1 THE POSTULATE OF CLASSICAL 
STATISTICAL MECHANICS 

Statistical mechanics is concerned with the properties of matter in equilibrium in 
the empirical sense used in thermodynamics. 

The aim of statistical mechanics is to derive all the equilibrium properties of 
a macroscopic molecular system from the laws of molecular dynamics. Thus it 
aims to derive not only the general laws of thermodynamics but also the specific 
thermodynamic functions of a given system. Statistical mechanics, however, does 
not describe how a system approaches equilibrium, nor does it determine whether 
a system can ever be found to be in equilibrium. It merely states what the 
equilibrium situation is for a given system. 

We recall that in the kinetic theory of gases the process of the approach to 
equilibrium is rather complicated, but the equilibrium situation, the Maxwell- 
Boltzmann distribution, is simple. Furthermore, the Maxwell-Boltzmann distribu- 
tion can be derived in a simple way, independent of the details of molecular 
interactions. We might suspect that a slight generalization of the method 
used-the method of the most probable distribution-would enable us to discuss 
the equilibrium situation of not only a dilute gas but also any macroscopic 
system. This indeed is true. The generalization is classical statistical mechanics. 

We consider a classical system composed of a large number N of molecules 
occupying a large volume V. Typical magnitudes of N and V are 

N = 10 23 molecules 
V = 10 23 molecular volumes 

Since these are enormous numbers, it is convenient to consider the limiting case 
N + m  

The system will be regarded as isolated in the sense that the energy is a 
constant of the motion. This is clearly an idealization, for we never deal with 
truly isolated systems in the laboratory. The very fact that measurements can be 
performed on the system necessitates some interaction between the system and 
the external world. If the interactions with the external world, however, are 
sufficiently weak, so that the energy of the system remains approximately 
constant, we shall consider the system isolated. The walls of the container 
containing the system (if present) will be idealized as perfectly reflecting walls. 

A state of the system is completely and uniquely defined by 3N canonical 
coordinates q,, q,, . . . , q,, and 3N canonical momenta p,, p,, . . . , p,,. These 
6N variables are denoted collectively by the abbreviation (p ,  q). The dynamics 
of the system is determined by the Hamiltonian 2 ( p ,  q), from which we may 
obtain the canonical equations of motion 

It is convenient to introduce, as we did in Chapter 3, the 6N-dimensional T 
space, or phase space, of the system, in which each point represents a state of the 
system, and vice versa. The locus of all points in T space satisfying the condition 
X ( p ,  q)  = E defines a surface called the energy surface of energy E. As the state 
of the system evolves in time according to (6.2) the representative point traces out 
a path in r space. This path always stays on the same energy surface because by 
definition energy is conserved. 

For a macroscopic system, we have no means, nor desire, to ascertain the 
state at every instant. We are interested only in a few macroscopic properties of 
the system. Specifically, we only require that the system has N particles, a volume 
V, and an energy lying between the values E and E + A .  An infinite number of 
states satisfy these conditions. Therefore we think not of a single system, but of 
an infinite number of mental copies of the same system, existing in all possible 
states satisfying the given conditions. Any one of these system can be the system 
we are dealing with. The mental picture of such a collection of systems is the 
Gibbsian ensemble we introduced in Chapter 3. It is represented by a distribu- 
tion of points in T space characterized by a density function p(p,  q, t), defined 
in such a way that 

p(p,  q, t) d3,p d 3Nq = no. of representative points con- 
tained in the volume element 
d 3Np d3,q located at (p ,  q)  in T (6.3) 

space at the instant t 

We recall Liouville's theorem: 

where the specific volume u is a given finite number. 
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In geometrical language it states that the distribution of points in T space moves 
like an incompressible fluid. Since we are interested in the equilibrium situation, 
we restrict our considerations to ensembles whose density function does not 
depend explicitly on the time and depends on (p ,  q) only through the Hamilto- 
nian. That is, 

where p ' ( 2 )  is a gven function of 2. It follows immediately that the second 
term on the left side of (6.4) is identically zero. Therefore 

Hence the ensemble described by p(p,  q) is the same for all times. 
Classical statistical mechanics is founded on the following postulate. 

Postulata of Equal a Priori Probability When a macroscopic system is in 
thermodynamic equilibrium, its state is equally likely to be any state satisfying 
the macroscopic conditions of the system. 

This postulate implies that in thermodynamic equilibrium the system under 
consideration is a member of an ensemble, called the microcanonical ensemble, 
with the density function 

Const. if E < 2 ( p ,  q)  < E + A 
otherwise 

It is understood that all members of the ensemble have the same number of 
particles N and the same volume V. 

Suppose f ( p ,  q) is a measurable property of the system, such as energy or 
momentum. When the system is in equilibrium, the observed value of f ( p ,  q) 
must be the result obtained by averaging f ( p ,  q)  over the microcanonical 
ensemble in some manner. If the postulate of equal a priori probability is to be 
useful, all manners of averaging must yield essentially the same answer. 

Two kinds of average values are commonly introduced: the most probable 
value and the ensemble average. The most probable value of f (p ,  q)  is the value 
of f ( p ,  q)  that is possessed by the largest number of systems in the ensemble. 
The ensemble average of f ( p ,  q) is defined by 

The ensemble average and the most probable value are nearly equal if the mean 
square fluctuation is small, i.e., if 

If this condition is not satisfied, there is no unique way to determine how the 
observed value of f may be calculated. When it is not, we should question the 
validity of statistical mechanics. In all physical cases we shall find that mean 
square fluctuations are of the order of 1/N. Thus in the limit as N -t oo the 
ensemble average and the most probable value became identical. 

Strictly speaking, systems in nature do not obey classical mechanics. They 
obey quantum mechanics, which contains classical mechanics as a special limiting 
case. Logically we should start with quantum statistical mechanics and then 
arrive at classical statistical mechanics as a special case. We do this later. It is 
only for pedagogical reasons that we begin with classical statistical mechanics. 

From a purely logical point of view there is no room for an independent 
postulate of classical statistical mechanics. It would not be logically satisfactory 
even if we could show that the postulate introduced here follows from the 
equations of motion (6.2), for, since the world is quantum mechanical, the 
foundation of statistical mechanics lies not in classical mechanics but in quantum 
mechanics. At present we take this postulate to be a working hypothesis whose 
justification lies in the agreement between results derived from it and experimen- 
tal facts. 

6.2 MICROCANONICAL ENSEMBLE 

In the microcanonical ensemble every system has N molecules, a volume V, and 
an energy between E and E + A. It is clear that the average total momentum of 
the system is zero. We show that it is possible to define quantities that correspond 
to thermodynamic quantities. 

The fundamental quantity that furnishes the connection between the micro- 
canonical ensemble and thermodynamics is the entropy. It is the main task of this 
section to define the entropy and to show that it possesses all the properties 
attributed to it in thermodynamics. 

Let r ( E )  denote the volume in T space occupied by the microcanonical 
ensemble: 

The dependence of T(E) on N, V,  and A is understood. Let C ( E )  denote the 
volume in T space enclosed by the energy surface of energy E: 

Then 

T(E) = C ( E  + 6 )  - C ( E )  (6.12) 

If A is so chosen that A a E,  then 

T(E) = w(E)A 
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where w ( E )  is called the density of states of the system at the energy E and is 
defined by 

The entropy is defined by 

S ( E ,  V )  = k log r ( E )  (6.15) 

where k is a universal constant eventually shown to be Boltzmann's constant. To 
justify this definition we show that (6.15) possesses all the properties of the 
entropy function in thermodynamics, namely, 

( a )  S is an extensive quantity: If a system is composed of two subsystems 
whose entropies are, respectively, S1 and S,, the entropy of the total 
system is Sl + S,, when the subsystems are sufficiently large. 

( b )  S satisfies the properties of the entropy as required by the second law of 
the thermodynamics. 

To show the extensive property, let the system be divided into two subsys- 
tems which have Nl and N2 particles and the volumes Vl and V2, respectively.* 
The energy of molecular interaction between the two subsystems is negligble 
compared to the total energy of each subsystem, if the intermolecular potential 
has a finite range, and if the surface-to-volume ratio of each subsystem is 
negligibly small. The total Harniltonian of the composite system accordingly may 
be taken to be the sum of the Harniltonians of the two subsystems: 

where ( p , ,  q l )  and ( p , ,  q , )  denote, respectively, the coordinates and momenta of 
the particles contained in the two subsystems. 

Let us first imagine that the two subsystems are isolated from each other and 
consider the microcanonical ensemble for each taken alone. Let the energy of the 
first subsystem lie between El and El + A and the energy of the second 
subsystem lie between E, and E, + A. The entropies of the subsystems are, 
respectively, 

Sl(E1, V l )  = k 1% Tl(E1) 

where r l ( E l )  and T2(E2)  are the volumes occupied by the two ensembles in their 
respective r spaces. They are schematically represented in Fig. 6.1 by the 
volumes of the shaded regions, which lie between successive energy surfaces that 
differ in energy by A. 

Now consider the microcanonical ensemble of the composite system made 
up of the two subsystems, and let the total energy lie between E and E + 2A. 

*For simplicity we assume that the same N,, N2 particles are always confined respectively to the 
volumes V,,  V2. The proof is therefore invalid for a gas, for which S has to be modified (See Section 
6.6) .  
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Fig. 6.1 The microcanonical ensemble of the two subsystems. 

We choose A such that A a E. This ensemble contains all copies of the 
composite system for which 

( a )  the Nl particles whose momenta and coordinates are ( p , ,  9,) are 
contained in the volume Vl,  

( b )  the N, particles whose momenta and coordinates are ( p , , q , )  are 
contained in the volume V,, 

( c )  the energes El,  E, of the subsystems have values satisfying the condi- 
tion 

E < ( E , + E , ) < E + ~ A  (6.17) 

Obviously, the volume of the region of T space that corresponds to conditions 
( a )  and ( b )  with a total energy lying between El + E, and El + E, + 2A is 

Tl(El)T2(EZ) 

To obtain the total volume of the ensemble specified by ( a ) ,  ( b ) ,  and ( c ) ,  we only 
have to take the sum of r , (E , )T , (E , )  over values of El and E, consistent with 
( c ) .  Since El and E, are possible values of the Harniltonians Z l ( p l ,  q , )  and 
Z 2 ( p 2 ,  q 2 ) ,  their spectra of values must be bounded from below; otherwise the 
subsystems would not be stable. For simplicity we take the lower bounds for both 
spectra to be 0. If we divide each of the energy spectra El and E, into intervals 
of size A, then between 0 and E there are E / A  intervals in each spectrum. Thus, 
since A a E ,  we can write 

E / A  

T ( E )  = C ~ - I ( E ; ) T ~ ( E  - 4 )  (6.18) 
i = l  

where E, is the energy lying in the center of each energy interval. 
The entropy of the composite system of N particles and of volume V ,  with 

is given by 
E / A  

S ( E ,  V )  = k log 1 ~ , ( E , ) T , ( E  - E , )  
i = l  
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It will now be shown that when Nl -t oo and N, -t oo a single term in the sum 
of (6.18) dominates the sum. The sum in (6.18) is a sum of E / A  positive terms. 
Let the largest term in the sum be r1(G)r2(&), where 

E , + E , = E  

Then it is obvious that 

E 
k log [ r1(G)r2(G)]  I S ( E ,  V )  I k log [r1(6)r2(&)]  + k 1% - (6.21) 

A 

If the subsystems are molecular systems with Nl and N2 particles, respectively, 
we expect that as N, -, oo and N, -, oo, 

log rl a Nl 

log r2 a N2 (6.22) 

E a Nl + N2 

Thus the term log ( E / A )  in (6.21) may be neglected because A is a constant 
independent of N. Therefore 

S ( E ,  V )  = s , ( E , ,  ~ 1 )  + s ~ ( E , ,  5 )  + O(log N )  (6.23) 

which proves the extensive property of the entropy. 

We have actually proved more than the extensive property of the entropy 
because (6.23) also implies that the energies of subsystems have the definite 
values 6 and G, respectively. They are the values of El and E2 that maximize 
the function T l ( E l ) r 2 ( E 2 )  under the restriction El + E, = E.  That is, 

Thls leads to the condition 

We define the temperature of any system by 

Then and i& are such that the two subsystems have the same temperature: 

The temperature defined by (6.25) is precisely the absolute temperature in 
thermodynamics. Not only is it a parameter associated with the condition for 
equilibrium, it is also related to the entropy by (6.25), which is one of the 
Maxwell relations in thermodynamics. Choosing the standard temperature inter- 
val to be the conventional Centigrade degree defines the constant k in (6.15) to 
be Boltzmann's constant. Thus the proof of the extensive property of the entropy 
also reveals the meaning of the temperature for an isolated system: The tempera- 
ture of an isolated system is the parameter governing the equilibrium between one 
part of the system and another. 

Although the condition (6.17) allows a range of values of ( E l ,  E,) to occur 
among members of the microcanonical ensemble, the result (6.21) shows that as 
the number of particles becomes very large almost all members of the ensemble 
have the values (q, G). This fact is fundamental to the success of statistical 
mechanics as a theory of matter. 

A calculation similar to that leading to (6.23) shows that the following 
definitions of S are equivalent, up to additive constant terms of order log N or 
smaller: 

S = k log T ( E )  (6.27) 

S = k l o g w ( E )  (6.28) 

In fact, if these definitions were not equivalent, the validity of statistical me- 
chanics would be in doubt. 

To show that S possesses the properties of the entropy as required by the 
second law of thermodynamics, let us first state the form of the second law that is 
most convenient for the present purpose. The entropy in thermodynamics, just as 
S here, is defined only for equilibrium situations. The second law states that if an 
isolated system undergoes a change of thermodynamic state such that the initial 
and final states are equilibrium states, the entropy of the final state is not smaller 
than that of the initial state. For the system we are considering, the only 
independent macroscopic parameters are N, V ,  and E. By definition N and E 
cannot change, for the system is isolated. Thus only V can change. Now V cannot 
decrease without compressing the system thereby disturbing its isolation. Hence 
V can only increase. (An example is the free expansion of a gas when one of the 
containing walls is suddenly removed.) For our purpose the second law states 
that the entropy is a nondecreasing function of V. 

Let us use the definition (6.29): 

It is obvious that C ( E )  is a nondecreasing function of V, for if Vl > V,, then 
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the integral (6.11) for V = Vl extends over a domain of integration that includes 
that for V = V,. This shows that S(E, V) is a nondecreasing function of V. 

We conclude that the function S(E, V), as defined by any one of the 
formulas (6.27)-(6.29), is the entropy of a system of volume V and internal 
energy E. This conclusion furnishes the connection between the rnicrocanonical 
ensemble and thermodynamics. 

6.3 DERIVATION OF THERMODYNAMICS 

We have defined the entropy of a system and have shown that the second law of 
thermodynamics holds. The complete thermodynamics of a system can now be 
obtained. 

First we discuss the analog of quasistatic thermodynamic transformations. A 
quasistatic thermodynamic transformation corresponds to a slow variation of E 
and V, induced by coupling the system to external agents. During such a 
transformation the ensemble is represented by a collection of representative 
points uniformly distributed over a slowly changing region in T space. The 
change is so slow that at every instant we have a microcanonical ensemble. 
Accordingly, the change in the entropy in an infinitesimal transformation is 
given by 

The coefficient of dE has been defined earlier as the inverse absolute temperature 
T-l. We now define the pressure of the system to be 

Hence 

1 
dS = -(dE + P d V )  

T 
(6.32) 

dE = TdS-  P d V  (6.33) 

This is the first law of thermodynamics. 
Thus we have succeeded not only in deriving the first and second laws of 

thermodynamics, but also in finding means to calculate all thermodynamic 
functions in terms of molecular interactions. The third law of thermodynamics 
cannot be obtained in classical statistical mechanics, because it is quantum 
mechanical. 

We summarize by giving a practical recipe for finding all the thermodynamic 
functions of a system. 

RECIPE 
Consider an isolated system that occupied volume V and has an energy E 

within a small uncertainty A E. The Harniltonian is presumed known. To find 
all thermodynamic functions of the system, proceed as follows: 

(a) Calculate the density of states w(E) of the system from the Hamilto- 
nian. 

(b)  Find the entropy up to an arbitrary additive constant by the formula 

S (E ,  V) = k log w ( E )  

where k is Boltmann's constant. Alternatively we can use the formula 
(6.27) or (6.29). 

(c) Solve for E in terms of S and V. The resulting function is the 
thermodynamic internal energy of the system 

(d) Find other thermodynamic functions from the following formulas: 

au 
T =  (as)" (absolute temperature) 

P=-(g) s (pressure) * 

A = U - T S  (Helmholtz free energy) 

G = U + P V  - TS (Gibbs potential) 

cv = (g ) (heat capacity at constant volume) 
v 

(e) To study any equilibrium behavior of the system, use thermodynamics. 

6.4 EQUIPARTITION THEOREM 

Let xi be either pi or q, ( i  = 1, .  . . ,3N). We calculate the ensemble average of 
x,(dX/dx,), where 2' is the Hamiltonian. Using the abbreviation dpdq = 
d 3Np d 3Nq, we can write 

Noting that dE/dx, = 0, we may calculate the last integral in the following 

*This is equivalent to (6.31) by the chain relation. 
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manner: 

a 
= dpdq -[xi(&'- E ) ]  - a,,/ dpdq ( 2 -  E )  kE ax, x< E 

The first integral on the right side vanishes because it reduces to a surface integral 
over the boundary of the region defined by .%f< E,  and on this boundary 
2- E = 0. Substituting the latest result into the previous equation, and noting 
that T(E) = w(E)A, we obtain 

that is, 

This is the generalized equipartition theorem. 
For the special case i = j, x, = pi, we have 

For i = j and x, = q,, we have 

According to the canonical equations of motion, d.%f/dq, = - p i  Hence (6.36) 
leads to the statement 

\ r = l  I 
which is known as the virial theorem because Cq,p,-the sum of the ith 
coordinate times the ith component of the generalized force-is known in 
classical mechanics as the virial. 

Many physical systems have Hamiltonians that, through a canonical trans- 
formation, can be cast in the form 

where Pi, Q, are canonically conjugate variables and A,, B, are constants. For 
such systems we have 

Suppose f of the constants A; and B, are nonvanishing. Then (6.35) and (6.36) 
imply that 

(A?) = tfkT (6.40) 

That is, each harmonic term in the Hamiltonian contributes :kT to the average 
energy of the system. This is known as the theorem of equipartition of energy. But 
(6.40) is the internal energy of the system. Therefore 

Thus the heat capacity is directly related to the number of degrees of freedom of 
the system. 

A paradox arises from the theorem of equipartition of energy. In classical 
physics every system must in the last analysis have an infinite number of degrees 
of freedom, for after we have resolved matter into atoms we must continue to 
resolve an atom into its constituents and the constituents of the constituents, 
ad infinitum. Therefore the heat capacity of any system is infinite. This is a real 
paradox in classical physics and is resolved by quantum mechanics. Quantum 
mechanics possesses the feature that the degree of freedom of a system are 
manifest only when there is sufficient energy to excite them, and that those 
degrees of freedom that are not excited can be forgotten. Thus the formula (6.41) 
is valid only when the temperature is sufficiently high. 

6.5 CLASSICAL IDEAL GAS 

To illustrate the method of calculation in the microcanonical ensemble we 
consider the classical ideal gas. This has been considered earlier in our discussion 
of the kinetic theory of gases. In that discussion we also introduced the micro- 
canonical ensemble, but we obtained all the thermodynamic properties of the 
ideal gas via the distribution function. For the sake of illustration, we now derive 
the same results using the recipe gven in Section 6.3. 

The Hamiltonian is 
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The entropy of the ideal gas is We first calculate 

By (6.51), this reduces to where h is a constant of the dimension of momentum X distance, introduced to 
make E ( E) dimensionless. The integration over qi can be immediately carried 
out, giving a factor of vN. Let 

R=,IZZ (6.44) 

Then 
Solving for E in terms of S and V, and calling the resulting function U(S, V) the 
internal energy, we obtain 

where Qn is the volume of an n-sphere of radius R: The temperature is 

Clearly, 

Qn(R)  = CnRn (6.47) 

where Cn is a constant. To find Cn, consider the identity 

from which follows 

C, = 2Nk 

Finally the equation of state is 

2 U NkT 

.y 3 v  v (6.58) 

This calculation shows that the microcanonical ensemble is clumsy to use. 
There seems little hope that we can straightforwardly carry out the recipe of the 
microcanonical ensemble for any system but the ideal gas. We later introduce the 
canonical ensemble, which gves results equivalent to those of the microcanonical 
ensemble but which is more convenient for practical calculations. 

The left side of (6.48) can be re-expressed as follows. Let Sn(R) = dQ,(R)/dR 
be the surface area of an n-sphere of radius R. Then 

6.6 GlBBS PARADOX 

According to (6.54), the entropy of an ideal gas is 

S = ~k log(vu3I2) + Ns, (6.59) 
where 

u = t k T  

where r ( z )  is the gamma function. Comparison of (6.49) and (6.48) yields 

so = - 1 + log -7j- 
2 3k i  4Tm 3h 1 n n n n  

logCn + -1ogm - - log- + - 
n - r m  2 2 2 2  

Consider two ideal gases, with Nl and N2 particles, respectively, kept in two 
separate volumes Vl and V2 at the same temperature and the same density. Let us 
find the change in entropy of the combined system after the gases are allowed to 
mix in a volume V = Vl + V2. The temperature will be the same after the mixing 

Hence 
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process. Hence u remains unchanged. From (6.59) we find that the change in 
entropy is 

A S  V V 
- = N, log - + N, log - > 0 
k Vl v2 

which is the entropy of mixing. If the two gases are different (e.g., argon and 
neon), this result is experimentally correct. 

The Gibbs paradox presents itself if we consider the case in which the two 
mixing gases are of the same kind. Since the derivation of (6.61) does not depend 
on the identity of the gases, we would obtain the same increase of entropy (6.61). 
This is a disastrous result because it implies that the entropy of a gas depends on 
the history of the gas, and thus cannot be a function of the thermodynamic state 
alone. Worse, the entropy does not exist, because we can always imagine that the 
existing state of a gas is arrived at by pulling off any number of partitions that 
initially divided the gas into any number of compartments. Hence S is larger 
than any number. 

Gibbs resolved the paradox in an empirical fashion by postulating that we 
have made an error in calculating x ( E ) ,  the number of states of the gas with 
energy less than E. Gibbs assumed that the correct answer is N! times smaller 
than we though it was. By this assumption we should subtract from (6.59) the 
term log N! = N log N - N and obtain 

S = Nklog -u3I2 + $Nk $ + log (N'  j ( $1 
This formula does not affect the equation of state and other thermodynamic 
functions of a system, because the subtracted term is independent of T and V. 
For the mixing of two different gases (6.62) still predicts (6.61), because N, and 
N, are the same constants before and after the mixing. For the mixing of gases 
that are of the same kind, however, it gives no entropy of mixing because the 
specific volume V/N is the same before and after mixing. 

The formula (6.62) has been experimentally verified as the correct entropy of 
an ideal gas at high temperatures, if h is numerically set equal to Planck's 
constant. It is known as the Sackur-Tetrode equation. 

It is not possible to understand classically why we must divide x (  E)  by N! 
to obtain the correct counting of states. The reason is inherently quantum 
mechanical. Quantum mechanically, atoms are inherently indistinguishable in the 
following sense: A state of the gas is described by an N-particle wave function, 
which is either symmetric or antisymmetric with respect to the interchange of any 
two particles. A permutation of the particles can at most change the wave 
function by a sign, and it does not produce a new state of the system. From this 
fact it seems reasonable that the r-space volume element dpdq corresponds to 
not one but only dpdq/N! states of the system. Hence we should divide x ( E )  
by N!. This rule of counting is known as the "correct Boltzmann counting." It is 
something that we must append to classical mechanics to get right answers. 

The foregoing discussion contains the correct reason for, but is not a 
derivation of, the "correct Boltmann counting," because in classical mechanics 
there is no consistent way in which we can regard the particles as indistinguisha- 
ble. In all classical considerations other than the counting of states we must 
continue to regard the particles in a gas as distinguishable. 

We may derive the "correct Boltzmann counting" by showing that in the 
limit of high temperatures quantum statistical mechanics reduces to classical 
statistical mechanics with "correct Boltmann counting." This is done in Section 
9.2. 

PROBLEMS 

6.1 Show that the formulas (6.27), (6.28), and (6.29) are equivalent to one another. 

6.2 Let the "uniform" ensemble of energy E be defined as the ensemble of all systems of 
the given type with energy less than E. The equivalence between (6.29) and (6.27) means 
that we should obtain the same thermodynamic functions from the "uniform" ensemble of 
energy E as from the microcanonical ensemble of energy E. In particular, the internal 
energy is E in both ensembles. Explain why this seemingly paradoxical result is true. 

6.3 Consider a system of N free particles in which the energy of each particle can assume 
two and only t \ r o  distinct values, 0 and E (E > 0). Denote by no and n, the occupation 
numbers of the energy level 0 and E, respectively. The total energy of the system is U.  
(a) Find the entropy of such a system. 
(b) Find the most probable values of no and n,, and find the mean square fluctuations of 
these quantities. 
( c )  Find the temperature as a function of U ,  and show that it can be negative. 
(d) What happens when a system of negative temperature is allowed to exchange heat 
with a system of positive temperature? 

Reference. N. F. Ramsey, Phys. Rev. 103, 20 (1956). 

6.4 Using the corrected entropy formula (6.62), work out the entropy of mixing for the 
case of different gases and for the case of identical gases, thus showing explicitly that there 
is no Gibbs paradox. 
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CANONICAL ENSEMBLE 
AND GRAND 

CANONICAL ENSEMBLE 

7.1 CANONICAL ENSEMBLE 

We wish to consider the question, "What ensemble is appropriate for the 
description of a system not in isolation, but in thermal equilibrium with a larger 
system?" To answer it we must find the probability that the system has energy E, 
because this probability is proportional to the density in r space for the 
ensemble we want. 

We investigated a similar problem in Section 6.2, when we consider the 
energies of the component parts of a composite system. In the following we 
discuss the case in which one component part is much smaller than the other. 

Consider an isolated composite system made up of two subsystems whose 
Hamiltonians are, respectively, 3CP,(p1, q,) and 3CP,(p2, q,), with number of 
particles Nl and N,, respectively. We assume that N, Z+ Nl but that both N, 
and N, are macroscopically large. We are interested in system 1 only. Consider a 
microcanonical ensemble of the composite system with total energy between E 
and E + 2A.  The energies El and E, of the subsystems accordingly can have 
any values satisfying 

Although this includes a range of values of El, E,, the analysis of Section 6.2 
shows that only one set of values, namely 6, 6, is important. We assume that 

>> 6. Let r2(E2) be the volume occupied by system 2 in its own r space. 
The probability of finding system 1 in a state within dp, dq, of (p,, q,), 
regardless of the state of system 2, is proportional to dp, dq, r2(E2), where 
E2 = E - El. Therefore up to a proportionality constant the density in r space 

for system 1 is 

~ ( ~ 1 7  91) a r2(E - 

Since only the values near E, = El are expected to be important, and & << E, 
we may perform the expansion 

k log r 2 ( E  - E,) = S2(E - E,) = s,(E) - El 
E 2 = E  + . . . 

where T is the temperature of the larger subsystem. Hence 

The first factor is independent of El and is thus a constant as far as the small 
subsystem is concerned. Owing to (7.2) and the fact that El = 3CP,(pl, ql), we 
may take the ensemble density for the small subsystem to be 

where the subscript 1 labeling the subsystem has been omitted, since we may 
now forget about the larger subsystem, apart from the information that its tem- 
perature is T. The larger subsystem in fact behaves like a heat reservoir in 
thermodynamics. The ensemble defined by (7.9, appropriate for a system whose 
temperature is determined through contact with a heat reservoir, is called the 
canonical ensemble. 

The volume in r space occupied by the canonical ensemble is called the 
partition function: 

where /3 = l/kT, and where we have introduced a constant h, of the dimension 
of momentum X distance, in order to make QN dimensionless. The factor 1/N! 
appears, in accordance with the rule of "correct Boltmann counting." These 
constants are of no importance for the equation of state. 

Strictly speaking we should not integrate over the entire r space in (7.6), 
because (7.2) requires that p(pl, q,) vanish if El > E. The justification for 
ignoring such a restriction is that in the integral (7.6) only one value of the energy 
X ( p ,  q) contributes to the integral and that this value will lie in the range where 
the approximation (7.4) is valid. We prove this contention in Section 7.2. 

The thermodynamics of the system is to be obtained from the formula 

where A(V, T )  is the Helmholtz free energy. To justify this identification we show 
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that energy. To do this we calculate the mean square fluctuation of energy in the 
canonical ensemble. The average energy is ( a )  A is an extensive quantity, 

( b )  A is related to the internal energy U  = ( H )  and the entropy S = 
- ( a A / a  T )  , by the thermodynamic relation 

A = U - T S  

That A is an extensive quantity follows from (7.6), because if the system is made 
up of two subsystems whose mutual interaction can be neglected, then Q ,  is a 
product of two factors. To prove the relation ( b ) ,  we first convert ( b )  into the 
following differential equation for A: 

Hence 

/ dp dq [ U  - # ( p ,  q ) ]  e B [ A ( V . T ) - " ( ~ ,  9)l = 0 

Differentiating both sides with respect to j3, we obtain 

To prove (7.8), note the identity 
By (7.8) this can be rewritten in the form 

L 1 dpdqeB["(v~)-"'P~ 9)' = 1 
~ ! h ~ ~  (7.9)  

Differentiating with respect to j3 on both sides, we obtain 

au 
- + ( ( u  - = 0 
ap 

Therefore the mean square fluctuation of energy is 

This is the same as or 
( X 2 )  - ( X ) 2  = kT2CV (7.14) 

For a macroscopic system (2)  a N and C ,  a N .  Hence (7.14) is a normal 
fluctuation. As N + oo, almost all systems in the ensemble have the energy 
(2),  which is the internal energy. Therefore the canonical ensemble is equiv- 
alent to the microcanonical ensemble. 

It is instructive to calculate the fluctuations in another way. We begin by 
calculating the partition function in the following manner: 

All other thermodynamic functions may be found from A(V, T )  by the 
Maxwell relations in thermodynamics: 

G = A + P V  
U =  ( H )  = A +  TS 

where S is the entropy defined in the microcanonical ensemble. Since both S and 
U  are proportional to N,  the exponent in the last integrand is enormous. We 
expect that as N + oo the integral receives contribution only from the neighbor- 
hood of the maximum of the integrand. The maximum of the integrand occurs at 
E = E, where E satisfies the conditions 

Therefore all calculations in the canonical ensembles begin (and nearly end) with 
the calculation of the partition function (7.6). 

7.2 ENERGY FLUCTUATIONS IN THE 
CANONICAL ENSEMBLE 

We now show that the canonical ensemble is mathematically equivalent to the 
microcanonical ensemble in the sense that although the canonical ensemble 
contains systems of all energies the overwhelming majority of them have the same 
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The first condition implies E = U, the internal energy. Next we note that 

Thus the condition (7.17) is satisfied if C, > 0, which is true for physical systems. 
Now let us expand the exponent in (7.15) about E = E: 

Hence 

showing that in the canonical ensemble the distribution in energy is a Gaussian 
distribution centered about the value E = U with a width equal to 

A E =  {z (7.21) 

Since U a N and C ,  a N, AE/U is negligibly small. As N + oo the Gaussian 
approaches a 8-function. Finally, let us perform the integral in (7.20). It is 
elementary: 

Therefore 

This last term is negligible when N + oo. In that limit we have exactly A = U - 
TS. Statement (7.23) shows that the entropy as defined in the canonical and 
rnicrocanonical ensemble differs only by terms of the order of log N. 

We have shown that almost all systems in the canonical ensemble have the 
same energy-namely, the energy that is equal to the internal energy of a system 
at the given temperature T. The reason for'this is easy to see, both mathemati- 
cally and physically. 

In the canonical ensemble we distribute systems in r space according to the 
density function p(p, q )  = exp[-PX(p, q) ] ,  which is represented in Fig. 7.1. 
The density of points rriils off exponentially as we go away from the origin of r 
space. The distribution in energy is obtained by "counting7' the number of points 

Fig. 7.1 Distribution of representative points in r space for 
the canonical ensemble. 

on energy surfaces. As we go away from the origin, the energy increases and the 
area of the energy surface increases. This is why we get a peak in the distribution 
in energy. The sharpness of the peak is due to the rapidity with which the area of 
the energy surface increases as E increases. For an N-body system this area 
increases like eE, where E a N. 

From a physical point of view, a microcanonical ensemble must be equiv- 
alent to a canonical ensemble, otherwise we would seriously doubt the utility of 
either. A macroscopic substance has the extensive property, i.e., any part of the 
substance has the same thermodynamic property as the whole substance. Now 
consider a piece of substance isolated from everything. Any part of the substance 
must still be in equilibrium with the rest of the substance, which serves as a heat 
reservoir that defines a temperature for the part on which we focus our attention. 
Therefore the whole substance must have a well-defined temperature. 

We have seen earlier that in the microcanonical ensemble it matters little 
whether we take the entropy to be k times the logarithm of the density of states 
at the energy E, the number of states with energies between E,  E + A, or all the 
states with energy below E. In all these cases we arrive at the same thermody- 
namic behavior. Now we see that it matters little whether we specify the energy 
of the system or the temperature of the system, for specifying one fixes the other, 
and we find the same thermodynamic behavior in both cases. All these examples 
illustrate the insensitivity of thermodynamic results to methods of derivation. The 
reasons behind this insensitivity are, in all cases, the facts that 

(a)  density of states a e 

( b )  E a N  

(c) N+oo 

On these facts depends the validity of statistical mechanics. 
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7.3 GRAND CANONICAL ENSEMBLE 

Although the canonical and the microcanonical ensemble give equivalent results, 
it may be argued that conceptually the canonical ensemble corresponds more 
closely to physical situations. In experiments we never deal with a completely 
isolated system, nor do we ever directly measure the total energy of a macro- 
scopic system. We usually deal with systems with a given temperature-a 
parameter that we can control in experiments. 

By the same token we should not have to specify exactly the number of 
particles of a macroscopic system, for that is never precisely known. All we can 
find out from experiments is the average number of particles. This is the 
motivation for introducing the grand canonical ensemble, in which the systems 
can have any number of particles, with the average number determined by 
conditions external to the system. This is analogous to the situation in the 
canonical ensemble, where the average energy of a system is determined by the 
temperature of the heat reservoir with which it is in contact. 

The r space for the grand canonical ensemble is spanned by all the 
canonical momenta and coordinates of systems with 0,1,2,. . . number of par- 
ticles. The density function describing the distribution of representative points in 
r space is denoted by p(p,  q, N), which gives the density of points representing 
systems with N particles with the momenta and coordinates ( p ,  q). To find 
p( p ,  q, N )  we consider the canonical ensemble for a system with N particles, 
volume V, and temperature T, but we focus our attention on a small subvolume 
V, of the system. 

Suppose there are N, particles in V, and N2 = N - N, particles in V2 = 

V - Vl . We assume 
v2 >> v, 
N2 >> N, 

and designate the coordinates of the N, particle in V, by { p,, q,), and those in 
V2 by { p2, 9,). The interactions between particles in V, with those in V2 are 
surface effects that can be neglected if V, is of macroscopic size. Thus the total 
Hamiltonian can be decomposed in the form 

2 ( ~ ,  4, N,  = 2 ( ~ ~ ,  91, N1) + 2 ( ~ 2 ,  92, N2) (7.24) 

Note that the terms above involve the same function evaluated at different values 
of its arguments. The partition function of the total system is 

We shall segregate the contributions to the above from different values of N,. In 
so doing, we do not care which particles are in V, as long as there are N,  of them, 
and the coordinates of those that happen to be in V, will be designated by 
{ p l ,  q,}. That is, in carrying out the integration over the phase space of the 
N-particle system, we always designate by { p,, q,} the coordinates of those 

particles that happen to be in V,, through a change in the variables of integration 
if necessary. Thus 

The relative probability p(p,, q,, N,) that there are N, particles in V, with 

coordinates { p,, q, } is proportional to the summand of / dp, dq, We 

choose its normalization such that 

The first factor above is chosen so that 

?  PI dql P (  PI ,  ~ I , N I )  = 1 (7.27) 
N1 =o 

which is obvious if we rewrite the last expression in (7.25) in terms of p as 
defined in (7.26). 

We can rewrite (7.26) in the form 

Using (7.7) we write 

QN2(v2' 
= exp { - B  [ A ( N  - N,, V - V,, T )  - A(N,  V, T ) ] )  (7.29) 

QN(v, 

where A(N, V, T )  is the Helmholtz free energy. Since N >> N, and V >> V,, we 
may use the approximation 

A(N - N,, V - V,, T )  - A(N, V, T)  - -N,p + VIP (7.30) 

where p and P are, respectively, the chemical potential and the pressure of the 
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part of the system external to the small volume V,: 

We now introduce the fugacity: 

Substituting (7.32) and (7.30) into (7.29), and then substituting (7.29) into (7.28), 
we obtain 

where the subscript 1 identifying the volume under consideration has been 
omitted because the system external to the volume can now be forgotten, apart 
from the information that it has the temperature T, pressure P,  and chemical 
potential p. We now allow the system external to the volume under consideration 
to become infinite in size. Then the range of N in (7.33) becomes 

The thermodynamic functions for the volume under consideration may be 
found as follows. First, the internal energy shall be the ensemble average of 
2 ( p ,  q). Second, the temperature, pressure, and chemical potential shall be 
respectively equal to T, P,  p. TO show that this is a correct recipe, it suffices to 
remind ourselves that thermodynamics has been derived from the canonical 
ensemble. It is an elementary thermodynamic exercise to show that if a system is 
in equilibrium any part of the system must have the same T, P, p as any other 
part; but this is the desired result. 

To obtain a convenient formal recipe for finding all the thermodynamic 
functions we define the grand partition function as follows: 

which in principle can be calculated from a knowledge of the Hamiltonian. 
Integrating both sides of (7.33) over all (p ,  q) for a given N ,  and then summing 
N from 0 to oo, we find that 

PV 
- = log 9 ( z ,  V ,  T )  
kT 

Thus the grand partition function directly gives the pressure as a function of z ,  V,  
and T. The average number N of particles in the volume V is by definition the 

ensemble average 
m 

C N Z ~ Q ~  (v, T )  

The equation of state, which is the equation expressing P  as a function of N ,  V, 
and T, is obtained by eliminating z  between (7.35) and (7.36). 

All other thermodynamic functions may be obtained from the internal 
energy: 

After eliminating z with the help of (7.36), U becomes a function of N, V, and T. 
We can then use the formulas 

7.4 DENSITY FLUCTUATIONS IN THE GRAND 
CANONICAL ENSEMBLE 

We now calculate the density fluctuations in the grand canonical ensemble. By 
differentiating (7.36) with respect to z,  one can easily show 

a a a 2~ 
( N 2 )  - ( N ) 2  = Z- Z-  log 9 ( z ,  V, T)  = kTV- (7.38) a z  a z  ap2 

where the last equality is obtained through the use of (7.34) and (7.36). To 
express the above in terms of conveniently measurable quantities, assume that the 
Helmholtz free energy of the system, being an extensive quantity, can be written 
in the form 

A ( N ,  V, T )  = ~ a ( u ) ,  u = V/N (7.39) 

where the temperature dependence of a(u) has been suppressed for brevity. Then 
the two equations in (7.31) can be rewritten as 
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Regarding both p and P as functions of u and T, we obtain from the above 

Hence 

Substituting t h s  relation into (7.38), we finally obtain, after some minor rewrit- 
ing, 

T h s  shows that the density fluctuations are vanishing small in the thermody- 
namic limit, provided the isothermal compressibility K, is finite (i.e., not infinite). 
T h s  is true except in the transition region of a first-order phase transition, 
including the critical point. 

The relation (7.43) is similar to (7.14), whereby a fluctuation is related to an 
appropriate "susceptibility." In the case of energy fluctuations the relevant 
susceptibility is the specific heat at constant volume, and in the case of density 
fluctuations it is the isothermal compressibility. These are special cases of a more 
general rule known as the fluctuation-dissipation theorem, the hstorically earliest 
form of whch is the Einstein relation (2.61) pertaining to Brownian motion. 

The probability that a system in the grand canonical ensemble has N 
particles is proportional to 

where A is the Helmholtz free energy calculated from the canonical ensemble 
with N particles. When the density fluctuations are small, W(N) is strongly 
peaked about N = @, with a width of the order of K,  and we may obtain the 
Helmholtz free energy directly from the grand partition function through the 
formula 

where z is to be eliminated through (7.36). 
When aP/au = 0, as happens at the critical point, the density fluctuations 

become very large, as is borne out experimentally by the phenomenon of critical 
opalescence. However, even in this case, (7.45) is still valid. To show this requires 
a more detailed analysis, whch we postpone until the end of ths  chapter. 

7.5 THE CHEMICAL POTENTIAL 

Thermodynamics 

The chemical potential p is defined such that the Helmholtz free energy A 
changes by p dN, when the number of particles change by dN, at constant T and 
V. Hence 

d A =  - P d V - S d T + p d N  (7.46) 

from which we can deduce a more general form of the first law of thermody- 
namics : 

d U =  - P d V +  T d S + p d N  (7.47) 

When p is positive, it tends to drive N to smaller values, in order to lower the 
energy. Hence the name chemical potential.* 

From (7.46) we can also deduce the change of the Gibbs free energy: 

d G =  - V d P -  S d T + p d N  (7.48) 

Thus we have the equivalent Maxwell relations 

kl = ("1 aN V , T  =(") aN P , T  

A useful result is the chemical potential of an ideal gas, which can be easily 
calculated from the partition function for an ideal gas: 

A = \/2ah2/mkT 

Hence 

A = kTlogQ,= -kTN log - [ ( N Y 3 ) +  '1 
p = aA/aN = kT log(A3n) 

where n is the density. 

Conservation of Particle Number 

For ordinary matter, it makes sense to speak of a system of N atoms, because N 
is an effectively conserved quantity. The chemical potential may be viewed as the 
Lagrange multiplier to take that into account. The conservation law has its origin 
in the more fundamental law of baryon conservation, which states that the 
number of baryons (such as protons or neutrons) minus the number of anti- 
baryons is conserved. This means, for example, that a proton can be created or 

*The name fugacity for exp ( B p )  has a dictionary meaning of "the tendency to flee," or 
" volatility." The fugucity of pleusure, the frugility of heuuty (Samuel Johnson). 
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annihilated only in conjunction with an antiproton. At low temperatures the 
thermal energy is not sufficient to create pairs, nor are there antiprotons present. 
Thus the number of protons (and neutrons) is effectively conserved. 

The same thing can be said about electrons, whose number appears to be 
conserved at low temperatures only because there is insufficient energy to create 
electron-positron pairs, and there are usually no positrons present. The truly 
conserved quantity is the number of electrons minus the number of positrons. 

A correct description of matter at high temperatures must take into account 
the possibility of pair creation. There will be an average number of particles and 
antiparticles present in equilibrium, there will also be fluctuations about the 
average values. It is the difference between particle and antiparticle number that 
remains strictly constant and is determined by the initial conditions. For exam- 
ple, the reaction e+ + e- Ft y can occur in the interior of stars, and establishes 
the equilibrium density of electrons, positrons, and radiation. 

The detailed mechanism for pair creation and annihilation is not relevant for 
the equilibrium situation, and affects only the relaxation time for the establish- 
ment of equilibrium. Thus, to treat the equilibrium situation we may describe the 
system in the grand canonical ensemble, using the effective Hamiltonian 

where the subscripts 1 and 2 refer to particle and antiparticle, and p is the 
Lagrange multiplier introduced to enable us to treat N, and N2 as unconstrained 
variables. The grand partition function is 

where Q ,  is a partition function, and A ,  the corresponding Helmholtz free 
energy. In the thermodynamic limit we keep only the largest term in the 
summand, with N, and N2 determined by the conditions 

We should calculate the ~elmholtz'  free energies using relativistic kinematics. For 
the purpose of illustration, however, we shall pretend that the energy of a particle 
is E = mc2 + p2/2m. The inclusion of the rest energy is important, for we are 
concerned with processes that can convert it into other forms of energy. Thus we 
take the chemical potential to be (7.50) plus the rest energy. The conditions for 
equilibrium then become 

where n, and n2 are the densities of particles and antiparticles. Adding the two 
equations gives 

The rest energy of an electron corresponds to a temperature of 6 X l o9  K. That 
for a proton is 2000 times higher. Thus the right side of (7.55) is essentially zero 
for ordinary temperatures. This means that, if either n, or n2  is not essentially 
zero, the other must be. This shows why we can completely ignore antiparticles 
when kT << mc2. 

Chemical Equilibrium 

Suppose we have a reaction such as 

What are the fractions of each species of molecules present in an equilibrium 
mixture? More generally we consider a reaction in which a group of particles 
XI, X2, . . . participate in a reaction to yield a group of particles Y,, Y2, . . . or 
vice versa: 

v,X, + v2X; + . .  8 v;Y, + v;Y2 + . . . (7.56) 

The numbers vi are called stoichiometric coeficients. The process is a generaliza- 
tion of our previous discussion of particle-antiparticle reaction, for whlch v, = v, 
= 1. For notational convenience, rewrite (7.56) as 

K 

C vix, = 0 (7.57) 
i = l  

where both X's and Y's are denoted by X, and v,! = - vi. The conservation law 
in this case is 

where 6Nr is the increase in the number of particles of the ith type. This means 
SN,/v, is independent of i: 

To find the equilibrium condition consider the reaction proceeding at constant V 
and T. In equilibrium the Helmholtz energy A  is at a minimum. Hence any 
variation of the number N, from their equilibrium value will not change A  to first 
order. Assume A  is the sum of the component free energies. Then 

Since 6N is arbitrary, we obtain as a condition for equilibrium 
K 

C P,V, = 0 
i = l  
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where p i  is the chemical potential of X,. If the reaction proceeds at constant P  
and T, one considers the Gibbs free energy instead, and arrives at the same 
condition. 

7.6 EQUIVALENCE OF THE CANONICAL ENSEMBLE AND 
THE GRAND CANONICAL ENSEMBLE 

We have seen that if aP/au  < 0 then almost all systems in the grand canonical 
ensemble have the same number of particles N. Then the grand canonical 
ensemble is trivially equivalent to the canonical ensemble for N particles. 

To complete our investigation of the equivalence between the canonical and 
the grand canonical ensemble it is necessary to consider values of u  for which 
a P / a u  = 0. It will be shown that in such cases the function W(N) given in (7.44) 
will no longer have a sharp maximum; the equation of state as given by the recipe 
in the grand canonical ensemble nevertheless still agrees with that given by the 
recipe in the canonical ensemble. In this sense the two ensembles are always 
equivalent. 

Physically the values of u  for which aP/au  = 0 correspond to the transition 
region of a first-order phase transition. In this region, (7.43) leads us to expect 
that the fluctuations of density in a given volume of the system will be large. This 
is also expected physically, for in such a region the system is composed of two or 
more phases of diferent densities. Therefore the number of particles in any given 
volume can have a whole range of values, depending on the amounts of each 
phase present. At the critical point of a gas-liquid system fluctuations in density 
are also expected to be large, because throughout the system molecules are 
spontaneously forming large clusters and breaking up. It is clear that under these 
conditions the grand canonical ensemble must continue to yield thermodynamic 
predictions that are in agreement with those obtained by the canonical ensemble. 
Otherwise the validity of either as a description of matter would be in doubt, for 
it is a basic experimental fact that we can obtain the same thermodynamic 
information whether we look at the whole system or at only a subvolume of the 
system. 

The mathematical questions that we try to answer are as follows. Suppose 
QN(V, T )  is given, and we wish to calculate 

m 

9 ( z ,  V, T )  = C zNQN(v, T )  (7.62) 
N=O 

for given values of z, V, and T. 

(a) For a given value of z is the following true for some N? 

(b)  Does there always exist a value of z for which N has any given positive 
value? 

The answers are obviously no, if Q N ( V ,  T )  is any function of N ,  V ,  T .  We 
are only interested, however, in the answers when Q N ( V ,  T )  is the partition 
function of a physical system. Thus we must first make some assumptions about 
Q,(V,  T I .  

To incorporate the salient features of a physical system into our considera- 
tions, and yet keep the mathematics simple, we assume that we are dealing with a 
system 

( a )  whose molecules interact through an intermolecular potential that con- 
tains a hard-sphere repulsion of finite diameter plus a finite potential of 
finite range, and 

( b )  whose Helmholtz free energy has the form 

where u  = V / N ,  p = l / k T ,  and f (u)  is finite. The temperature will be 
fixed throughout our discussions and will not be displayed unless 
necessary. The function f (u)  is related to the pressure P ( u )  of the 
canonical ensemble by 

where the integration is carried out along an isotherm and u, is an 
arbitrary constant corresponding to an arbitrary additive constant in the 
Helmholtz free energy. 

(c) We further assume that f (u)  is such that 

This immediately implies that 

With these assumptions the grand partition function may be written in the 
form 

where z is an arbitrary fixed number and 
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Using (7.65) we obtain 

STATISTICAL MECHANICS 

1 
+ ( u ,  z )  = - log z + (7.70) 

U 

By (7.67), we have d 2 + / d ( l / u ) 2  I 0 ,  or 

We now calculate the grand partition function. For a fixed volume V the 
partition function Q,(V) vanishes whenever 

N ' N o ( V )  

where N o ( V )  is the maximum number of particles that can be accommodated in 
the volume V ,  such that no two particles are separated by a distance less than the 
diameter of the hard sphere in the interparticle potential. Therefore 2 ( z ,  V )  is a 
polynomial of degree No(V).  For large V it is clear that 

where a is a constant. Let the largest value among the terms in this polynomial 
be exp [V+o(z)],  where 

Then the following inequality holds: 

eV+o(') I 2 ( z ,  u )  < N , ( V )  eV+o(') 

Using (7.72) we obtain 

eV+o(') I 2 ( z ,  V )  < aVev+o(') 
or 

Therefore 
1 

lim - log 2 ( z ,  V )  = +,(z) 
v-+m V 

(7.75) 

Let 6 be a value of u at which +(u, z )  assumes its largest possible value. 
Since +(u ,  z) is differentiable, 6 is determined by the conditions 

By virtue of (7.71) the first condition implies the second. Therefore 6 is de- 

Fig. 7.2 Typical isotherm of a substance in the transi- 
tion region of a first-order phase transition. 

termined by (7.76) alone. By (7.69) and (7.65) we may rewrite it in the form 

I d u '  P ( u ' )  - 6 P ( i )  = - kT log r 

[ [ d u ' ~ ( u r )  - ( 6  - u 0 ) P ( i )  - u O P ( i )  = - kT logz (7.78) I 
A geometrical representation of this condition is shown in Fig. 7.2. The value of 
6 is such that the difference between the area of the region A and that of the 
region B is numerically equal to - kT log z. The result is shown in Fig. 7.3. It is 
seen that to every value of 6 greater than the close-packing volume there 
corresponds a value of z. This answers question (b )  in the affirmative. 

u1 u2 

Fig. 7.3 z as a function of E. 
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There is a value of z that corresponds to all the values of 6 lying in the 
interval u, I 6 I u,. This value, denoted by z,, is given by 

7.7 BEHAVIOR OF W(N)  

In (7.44) we introduced the quantity W(N), which is the (unnormalized) prob- 
ability that a system in the grand canonical ensemble has N particles. Comparing 
(7.44) to (7.68) we see that 

W( N )  = exp [v+ (;, z)]  

Hence it is of some interest to examine the function +(u, z) in more detail. 
Suppose P(u) has the form shown in the P - u diagram of Fig. 7.2. For values of 
u lying in the range u, I u I u,, P has the constant value Po. For this range of u 
we have 

which is the same as 

where z, is defined by (7.79). Hence we can immediately make a qualitative 
sketch of a family of curves, one for each z, for the function +(u, z) in the 
interval u, I u I v2. The result is shown in Fig. 7.4. 

~ i g .  7.4 Qualitative form of + ( u ,  z) for a 
physical substance. 

To deduce the behavior of +(u, z) outside the interval just discussed we use 
the following facts: 

(a )  d+/du is everywhere continuous. This is implied by (7.70). 

( b )  d+/du = 0 implies d2+/du2 I 0. That is, as a function of u, + cannot 
have a minimum. This follows from (7.71). 

(c) For z # z,, + has one and only one maximum. This follows from (b). 

Guided by these facts we obtain the curves shown in Fig. 7.4. 
The behavior of W(N) can be immediately obtained from that of +(u, z). It 

is summarized by the series of graphs in Fig. 7.5. For z # z,, W(N) has a single 
sharp peak at some value of N. This peak becomes infinitely sharp as V + oo. 
For z = z,, all values of N in the interval 

are equally probable. The number of N values corresponding to (7.82) is 

This situation corresponds to the large fluctuation of density in the transition 

- - 
u2 "1 

Fig. 7.5 The function W ( N )  for three different fugacities 
(hence three different densities). For curves a and c the 
system is in a single pure phase. For curve b the system is 
undergoing a first-order phase transition. 
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region and may be stated in more physical terms as follows: The pressure is 
unchanged if we take any number of particles from one phase and deliver them 
to the other. Each time we do this, however, the total number of particles in a 
given volume changes, because the densities of the two phases are generally 
different. Let us start with the system in one pure phase and then transfer the 
particles one by one to the other phase, until the system exists purely in the other 
phase. The number of transfers we can make is proportional to V. Each transfer 
corresponds to a term in the grand partition function, and all these terms have 
the same value. 

7.8 THE MEANING OF THE MAXWELL CONSTRUCTION 

It has been shown that if the pressure P calculated in the canonical ensemble 
satisfies the condition aP/au I 0, the pressure calculated in the grand canonical 
ensemble is also P. We show that the converse is also true. We then have the 
statement 

( a )  The pressure P calculated in the canonical ensemble agrees with that 
calculated in the grand canonical ensemble if and only if aP/au < 0. 
It will further be shown that 

( b )  If aP/au > 0 for some u, the pressure in the grand canonical ensemble 
is obtainable from P by making the Maxwell construction. 

Suppose the pressure calculated in the canonical ensemble is given and is 
denoted by Pc,(u). At a certain temperature we assume Pc,(u) to have the 
qualitative form shown in the P - u diagram of Fig. 7.6. 

The partition function of the system under consideration is 

where 

It is easily seen that 

Let 
1 

@ ( u ,  z )  = F ( u )  + - log z 
U 

It is easily verified that 

a 2 @  2 a @  P aPc,(>o ( a < u < b )  - + -- = -- 
au2 u a~ u au 2 0 (otherwise) 

I I I I 
I I I I * v 

vo vi  a b vz 

Fig. 7.6 Isotherm with aP,,,/av > 0 for v lying in the range 
a < v <  b. 

To calculate the grand partition function we recall that the derivation of 
(7.75) is independent of the sign of aP/au.  Hence, in analogy with (7.75), we 
have in the present case 

1 
lim - log 2 ( ~ ,  V )  = @(!, z )  (7.89) 

v + m  V 
where 

@(i, Z )  = max [ @ ( u ,  z ) ]  (7.90) 

This determines C in terms of z ,  or vice versa. The pressure in the grand 
canonical ensemble, denoted by Pgr(!), is given by 

P P g r ( i )  = @ ( c ,  z )  (7.91) 

From (7.87) and (7.85) we see that both @ and a @ / d u  are continuous 
functions of u. Hence (7.90) is equivalent to the conditions 

with the following additional rule: If (7.92) determines more than one value of 6, 
we must take only the value that gives the largest @(i, z ) .  

The first condition of (7.92) is the same as 
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Substituting this into (7.86) we obtain 
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1 
/?Pc,(6) = F ( i )  + = logz = @(U, z )  (7.94) 

U 

Comparing this with (7.91) we obtain 

That is, if there is a value U that satisfies (7.92), then at this value of the specific 
volume the pressure is the same in the canonical and grand canonical ensemble. 
Therefore it only remains to investigate the possible values of i .  

It is obvious that 6 can never lie between the values a and b shown in Fig. 
7.6, because, as we can see from (7.88), in that region a@/du = 0 implies 
8 2 @ / a u 2  > 0, in contradiction to (7.92). On the other hand, outside this region, 
a@/au  = 0 implies a2@/au2 I 0. Hence the first condition of (7.92) alone 
determines 6. Using (7.85) we can write this condition in the form 

[du'~c,(u') - 6Pcm(6) = - kT log z (7.96) 

There is a value of z, denoted by z,, at which (7.96) has two roots u, and u2 
for which @(u,, z) = @(u2, z). The conditions for this to be so are that 

du' PC,(uf ) - u,Pc,(ul) = 1% du' pC,(uf) - u2Pc,(u2) 
00 

The second condition is equivalent to Pc,(ul) = Pc,(u2), by virtue of (7.94). 
Combining these conditions, we obtain 

which means that u, and u2 are the end points of a Maxwell construction on 
PC,, as shown in Fig. 7.6. 

In general we can find z as a function of i by solving (7.96) graphically, in a 
manner similar to that used in the last section for (7.78). The result is qualita- 
tively sketched in Fig. 7.7. As explained before, the interval a < i < b must be 
excluded. By definition of the ,Maxwell construction, the portions of the curves 
outside the interval u, I 6 I u,, shown in solid lines in Fig. 7.7, coincide with 
the corresponding portions in Fig. 7.3. We need to discuss further only the 
dashed portions of the curves. 

Consider the points A and B in Fig. 7.7. Let their volumes be, respectively, 
uA and u, and let their common z value be z'. The fact that they are both 
solutions of (7.96) means that the function @(u, z') has two maxima, located 
respectively at u = uA and u = u,. These maxima cannot be of the same height, 
because that would mean that uA and u, are, respectively, u2 and u,, which they 
are not. To determine which maximum is higher we note that by (7.85), (7.94), 

I I 
I i  
I I 

I I I I 
I b I vz I *' Fig. 7.7 z as  a function of E .  

01 a 

and the fact that z' is common to both, 

l:av'pcm(uf) = uApC,(uA) - u,pcm(uB) (7.99) 

Suppose Pc,(uB) < Pc,(uA). Consider the point C indicated in Fig. 7.6. By 
inspection of Fig. 7.6 we see that 

l I d u f p c m ( u f )  < (uA - uc)Pcm(uA) 

Subtracting (7.99) from this inequality, we obtain 

l:du'pcm(uf) < uBPC,(UB) - ucpCm(4) 

which, by the original assumption, implies 

By inspection of Fig. 7.6 we see that this is impossible. Therefore we must have 
Pc,(uB) > PC,(uA). By (7.94), this means that 

@(u,, z f )  > @(UA, z ' )  

In a similar fashion we can prove that, for the points A' and Bf in Fig. 7.7, 

@(uA', z") > @(uB', z") 

Therefore the dashed portions of the curves in Fig. 7.7 must be discarded. 
In Fig. 7.8, P 9'. ( i )  is shown as the solid curve. It is the same as Pc,(6) 

except that the porbon between u, and u2 is missing because there is no z that 
will give a 6 lying in that interval. In other words, in the grand canonical 
ensemble the system cannot have a volume in that interval. We can, however, fill 
in a horizontal line at Po by the usual arguments, namely, that since the systems 
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I I 

1 N U  - 
Fig. 7.8 The pressure in the grand canonical 

u1 v2 ensemble (solid lines). 

a t  u ,  and u, have the same temperature, pressure, and chemical potential, a 
system a t  u, can coexist with a system a t  u, with any relative amount of each 
present. 

I t  is a n  experimental fact that aP/au 1 0. It  could not be otherwise, for 
then the system would be in the highly unstable situation in which releasing the 
pressure o n  it leads to a shrinkage. The quantity PC, is the result of a (generally 
approximate) calculation, and may or may not have this desirable property. 
However, the corresponding pressure in the grand canonical ensemble always 
satisfies the stability condition because the ensemble explicitly includes all 
possible density fluctuations of the system. 

PROBLEMS 

7.1 ( a )  Obtain the pressure of a classical ideal gas as a function of N, V,  and T, by 
calculating the partition function. 

( b )  Obtain the same by calculating the grand partition function. 

7.2 Consider a classical system of N noninteracting diatomic molecules enclosed in a box 
of volume V  at temperature T. The Hamiltonian for a single molecule is taken to be 

where p, , p, , r, , r2 , are the momenta and coordinates of the two atoms in a molecule. Find 

( a )  the Helmholtz free energy of the system; 
( b )  the specific heat at constant volume; 
( c )  the mean square molecule diameter ( I  rl - r2 1 '). 

7.3 Repeat the last problem, using the Hamiltonian 

where c and r, are given positive constants and r12- = I rl - r, I .  
A ns wer. 

7.4 Prove Van Leeuwen's Theorem: The phenomenon of diamagnetism does not exist in 
classical physics. 

The following hints may be helpful: 
( a )  If X ( p , ,  . . . ,p,; q , ,  . . . , q , )  is the Hamiltonian of a system of charged particles in 
the absence of an external magnetic field, then X [ p ,  - ( e / c )A , ,  ... ,p ,  - (e /c)A,;  
q , ,  . . . , q , ]  is the Hamiltonian of the same system in the presence of an external magnetic 
field H = v x A, where Ai is the value of A  at the position q , .  
( b )  The induced magnetization of the system along the direction of H is given by 

where 2 is the Hamiltonian in the presence of H, H  = IH 1 ,  and QN is the partition 
function of the system in the presence of H. 

7.5 Langevin's Theory of Paramagnetism. Consider a system of N  atoms, each of which 
has an intrinsic magnetic moment of magnitude p.  The Hamiltonian in the presence of an 
external magnetic field H is 

N 

X ( P , ~ )  - P H C  cosa, 
i = l  

where X ( p ,  q )  is the Hamiltonian of the system in the absence of an external magnetic 
field, and a, is the angle between H and the magnetic moment of the ith atom. Show that 
( a )  The induced magnetic moment is 

( b )  The magnetic susceptibility per atom is 

( c )  At high temperatures x satisfies Curie's law, namely x a T-'.  Find the proportional- 
ity constant, which is called Curie's constant. 

7.6 Imperfect Gas. Consider a system of N  molecules ( N  + m )  contained in a box of 
volume V  ( V  -+ m ) .  The Hamiltonian of the system is 

N " 2  

where p, and r, are, respectively, the momentum and the position of the ith molecule. The 
intermolecular potential v ( r )  has the qualitative form shown in the accompanying figure. 
Let 

A, =!(Pi  - r,l) 
f ( r )  = e - P ~ , ( r )  - 1 

A sketch of f ( r )  is also shown in the same figure. 
( a )  Show that the equation of state of the system is 
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where v = V / N  and 

(b) By expanding the product n ( l  + f i j ) ,  show that - 

( c )  Show that at low densities, i.e., 
r:/v << 1 

it is a good approximation to retain only the first two terms in the series appearing in the 
expression Z ( v ,  T ) .  Hence the equation of state is approximately given by 

The coefficient of l / v  is called the second virial coeficient. 
Note. (i) Retaining the first two terms in the series appearing in Z ( v ,  T )  is a good 

approximation because Z ( V ,  T )  is the logarithm of the Nth root of the series. The 
approximation is certainly invalid for the series itself 

(ii) If all terms in the expansion of n ( l  + f , , )  were kept, we would have obtained a 
systematic expansion of Pv/kT in powers of l / v .  Such an expansion is known as the 
virial expansion. 
(iii) The complete virial expansion is difficult to obtain by the method described in this 
problem. It is obtained in Chapter 10 via the grand canonical ensemble. See (10.27) and 
(10.30). 

7.7 Van der Waals Equation of State 
( a )  Show that for low densities the Van der Wads equation of state (2.28) reduces to 

(b) Show that the imperfect gas of Problem 7.6 has an equation of state of the same form 
as shown in ( a ) ,  with 

7.8 The equation of state for an N, gas can be written in the form 

PV/NkT = 1 + ~ , ( T ) ( N / v )  

for low densities. The second virial coefficient a 2 ( T )  has been measured as a function of 
temperature and is given in the accompanying table. Assume that the intermolecular 
potential v ( r )  between N, molecules has the form shown in the accompanying sketch. 
From the data given, determine what you consider to be the best choice for the constants 
a ,  rO, and E.  

Temperature, K a2 ( T ) ,  K/atm 

100 - 1.80 
200 -4.26 X lo-' 
300 - 5.49 x 10- 
400 1.12 X lo-' 
500 2.05 X lo-' 

7.9 A dilute mixture of Hz and 0, gases is kept at constant temperature T. Initially the 
density of Hz was no, the density of 0, was n0/2, and there was no H,O present. After a 
certain time, the mixture becomes an equilibrium mixture of H z ,  O,,  and H20.  Find the 
equilibrium densities of the three components n,,  n2 ,  n, ,  as a function of T and no.  
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QUANTUM STATISTICAL 
MECHANICS 

8.1 THE POSTULATES OF QUANTUM 
STATISTICAL MECHANICS 

All systems in nature obey quantum mechanics. In quantum mechanics an 
observable of a system is associated with a Hermitian operator, whlch operates 
on a Hilbert space. A state of the system is a vector I*) in the same Hilbert 
space. If Iq) is an eigenvector of the position operators of all the particles in the 
system, then (ql*) = *(q) is the wave function of the system in the state I*). 
The wave function furnishes a complete description of the state. 

At any instant of time the wave function * of a truly isolated system may be 
expressed as a linear superposition of a complete orthonormal set of stationary 
wave functions { a, ): 

where c, is a complex number and is a function of time. The index n stands for a 
set of quantum numbers, which are eigenvalues of certain chosen dynamical 
operators of the system. The square modulus lc,I2 is the probability that a 
measurement performed on the system will find it to have the quantum 
numbers n. 

In statistical mechanics we always deal with systems that interact with the 
external world. Here we can regard the system plus the external world as a truly 
isolated system. The wave function \k for this whole system will depend on both 
the coordinates of the system under consideration and the coordinates of the 
external world. If {a,)  denotes a complete set of orthonormal stationary wave 
functions of the system, then * is still formally given by (8.1), but c, is to be 
interpreted as a wave function of the external world. It depends on the coordi- 
nates of the external world as well as on the time. 

Suppose 0 is an operator corresponding to an observable of the system. 
According to the rules of quantum mechanics, the average result of a large 
number of measurements of this observable is instantaneously given by the 
expectation value 

where (c,, c,), the scalar product of the nth and the mth wave function of the 
external world, is a function of time. The denominator of (8.2), being identical 
with (*, *), is independent of time, because the Hamiltonian of the system plus 
external world is Hermitian. When we actually measure an observable in the 
laboratory, we measure not its instantaneous value but a time average. Thus the 
directly measurable quantity is not (8.2) but the following quantity: 

where (c,, c,) is the average of (c,, c,) over a time interval that is short 
compared to the resolving time of the measuring apparatus but long compared to 
molecular times (e.g., collision times or periods of molecular motion). We note 
that C ( c,, c,) is identical with C (c,, c,), because the latter is independent of 

time. 
n 

The postulates of quantum statistical mechanics are postulates concerning 
the coefficients (c,, c,), when (8.3) refers to a macroscopic observable of a 
macroscopic system in thermodynamic equilibrium. 

For definiteness, we consider a macroscopic system which, although not 
truly isolated, interacts so weakly with the external world that its energy is 
approximately constant. Let the number of particles in the system be N and the 
volume of the system be V, and let its energy lie between E and E + A(A << E). 
Let A" be the Hamiltonian of the system. For such a system it is convenient (but 
not necessary) to choose a standard set of complete orthonormal wave functions 
{ a , )  such that every 0, is a wave function for N particles contained in the 
volume V and is an eigenfunction of A" with the eigenvalue En: 

The postulates of quantum statistical mechanics are the following: 

Postulate of Equal a Priori Probability 

1 ( E < E n < E + A )  

0 (otherwise) 
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Postulate of Random Phases 

(c,, cm) = 0 (n + m) 

As a consequence of these postulates we may effectively regard the wave 
function of the system as given by 

where 

1 ( E < E , < E + A )  
1bnl2 = { 0 (otherwise) 

and where the phases of the complex numbers {b,) are random numbers. In this 
manner the effect of the external world is taken into account in an average way. 
The observed value of an observable associated with the operator 0 is then 
given by 

EIbn~~('n, "n) 

It should be emphasized that for (8.7) and (8.8) to be vahd the system must 
interact with the external world. Otherwise the postulate of random phases is 
false. By the randomness of the phases we mean no more and no less than the 
absence of interference of probability amplitudes, as expressed by (8.9). For a 
truly isolated system such a circumstance may be true at an instant, but it cannot 
be true for all times. 

The postulate of random phases implies that the state of a system in 
equilibrium may be regarded as an incoherent superposition of eigenstates. It is 
possible to think of the system as one member of an infinite collection of systems, 
each of which is in an eigenstate whose wave function is a,. Since these systems 
do not interfere with one another, it is possible to form a mental picture of each 
system one at a time. This mental picture is the quantum mechanical generaliza- 
tion of the Gibbsian ensemble. The ensemble defined by the previous postulates 
is the microcanonical ensemble. 

The postulates of quantum statistical mechanics are to be regarded as 
working hypotheses whose justification lies in the fact that they lead to results in 
agreement with experiments. Such a point of view is not entirely satisfactory, 
because these postulates cannot be independent of, and should be derivable from, 
the quantum mechanics of molecular systems. A rigorous derivation is at present 
lacking. We return to this subject very briefly at the end of this chapter. 

We should recognize that the postulates of quantum statistical mechanics, 
even if regarded as phenomenological statements, are more fundamental than the 
laws of thermodynamics. The reason is twofold. First, the postulates of quantum 
statistical mechanics not only imply the laws of thermodynamics, they also lead 
to definite formulas for all the thermodynamic functions of a given substance. 

Second, they are more directly related to molecular dynamics than are the laws of 
thermodynamics. 

The concept of an ensemble is a familiar one in quantum mechanics. A 
trivial example is the description of an incident beam of particles in the theory of 
scattering. The incident beam of particles in a scattering experiment is composed 
of many particles, but in the theory of scattering we consider the particles one at 
a time. That is, we calculate the scattering cross section for a single incident 
particle and then add the cross sections for all the particles to obtain the physical 
cross section. Inherent in this method is the assumption that the wave functions 
of the particles in the incident beam bear no definite phase with respect to one 
another. What we have described is in fact an ensemble of particles. 

A less trivial example is the description of a beam of incident electrons 
whose spin can be polarized. If an electron has the wave function 

where A and B are definite complex numbers, the electron has a spin pointing in 
some definite direction. This corresponds to an incident beam of completely 
polarized electrons. In the cross section calculated with this wave function there 
will appear interference terms proportional to A*B + AB*.  If we have an 
incident beam that is partially polarized, we first calculate the cross section with a 

wave function proportional to (; 1 and then do the same thing for ( y ) ,  adding 

the two cross sections with appropriate weighting factors. This is equivalent to 

describing the incident beam by an ensemble of electrons in which the states 

and ( ) occur with certain relative probabilities. 

8.2 DENSITY MATRIX 

An ensemble is an incoherent superposition of states. Its relevance to physics has 
been postulated in the previous section. We note that only the square moduli 
1 b, 1 appear in (8.9). Hence it should be possible to describe an ensemble in such 
a way that the random phases of the states never need to be mentioned. Such a 
goal is achieved by introducing the density matrix. 

Before we define the density matrix let us note that an operator is defined 
when all its matrix elements with respect to a complete set of states are defined. 
Its matrix elements with respect to any other complete set of states can be found 
by the well-known rules of transformation theory in quantum mechanics. There- 
fore, if all the matrix elements of an operator are defined in one representation, 
the operator is thereby defined in any representation. 

We define the density matrix pmn corresponding to a given ensemble by 
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where Qn and bn have the same meaning as in (8.7). In this particular representa- 
tion pmn is a diagonal matrix, but in some other representation it need not be. 
Equation (8.10) also defines the density operator p whose matrix elements are 
pmn. The operator p operates on state vectors in the Hilbert space of the system 
under consideration. 

In terms of the density matrix, (8.9) can be rewritten in the form 

The notation Tr A denotes the trace of the operator A and is the sum of all the 
diagonal matrix elements of A in any representation. An elementary property of 
the trace is that 

Tr(AB) = Tr(BA) 

It follows immediately that Tr A is independent of the representation; if Tr A is 
calculated in one representation, its value in another representation is 

The introduction of the density matrix merely introduces a notation. It does 
not introduce new physical content. The usefulness of the density matrix lies 
solely in the fact that with its help (8.11) is presented in a form that is manifestly 
independent of the choice of the basis {a,) ,  although this independence is a 
property that this expectation value always possesses. 

The density operator p defined by (8.10) contains all the information about 
an ensemble. It is independent of time if it commutes with the Hamiltonian of 
the system and if the Hamiltonian is independent of time. This statement is an 
immediate consequence of the equation of motion of p: 

which is the quantum mechanical version of Liouville's theorem. 
Formally we can represent the density operator p as 

where I@,) is the state vector whose wave function is Qn. To prove (8.13), we 
verify that it has the matrix elements (8.10): 

The time-averaging process through which we averaged out the effect of the 
external world on the system under consideration may be reformulated in terms 
of the density matrix. 

Formula (8.2) is a general formula for the expectation value of any operator 
O with respect to an arbitrary wave function 'I!. It may be trivially rewritten in 
the form 

where Rnm = (c,, c,) = (Q,, RQ,), the last identity being a definition of the 
operator R, and On, = (Qn, 0 , ) .  Although R may depend on the time, Tr R is 
independent of time. The density operator is the time average of R: 

8.3 ENSEMBLES IN QUANTUM STATISTICAL MECHANICS 

Microcanonical Ensemble 

The density matrix for the microcanonical ensemble in the representation in 
which the Hamiltonian is diagonal is 

~ m n  = 'mnlbn12 (8.14) 
where 

Const. ( E < E , < E + A )  v.1' = j0  (otherwise) 

where { E n )  are the eigenvalues of the Hamiltonian. The density operator is 

The trace of p is equal to the number of states whose energy lies between E and 
E + A: 

Trp = Cpnn T(E) (8.17) 
n 

For macroscopic systems the spectrum { E n )  almost forms a continuum. For 
A << E,  we may take 

T(E)  = w(E)A (8.18) 

where w(E) is the density of states at energy E. The connection between the 
microcanonical ensemble and thermodynamics is established by identifying the 
entropy as 

S (E ,  V )  = k log T(E) (8.19) 

where k is Boltmann's constant. This definition is the same as in classical 
statistical mechanics, except that r ( E )  must be calculated in quantum mecha- 
nics. From this point on all further developments become exactly the same as in 
classical statistical mechanics and so they need not be repeated. No Gibbs 
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paradox will result from (8.19) because the correct counting of states is automati- 
cally implied by the definition of T(E) in (8.17). 

The only new result following from (8.19) that is not obtainable in classical 
statistical mechanics is the third law of thermodynamics, which we discuss 
separately in Section 8.4. 

Canonical Ensemble 

The derivation of the canonical ensemble from the microcanonical ensemble 
given in Chapter 8 did not make essential use of classical mechanics. That 
derivation continues to be valid in quantum statistical mechanics, with the trivial 
change that the integration over r space is replaced by a sum over all the states 
of the system: 

Thus the canonical ensemble is defined by the density matrix 

= 8 e-BEn 
P m n  m n  

where p = l/kT. This result states that at the temperature T the relative 
probability for the system to have the energy eigenvalue En is epBEn7 which is 
called the Boltzmann factor. The partition function is given by 

QN(V, T )  = Trp = C e-BE. 
n 

where it must be emphasized that the sum on the right side is a sum over states and 
nor over energy eigenvalues. The connection with thermodynamics is the same as 
in classical statistical mechanics. 

The density operator p is 

where A" is the Hamiltonian operator. Now the operator IQn)(anI is the 
n 

identity operator, by the completeness property of eigenstates. Therefore 

p = e-B* (8.23) 

The partition function can be written in the form 

QN(V, T )  = ~r epB* 

where the trace is to be taken over all states of the system that has N particles in 
the volume V. This form, which is explicitly independent of the representation, is 
sometimes convenient for calculations. The ensemble average of O in the canoni- 
cal ensemble is 

~r (0 epP*) 
(0 )  = (8.25) 

Grand Canonicai Ensembie 

For the grand canonical ensemble the density operator p operates on a Hilbert 
space with an indefinite number of particles. We do not display it because we do 
not need it. It is sufficient to state that the grand partition function is 

where QN is the partition function for N particles. The connection between log 3 
and thermodynamics is the same as in classical statistical mechanics. The 
ensemble average of Q in the grand canonical ensemble is 

where (Q), is the ensemble average (8.25) in the canonical ensemble for N 
particles. These equations can be written more generally in the forms 

where N is an operator representing a conserved quantity (i.e., one that com- 
mutes with the Hamiltonian), and the trace is taken over all states without 
restriction on the eigenvalues of N. The only restrictions on the trace are 
boundary conditions, which specify the volume containing the system, and the 
symmetry property of the states under the interchange of identical particles. 

8.4 THIRD LAW OF THERMODYNAMICS 

The definition of entropy is given by (8.19). At the absolute zero of temperature a 
system is in its ground state, i.e., a state of lowest energy. For a system whose 
energy eigenvalues are discrete, (8.19) implies that at absolute zero S = k log G, 
where G is the degeneracy of the ground state. If the ground state is unique, then 
S = 0 at absolute zero. If the ground state is not unique, but G 5 N, where N is 
the total number of molecules in the system, then at absolute zero S 5 k log N. 
In both of these cases the third law of thermodynamics holds, because the 
entropy per molecule at absolute zero is of order (log N)/N. 

The energy eigenvalues for most macroscopic systems, however, essentially 
form a continuous spectrum. For these systems the previous argument only 
shows that the entropy per molecule approaches zero when the temperature T is 
so low that 

kT<< A E  

where A  E  is the energy difference between the first excited state and the ground 
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state. As an estimate let us put 

A 2  . . 
A E = -  

m v 2/3 

where m is the mass of a nucleon, V = 1 crn3. Then we find that T = 5 X 10-l5 
K. Clearly this phenomenon has nothing to do with the third law of thermody- 
namics, which is a phenomenological statement based on experiments performed 
above 1 K. 

To verify the third law of thermodynamics for systems having an almost 
continuous energy spectrum we must study the behavior of the density of states 
w ( E )  near E  = 0. Most of the substances known to us become crystalline solids 
near absolute zero. For these substances all thermodynamic functions near 
absolute zero may be obtained through Debye's theory, which is discussed in 
Section 12.2. It is shown there that the thud law of thermodynamics is fulfilled. 

The only known substance that remains a liquid at absolute zero is helium, 
which is discussed in Chapter 13. There it is shown that near absolute zero the 
density of states for liquid helium is qualitatively the same as that for a 
crystalline solid. Therefore the third law of thermodynamics is also fulfilled for 
liquid helium. 

Apart from these specific examples, which include all known substances, we 
cannot give a more universal proof of the third law of thermodynamics. But this 
is perhaps sufficient; after all, the third law of thermodynamics is a summary of 
empirical data gathered from known substances. 

8.5 THE IDEAL GASES: MICROCANONICAL ENSEMBLE 

The simplest system of N identical particles is that composed of N noninter- 
acting members. The Hamiltonian is 

where p? = pi pi, and p, is the momentum operator of the ith particle. The 
Hamiltonian is independent of the positions of the particles or any other 
coordinates, e.g., spin, if any. 

In nature a system of N identical particles is one of two types: A Bose 
system or a Fermi system.* A complete set of eigenfunctions for a Bose system is 
the collection of those eigenfunctions of 2 that are symmetric under an 
interchange of any pair of particle coordinates. A complete set of eigenfunctions 
for a Fermi system is the collection of those eigenfunctions of 2 that are 
antisymmetric under an interchange of any pair of particle coordinates. Particles 
forming a Bose system are called bosons, and particles forming a Fermi system 
are called jermions. 

In addition to these two types of systems we define, for mathematical 
comparison, what is called a Boltzmann system. It is defined as a system of 
particles whose eigenfunctions are all the eigenfunctions of 2; but the rule for 
counting these eigenfunctions shall be the "correct Boltzmann counting." The set 
of eigenfunctions for a Boltzmann system includes those for a Bose system, those 
for a Fermi system, and more. There is no known system of this type in nature. It 
is a useful model, however, because at high temperatures the thermodynamic 
behavior of both the Bose system and the Fermi system approaches that of the 
Boltzmann system. 

For noninteracting identical particles we have three cases: The ideal Bose 
gas, the ideal Fermi gas, and the ideal Boltzmann gas. We first work out the 
thermodynamics of these ideal gases in the formalism of the microcanonical 
ensemble. For this purpose it is necessary to find out, for each of the three cases, 
the number of states r ( E )  of the system having an energy eigenvalue that lies 
between E  and E + A. That is, we must learn how to count. 

To avoid all unnecessary complications we confine our &scussion to spinless 
particles. Any energy eigenvalue of an ideal system is a sum of single-particle 
energies, called levels. These are given by 

where p = Ipl and p is the momentum eigenvalue of the single particle: 

277h 
P = y  n (8.31) 

in which n is a vector whose components are 0 or & integers and L is the cube 
root of the volume of the system: 

In the limit as V -+ oo the possible values of p form a continuum. Then a sum 
over p can sometimes be replaced by an integration 

where h = 277h is Planck's constant.* 
A state of an ideal system can be specified by specifying a set of occupation 

numbers { n , }  so defined that there are n p  particles having the momentum p in 
the state under consideration. Obviously the total energy E  and the total number 
of particles N of the state are given by 

*See the Appendix, Section A.l *For an explanation of (8.31) and (8.32), see the Appendix, Section A.2. 
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For spinless bosons and fermions {n,) uniquely defines a state of the 
system. The allowed values for any n, are 

np = 2 . .  (for bosons) 

(for fermions) 

For a Boltzmann gas n, = 0,1,2,. . . , but {n,) specifies N ! /  n(n, ! )  states of 
P 

the N-particle system. This is because an interchange of the momenta of two 
particles in the system in general leads to a new state but leaves {n,) unchanged. 

The total energy is a given number E to within a small uncertainty A, whose 
value is unimportant. Hence r ( E )  may be found as follows. As V + a, the 
levels (8.30) form a continuum. Let us divide the spectrum of (8.30) into groups 
of levels containing respectively g,, g,, . . . levels, as shown in Fig. 8.1. Each 
group is called a cell and has an average energy 6,. The occupation number of the 
ith cell, denoted by n,, is the sum of n, over all the levels in the ith cell. Each g, 
is assumed to be very large, but its exact value is unimportant. Let 

W{n,) = no. of states of the system corresponding to the set of 
occupation numbers { n , ) (8.35) 

Then 

where the sum extends over all sets of integers {n,)  satisfying the conditions 

E = Cc, n, (8.37) 
I 

N = E n ,  (8.38) 
i 

To find W{n,) for a Bose gas and a Fermi gas it is sufficient to find w,, the 
number of ways in which n, particles can be assigned to the ith cell (which 

Fig. 8.1 

I I cells. 
Division of the single-particle energy spectrum into 

contains g, levels). Since interchanging particles in different cells does not lead to 
a new state of the system, we have W{ni ) = n w , .  For a Boltzmann gas 

J 

interchanging particles in different cells leads to a new state of the system, and 
we consider all N particles together. The three cases are worked out as follows. 

Bose Gas. Each level can be occupied by any number of particles. Picture the i th 
cell to have g, subcells, with g, - 1 partitions, as follows: 

. . I . I . . 1 . I  I . . )  1 .  
subcell 1 2 3 g, - 1 g, 

The number w, is the number of permutations of the n, particles plus the g, - 1 
partitions that give rise to distinct arrangements: 

(n, + g, - I)! 
w. = 

n,!(g, - I)! 
Hence 

(n, + g, - I)! 
W{n,} = nwi = n (Bose) , n,!(gi - I)! 

(8.39) 
i 

Fermi Gas. The number of particles in each of the gi subcells of the ith cell is 
either 0 or 1. Therefore w, is equal to the number of ways in which ni things can 
be chosen from g, things: 

Hence 

gi ! 
W{n,) = n w ,  = n (Fermi) 

i , n,!(gi - n,)! 

Boltzmann Gas. The N particles are first placed into cells, the ith cell having n, 
particles. There are N!/ n ( n , ! )  ways to do this. Withln the ith cell there are g, 

I 

levels. Among the n, particles in the ith cells, the first one can occupy these levels 
g, ways. The second and all subsequent ones also can occupy the levels g, ways. 
Therefore there are (g,)"~ ways in which n, particles can occupy the g, levels. 
The total number of ways to obtain {n,)  is therefore 

N ! n "  
, n,! 

However, W{ n ,) is defined to be 1/N! of the last quantity: 

W{n,} = n, (Boltzmann) (8.42) 
I n,. 

This definition corresponds to the rule of "correct Boltzmann counting" and does 
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not correspond to any physical property of the particles in the system. It is just a 
rule that defines the mathematical model. 

The fact that the rule for the counting of states is different for the three cases 
gives rise to the terminology Bose statistics, Fermi statistics, and Boltzmann 
statistics, which refer to the three rules of counting, respectively. 

To obtain the entropy S = k log r( E )  we need to sum W{ n ) over { n ) in 
accordance with (8.35). This is a formidable task. For the Boltzmann gas it was 
explicitly done in Section 6.5. As we might correctly guess, however, F(E) is 
quite well approximated by W{ii,), where { T i , )  is the set of occupation numbers 
that maximizes W{iii) subject to (8.37) and (8.38). We adopt this approximation 
and verify its correctness by showing that the fluctuations are small. Accordingly 
the entropy is taken to be 

S = klogW{E,) (8.43) 

To find {Ti,) we maximize W{ n, ) by varying the ni subject to (8.37) and (8.38). 
The details of this calculation are similar to that in Section 4.3 and will not be 
reproduced. We merely give the answers: 

(Bose and Fermi) 
n .  = z-' efi'i T 1 

giz e-8'1 
-I i " (Boltzmann) 

We deduce from this that 
1 

(Bose and Fermi) 
(8.45) 

(Boltzmann) 

The parameters z and P are two Lagrange multipliers to be determined from the 
conditions 

CcPiip = E 

The first of these leads to the identification P = l/kT, and the second identifies z 
as the fugacity. 

Using Stirling's approximation and neglecting 1 compared to g, we have 
from (8.43) and (8.44), 

(Boltzmann) 

(8.47) 

More explicitly, 

- log (1 - z e-fiel) (Base) I 
S pci - log z 

+ log (1 + z e-BCi) (Fermi) I (8.48) 
g; z-'efi',+l = ( f  [ 

( z ~ g ;  e-fi'l (Pel - 1% 2) (Boltzmann) 

The validity of these equations depends on the assumption that 

This is best discussed in the grand canonical ensemble (see Problem 8.4). From 
(8.48) all other thermodynamic functions can be determined after z is determined 
in terms of N from (8.46). 

The Boltzmann gas will be worked out explicitly. From (8.38) and (8.44) we 
have 

where 

This quantity is called the thermal wavelength because it is of the order of the 
de Broglie wavelength of a particle of mass m with the energy kT. Writing 
v = V / N  we obtain 

The condition E = x n,e, requires that 

Therefore T is the absolute temperature. The entropy is, by (8.48)and (8.46), 

S 
- = z x  e-fi'p (PC, - log z )  = PE - N log z 

P 

This is the Sackur-Tetrode equation. The fact that the constant h = 277h is 
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Planck's constant follows from (8.31), where A first makes its appearance. The 
equation of state is deduced from the function U(S, V), which is E  expressed in 
terms of S and V. We straightforwardly find PV = NkT. It is to be noted that 
(8.54) does not satisfy the third law of thermodynamics. This should cause no 
concern, because a Boltzmann gas is not a physical system. It is only a model 
toward which the Bose and Fermi gas converge at high temperatures. This shows, 
however, that the third law of thermodynamics is not an automatic consequence 
of the general principles of quantum mechanics, but depends on the nature of the 
density of states near the ground state. 

The Bose and Fermi gases can be worked out along similar lines. They are 
more conveniently discussed, however, in the grand canonical ensemble, which 
we consider in the next section. 

8.6 THE IDEAL GASES: GRAND CANONICAL ENSEMBLE 

The partition functions for the ideal gases are 

where 

E { n p )  = C c p n p  
P 

and the occupation numbers are subject to the condition 

For a Bose gas and a Boltzmann gas n p  = 0,1,2,. . . . For a Fermi gas n p  = 0, l .  
The number of states corresponding to { n , )  is 

(1 (Bose and Fermi) 

We first work out the Boltzmann gas: 

This equality is the multinomial theorem. In the limit as V + oo we can write 

Therefore 

from which easily follows the Sackur-Tetrode equation for the entropy and the 
equation of state PV = NkT. The grand partition function is trivial and will not 
be considered. 

For the Bose gas and the Fermi gas the partition function cannot be 
evaluated easily because of the condition (8.57). Instead of the partition function 
we consider the grand partition function 

m w 

Now it is to be noted that the double summation just given is equivalent to 
summing each n p  independently. To prove this we must show that every term in 
one case appears once and only once in the other, and vice versa. This is easily 
done mentally. Therefore 

where the sum En extends over the values n  = 0,1,2,. . . for the Bose gas and the 
values n  = 0 , l  for the Fermi gas. The results are 

1 
(Bose) 

(8.62) 

The equations of state are 

r. r 7 

( - C log (1 - z e-pep) (Bose) 
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from which z is to be eliminated with the help of the equations where A = \/2ah2/rnkT and 

z e-fi'p 
C 1 - Ze-fi 'p (Bose) a I) 

N = z- log 9 ( z ,  V, T )  = az e - p c ~  = 1 +ze-fie. 
(Fermi) 

P 

The average occupation numbers (n,) are given by 

1 c9 

(n,) = - 
1 a C zN C npe-fi%np = - - - log 9 

N O  jnp) p acp 

z e-ficp 
- - (Bose and Fermi) 

1 7 z e-fi'p 

which are the same as (8.45). The equations (8.64) are non other than the 
statement 

N =  W p )  (8.66) 
P 

The results here are completely equivalent to those in the microcanonical 
ensemble, as they should be. 

Now we let V + oo, and replace sums over p by integrals over p in the 
manner indicated in (8.32), whenever possible. Such a replacement is clearly valid 
if the summand in question is finite for all p. In (8.63) and (8.64), the fugacity z is 
nonnegative for both the ideal Ferrni gas and the ideal Bose gas because, if z 
were negative, then (8.64) cannot be satisfied for positive N. We see immediately 
that for the ideal Fermi gas it is permissible to replace the sums in (8.63) and 
(8.64) by integrals over p. We then obtain the following equation of state. 

Ideal Fermi Gas 

where u = V/N. It can be verified in a straightforward fashion that (8.67) can 
also be written in the form 

For the ideal Bose gas the summands appearing in (8.63) and (8.64) diverge 
as z -+ 1, because the single term corresponding to p = 0 diverges. Thus the 
single term p = 0 may be as important as the entire sum.* We split off the terms 
in (8.63) and (8.64) corresponding to p = 0 and replace the rest of the sums by 
integrals. We then obtain the following equation of state. 

Ideal Bose Gas 

P 
dpp2 log (1 - z e - ~ p ' / ' ~ )  - - 1 log (1 - z)  v 

where u = V/N. It can be verified in a straightforward fashion that (8.71) can 
also be written in the form 

where X = \/2ah2/rnkT, and 

As (8.65) implies, the quantity z/(l - z) is the average occupation number (no) 
for the single-particle level with p = 0: 

z - -  
1 - z  - (no) (8.75) 

This term contributes significantly to (8.72) if (no)/V'is a finite number, i.e., if a 

*That this is in fact the case is shown in Section 12.3 in connection with the Bose-Einstein 
condensation. 
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finite fraction of all the particles in the system occupy the single level with p = 0. 
We shall see in Section 11.3 that such a circumstance gives rise to the phenome- 
non of Bose-Einstein condensation. 

The internal energy for both the Fermi and the Bose gases may be found 
from the formula 

Since log 3 = PV/kT, we obtain from (8.68) and (8.72) the results 

To express U in terms of N, V, and T, we must eliminate z. The result would be a 
very complicated function. A comparison between (8.77), (8.68), and (8.72), 
however, shows that U is directly related to the pressure by* 

U = 2PV (Bose and Fermi) (8.78) 

This relation also holds for the ideal Boltzmann gas. 
The detailed study of the ideal gases together with their applications is taken 

up in Chapters 11 and 12. 

8.7 FOUNDATIONS OF STATISTICAL MECHANICS 

The present section contains no derivations. It merely furnishes an orientation on 
the subject of the derivation of statistical mechanics from molecular dynamics.+ 

It is recalled that a special case of statistical mechanics, the classical kinetic 
theory of gases, can be derived almost rigorously from molecular dynamics. The 
only ad hoc assumption in that derivation is the assumption of molecular chaos, 
which, however, plays a well-understood role, namely, the reduction of reversible 
microscopic phenomena to irreversible macroscopic phenomena. Since irreversibility 
is a necessary result of any successful derivation, an assumption of thls kind is 
not only unavoidable but also desirable, because it serves to mark clearly the 
point at which irreversibility enters. An improvement on the existing derivation 
consists of replacing this assumption by one less ad hoc, but not of doing away 
with it altogether. 

*It is assumed that the term V-' log(1 - z) in (8.72) can be neglected. This is justified in 
Section 12.3. 

'For a source of literature see Fundumenrul Problems in Srurisricul Mechunics, edited by 
E. G. D. Cohen (North-Holland, Amsterdam, 1962). 

The derivation of the classical kinetic theory of gases may be considered 
largely satisfactory. When we consider the more general problem of the deriva- 
tion of statistical mechanics, we may well keep this theory in mind as a model 
example. From this example, we learn that a satisfactory derivation of statistical 
mechanics must simultaneously fulfill two requirements: 

( a )  It must clearly display the connection between microscopic reversibility 
and macroscopic irreversibility. 

(b) It must provide a detailed description of the approach to equilibrium. 

Thus a satisfactory derivation of statistical mechanics must satisfy not only 
the philosophical desire of the physicist to base all natural phenomena on 
molecular dynamics, but also the practical desire of the physicist to calculate 
numbers with which to compare with experiments. 

Logically speaking, it suffices to derive quantum statistical mechanics, of 
which classical statistical mechanics is a special case. If we want to understand 
nonequilibrium phenomenon in the classical domain, however, it is expedient to 
use classical mechanics as a starting point. For this reason attempts to derive 
classical statistical mechanics from classical mechanics can be of great practical 
value. 

Attempts to derive statistical mechanics have so far been one of two types: 
Some appeal to the ergodic theorem, while others aim at establishing the "master 
equation." Only the latter seems capable of fulfilling both the requirements set 
forth previously. 

The master equation is an equation governing the time development of the 
quantity P,(t), which is the probability that at the instant t the system is in the 
state n. If the word "state" is appropriately interpreted, P,(t) can be defined 
either in classical or quantum mechanics. To justify statistical mechanics, we have 
to show that P,(t) approaches the quantity (c,, c,) of (8.5) when t is much 
longer than a characteristic time of the system called the relaxation time, e.g., 
molecular collision time. 

The master equation is 

where Wmn is the transition probability per second from the state n to the state 
m. It was first derived by Pauli under the assumption that n refers to a single 
quantum state of the system and that the coefficients in the expansion (8.1) have 
random phases at all times. All subsequent work after Pauli's has been concerned 
with the improvement of these assumptions and with the solution of the master 
equation itself. 

It can be shown that solutions to the master equation approach the desired 
limit as t -+ m. Hence the task of deriving statistical mechanics reduces to the 
justification of the master equation and the calculation of the relaxation time. 
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The similarity between the master equation and the Boltzmann transport 
equation may be noted, although we should remember that the latter refers to p 
space whereas the former refers to r space. The random-phase assumption here 
is similar to the assumption of molecular chaos in the Boltzmann transport 
equation. In  both cases the solution for t -+ ca is relatively easy to  obtain, but 
the relaxation time is difficult to calculate. 

The approach involving the master equation seems to hold greater promise 
for a satisfactory derivation of statistical mechanics and the concomitant under- 
standing of general nonequilibrium phenomena. Further discussion of the master 
equation, however, is beyond the scope of this book.* 

PROBLEMS 

8.1 Find the density matrix for a partially polarized incident beam of electrons in a 
scattering experiment, in which a fraction f of the electrons are polarized along the 
direction of the beam and a fraction 1 - f is polarized opposite to the direction of the 
beam. 

8.2 Derive the equations of state (8.67) and (8.71), using the microcanonical ensemble. 

8.3 Prove (7.14) in quantum statistical mechanics. 

8.4 Verify (8.49) for Fermi and Bose statistics, i.e., the fluctuations of cell occupations are 
small. 

Solution. By (8.65), 

Differentiating this again with respect to ck leads to 

from which we can deduce 

with the plus sign for Bose statistics, and the minus sign for Fermi statistics. (For Fermi 
statistics the results is obvious because n: = n,.) The fluctuations are not necessarily 
small. Note, however, that (A) refers to the fluctuations of the occupation of individual 
states, and not the cell occupations. 

As a calculation useful for later purposes, we note 

The right side is zero because (n , )  depends only on c,. Thus we have 

( n k n p )  = ( n k ) ( n p ) ,  ( P  + k ,  (B) 

*For a general discussion of the master equation, see N. G. Van Kampen, in Cohen, op. cit. An 
improvement on the random phase approximation is described by L. Van Hove, in Cohen, op. cit. 

In the infinite-volume limit the spectrum of states becomes a continuum. The 
physically interesting question concerns the fluctuations in the occupation of a group of 
states, or a cell. Let 

n; = C n k  
k 

where the sum extends over a group of states in cell i .  We are interested in 

By using (B), it is easily shown that the right side is equal to 

C ( ( n : >  - (.k)') 
k 

Hence using (A) we obtain 

( n ? )  - (.i>' = ( n , )  * C ( n k ) '  
k 

where the plus sign holds for Bose statistics, and the minus sign for Fermi statistics. In the 
infinite-volume limit, the k sum is replaced by an integral over a region in k space. No 
matter how small this region is, the integral is proportional to the volume V of the system. 
(This is equivalent to the statement that a finite fraction of the particles occupies a cell.) 
Thus the left side is of order v', but the right side is only of order V. 

8.5 Calculate the grand partition function for a system of N noninteracting quantum 
mechanical harmonic oscillators, all of which have the same natural frequency w,. Do this 
for the following two cases: 
(a )  Boltzmann statistics 
(b) Bose statistics. 

Suggestions. Write down the energy levels of the N-oscillator system and determine 
the degeneracies of the energy levels for the two cases mentioned. 

8.6 What is the equilibrium ratio of ortho- to parahydrogen at a temperature of 300 K? 
What is the ratio in the limit of high temperatures? Assume that the distance between the 
protons in the molecule is 0.74 A. 

The following hints may be helpful. 
(a)  Boltzmann statistics is valid for H z  molecules at the temperatures considered. 
(b) The energy of a single Hz molecule is a sum of terms corresponding to contributions 
from rotational motion, vibrational motion, translational motion, and excitation of the 
electronic cloud. Only the rotational energy need be taken into account. 
( c )  The rotational energies are 

where I is the moment of inertia of the H 2  molecule. 
Answer. Let T = absolute temperature and /3 = l / kT .  Then 

Npara C (21 + 1) e-(L3fi2/21)l(l+1) 

1 even 
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integer. Among the systems in the ensemble let 

GENERAL PROPERTIES OF 
THE PARTITION FUNCTION 

9.1 THE DARWIN-FOWLER METHOD 

Although the canonical ensemble may be derived from the microcanonical 
ensemble, as we have shown in Section 7.1, it may also be derived directly. 
Indeed, if we are not too concerned with rigor, the derivation is very simple. 
Consider an ensemble of M systems such that the energy averaged over all the 
systems is a given number U. We wish to find the most probable distribution of 
energies among these M systems in the limit as M -+ m. By definition of an 
ensemble, the systems do not interact with one another; they may be considered 
one at a time, and they are consequently distinguishable from one another. 
Therefore our problem is mathematically identical with the problem of the most 
probable distribution for a classical ideal gas of particles. The answer as we know 
is the Maxwell-Boltzmann distribution, i.e., the energy value En occurs among the 
systems with relative probability e-BE., where /3 is determined by the average 
energy U. This ensemble is the canonical ensemble. It is obvious that this 
derivation holds equally well in quantum and in classical statistical mechanics. 

We want to present here a more rigorous derivation that avoids the use of 
Stirling's approximation, which is necessary in the usual derivation of the 
Maxwell-Boltzmann distribution. The purpose of this presentation is not only to 
derive the canonical ensemble directly but also to introduce the method of saddle 
point integration, which is a useful mathematical tool in statistical mechanics. 
The considerations that follow hold equally well for quantum and for classical - .  

statistical mechanics. 
The method we shall describe is due to Darwin and Fowler. Assume that a 

system in the ensemble may have any one of the energy values E, (k  = 0,1,2, . . . ). 
By choosing the unit of energy to be sufficiently small, we can regard E, as an 

mo systems have energy E, 

ml systems have energy El 

m ,  systems have energy E, 

The set of integers { m , )  describes an arbitrary distribution of energy among the 
systems. It must satisfy the conditions 

where both M and U are integers. Our purpose is to find the most probable set 

(2, 1. 
Given an arbitrary set { m ,  ) satisfying (9.2) there are generally more ways 

than one to construct an ensemble corresponding to (9.1), because the inter- 
change of any two systems (which are distinguishable) leaves { m k  ) unchanged. 
Let W{ m ,  ) be the number of distinct ways in which we can assign energy values 
to systems so as to satisfy (9.1). Obviously 

For the present case the postulate of equal a priori probability states that all 
distributions in energy among the systems are equally probable, subject to the 
conditions (9.2). Thus { Z , )  is the set that maximizes (9.3). In anticipation of the 
fact that in the limit as M + m almost all possible sets { m , )  are identical with 
{ Z ,  ), we can also find { Z ,  ) by calculating the value of m ,  averaged over all 
possible distributions in energy: 

where a prime over the sums indicate that they are sums over all sets { m , )  
subject to (9.2). We must also calculate the mean square fluctuation ( m i )  - 
( m k ) 2 .  If this vanishes as M -+ m, then in that limit ( m , )  -+ Z,. 

For convenience we modify the definition of W{ m ,  ) to 
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where gk is a number which at the end of the calculation will be set equal to 
unity. Let 

r ( M ,  U )  = C' W { m , )  (9-6)  
{ m i }  

Then 

The mean square fluctuation can be obtained as follows: 
1 1 a 

( m i )  = 
- C' m i w { r n i )  = 

{ m , )  

Therefore 

Thus it is sufficient to calculate log r 
By (9.6) and (9.5) 

This cannot be explicitly evaluated because of the restriction (9.2). We are, 
however, only interested in this quantity in the limit as M -+ m. To proceed, we 
define a generating function for r in the following manner. For any complex 
number z, let 

W 

G ( M ,  z )  = C z M U r ( M ,  U )  (9.10) 
u= 0 

Using (9.9) and (9.2) we obtain 

G ( M , z )  = M !  C (9.11) 
u=0 m , , m l ,  . . .  m,! m,! 

It is easily seen that the double sum in (9.11) is equivalent to summing over all 
sets { m , )  subject only to the condition E m k  = M. To show this we need only 
verify that every term in one sum appears once in the other and vice versa. Hence 

The last step follows by use of the multinomial theorem. Let 

k=O 

Then 

G ( M ,  z )  = [ f ( z ) l  (9.14) 
To obtain r ( M ,  U )  from G ( M ,  z )  we note that by definition r ( M ,  U )  is the 
coefficient of z MU in the expansion of G ( M ,  z )  in powers of z. Therefore 

where the contour of integration is a closed path in the complex z plane about 
z = 0. 

We may assume without loss of generality that the sequence E,, El , .  . . is a 
sequence of nondecreasing integers with no common divisor, because any com- 
mon division 7 can be removed by choosing the unit of energy 7 times larger. 
Furthermore, we can set E, = 0, since this would only change the zero point of 
the energy. In so doing U would be changed to U - E,, which we can again call 
U. The numbers go, g,, . . . are as close to unity as we wish. For the immediate 
calculations we omit them temporarily. Hence 

where El ,  E,, . . . are integers with no common divisor. When z is a real positive 
number x, f ( x )  is a monotonically increasing function of x with a radius of 
convergence at, say, x = R. The same is true for [ f ( x ) ]  M ,  as illustrated in Fig. 
9.1. The function l / zMU+' ,  on the other hand, is a monotonically decreasing 
function along the real positive axis. The product of these two functions has a 
minimum at x ,  between 0 and R, as shown in Fig. 9.1. Now f ( z )  is an analytic 
function for lzl < R, and z-MU-l is analytic everywhere except at z = 0. 
Therefore the integrand of (9.18) 

I I 1% Fig. 9.1 The function [ f ( x ) I M / x M U + '  for real 
xo R positive x .  
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is analytic at z = x,. An analytic function has a unique derivative at a given 
point. Furthermore it satisfies the Cauchy-Riemann equation 

Hence 

That is, in the complex z plane, I ( z )  has a minimum at z = x ,  along a path on 
the real axis but has a maximum at z = x ,  along a path parallel to the imaginary 
axis passing through x,. The point x ,  is a saddle point, as illustrated in Fig. 9.2. 
Let g ( z )  be defined by 

= e M g ( ' )  

g ( z )  = log f ( z )  - U log z 

where we have neglected 1 / M  as compared to U. Then x, is the root of the 
equation 

g' (x0)  = 0 
or 

CE~XOE" 

Furthermore 

II(4 1 

Saddle 
point 

Y 

Hence the saddle point touches an infinitely sharp peak and an infinitely steep 
valley in the limits as M + co. If we choose the contour of integration to be a 
circle about z = 0 with radius x,, the contour will pass through x ,  in the 
imaginary direction. Thus along the contour the integrand has an extremely sharp 
maximum at the point z = x0.  If elsewhere along the contour there is no 
maximum comparable in height to this one, the contribution to the integral 
comes solely from the neighborhood of x,. This is in fact true because for 
z = X o  eie 

The series (9.23) is maximum when all terms are real. This happens when and 
only when BE, = 2nnk,  where nk is 0 or an integer. If 0 # 0,  then 2 n / 0  must be 
a rational number, and this would mean that E, = ( 2 n / 0 ) n k ,  which is impossi- 
ble unless 0 = 2 n ,  because the Ek have no common divisor. Hence we conclude 
that the largest value of I ( z )  occurs at z = x,. 

To do the integral (9.15) we expand the integrand about z = x,: 

2 g ( z )  = g ( x , )  + + ( z  - x , )  g t f ( x o )  + . . 
Hence 

Putting ( z  - x , )  = iy, we obtained 

Hence 

1 1 
- log r ( M ,  U )  = g ( x , )  - - log [ 2 n ~ g " ( x , ) ]  

2 M  
(9.25) 

M 

As M + co the first term gives the exact result. To evaluate g(x , )  we first obtain 
from (9.20) the formulas 

Using f ( x , )  from (9.13) (restoring now the numbers g,) and defining a parame- 
ter p by 

Fig. 9.2 The saddle point. 
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we obtain If *(I-,, . . . , r,) is a wave function of the system, then 

g(xo)  = log C g, e-BEk ( Y o  I + P u  

Hence 

1 1 
- log I?( M, U) = log log [ 2 n ~ g " ( x , ) ]  (9.28) 
M 

from which we find, using (9.7) and (9.Q 

This is an exact formula in the limit as M -, co. We see that the fluctuations 
vanish in this limit. Therefore (m,) = Z,. The parameter P is determined by 
(9.21) and (9.26): 

00 

C 
k=O U =  00 = (E) (9.31) 

C , - m a  

k=O 

Hence p can be identified as l/kT, where T is the absolute temperature. 
In the most probable distribution the probability of finding a system in the 

ensemble having the energy E, is (9.29). The ensemble with such an energy 
distribution is the canonical ensemble. 

9.2 CLASSICAL LIMIT OF THE PARTITION FUNCTION 

let 2 be the Hamiltonian operator of a system of N identical spinless particles.* 
Let 2 be the sum of two operators, the kinetic energy operator K, and the 
potential energy operator !d: 

2 = K + ! d  (9.32) 

*It is straightforward to generalize the following considerations to the case of particles with spin 
and to the case of a mixed system of two or more more different kinds of particles. 

!d*(rl,. . . , r,) = !d (rl, .  . . , rN)*(rl,. . . , r,) (9.34) 

where m is the mass of a particle, V: is the Laplacian operator with respect to ri, 
and !d (r,, . . . , r,) is a sum of two-body potentials: 

!d(r,, ..., r,) = xuij (9.35) 
i <; 

where 

u,, = u(lri - rjl) (9.36) 

Whenever convenient, we use the abbreviation (1,. . . , N) for (r,, . . . , r,). 
The partition function of the system is 

Q N ( V ,  T)  = ~r e-@"= (@,, e-@"@,) (9.37) 
n 

where @,(l,. . . , N) is a member of any complete orthonormal set of wave 
functions of the system and @,*(l,. . . , N) is its complex conjugate. For any 
operator 0, 

(Bn, @Bn) = j d 3 %  @;(I,. . . , AJ)@@,,(l,. . . , AJ) (9.38) 

Each @, satisfies the boundary conditions imposed on the system and is normal- 
ized in the box of volume V containing the system. It is a symmetric (antisymmet- 
ric) function of r,, . . . , r,, if the system is a system of bosons (fermions). 

It will be shown that when the temperature is sufficiently high we can make 
the approximation 

where h is Planck's constant and 2 ( p ,  r )  is the classical Hamiltonian 

This will prove that at sufficiently high temperatures the partition function 
approaches the classical partition function with "correct Boltzmann counting." 
In the course of proving (9.39) we obtain the criterion for a "sufficiently high 
temperature." 

Free Particles 

Let us first consider an ideal gas, for which Q(1,. . . , N) = 0. The eigenfunctions 
of the Hamiltonian are the free-particle wave functions T ( 1 , .  . . , N) described in 
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the Appendix, Section A.2. They are labeled by a set of N momenta 

P { P ~ , . . . , P N )  (9.41) 

and satisfy the eigenvalue equation 

KQP(l ,..., N )  = ~ ~ @ ~ ( l , . . . ,  N )  (9.42) 

where 

For convenience we impose periodic boundary conditions with respect to the 
volume V. It follows that each pi has the allowed values 

where n is a vector whose components may be 0, f 1, + 2,. . . . More explicitly, 
%( l , .  . . , N )  is given by 

1 
f (1,.  . . , N )  = - xSP[up,(P1) . . . uPN(PN)] fl p 

1 
where up(r) = - e '~" /h  n (9.46) 

The notation is explained in the Appendix, Section A.2. A permutation of the 
momenta p,, . . . , pN does not produce a new state, for $ is either invariant or 
changes sign. Therefore a sum over states is 1/N! times a sum over all the 
momenta independently. In the limit V + co a momentum sum may be replaced 
by an integral: 

Therefore 

Using (9.45) we can write 

Now every term in the P' sum will give the same contribution to the integral in 

(9.48). Thus we may replace the above by N! times any one term in the P' sum: 

When this is substituted into (9.48), each momentum integral can be expressed in 
term of the function 

where r = Irl and A = \ /2ah2 /mk~,  the thermal wave length. The result is 

This is an exact identity. For high temperatures the integrand may be approxi- 
mated as follows. The sum 1 contains N! terms. The term corresponding to the 

P 
unit permutation P = 1 is [ f (0)] = 1. The term corresponding to a permutation 
which only interchanges r, and r, is [ f(r, - rj)I2. Thus by enumerating the 
permutations in increasing order of the number of coordinates interchanged we 
arrive at the expansion 

where fij = f(r, - r,) and where the plus sign applies to bosons and the minus 
sign to fermions. According to (9.51), A j  vanishes extremely rapidly if Iri - rjl 
>> A. Therefore, when the temperature is so high that 

(thermal wavelength) << (average interparticle &stance) (9.54) 

we have 

which proves (9.39) for an ideal gas. 
It is of some interest to examine the first quantum correction to the classical 

partition function of an ideal gas. If (ri - rjJ B A, we may approximate the 
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For fermions I C; 
Fig. 9.3 The "statistical potential" between 
particles in an ideal gas arising from the 

For bosons symmetry properties of the N-particle wave 
- kT log 2 function. 

right side of (9.53) by 1 + EL;. To the same order of approximation, however, 
we can also write 

I EL;- n(l &A;) = e x p ( - 8 x f i l j )  (9.56) 
i < j  l < ~  j < i  

where 

with the plus sign for bosons and the minus sign for ferrnions. Therefore an 
improvement over (9.55) is the formula 

This shows that the first quantum correction to the partition function of an ideal 
gas has the same effect as that of endowing the particles with an interparticle 
potential* C ( r )  and treating the problems classically. The potential C ( r )  is 
attractive for bosons and repulsive for ferrnions, as illustrated in Fig. 9.3. In this 
sense we sometimes speak of the "statistical attraction" between bosons and the 
"statistical repulsion" between fermions. It must be emphasized, however, that 
C ( r )  originates solely from the symmetry properties of the wave function. 
Furthermore, it depends on the temperature and thus cannot be regarded as a 
true interparticle potential. 

Interacting Particles 

We now turn our attention to the more general case in which the particles of the 
system interact with one another. For the calculation of traces we may continue 

*First discussed by G. E. Uhlenbeck and L. Gropper, Phys. Rev. 41, 79 (1932) 

to use the free-particle wave functions %, because any complete orthonormal set 
of wave functions will do. 

First it is to be noted that in general K  does not commute with !d. Hence 

because the left side is invariant under the exchange of K  and !d whereas the 
right side is not. To find a suitable approximation for ecB.%" when p + 0 ,  let us 
assume that the following expansion is possible: 

where Co, C, ,  C 2 , .  . . are operators to be determined by taking the nth derivatives 
of both sides of (9.60) with respect to P and then setting D = 0 .  Letting 
n = 0 , 1 , 2 ,  . . . , we successively find that* 

co = 0 

C,  = 0 

C2 = - i [ K ,  ! d l  

If [ K ,  a1 
our case 
following 

commutes with both K  and !d, we would find that C,, = 0 (n > 2). In 
this is untrue but we shall assume that for P sufficiently small the 
is a good approximation: 

, -B(K+Q)  = , - B K , - B Q  , - 1 / 2 B 2 1 ~ . Q l  (9.62) 

Consequently 

Q N ( V ,  T )  = Tr ( e - B ~ e c B Q  e - l / 2 B 2 [ ~ 9 Q ~  ) (9.63) 

From (9.33) and (9.34) it can be easily verified that 

where 

h2 
[ K ,  ! d l  = - - E v;!d + 2(vi!d) vi 

2m , = I  

When we exponentiate (9.64), we may act as if the two terms in it commute with 

*The exact expansion is known as the Baker-Carnpbell-Hausdorf theorem. For an elementary 
derivation see R. M. Wilcox, J. Mafh.  Phys. 8, 962 (1967). 
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each other because the correction belongs to a higher order in P than we are 
considering. With this in mind, we substitute (9.64) into (9.63), and again use 
free-particle states to calculate the trace. The operator V, may then be replaced 
by ip,/h. Thus we have 

where 

pj' iPh Ph2 
xexp [ -BE ;:;( _ + %Gj* Pj) - ~ = ( u ; ;  z w l j ) ]  

N 

G, = E F,, (9.67) 
/ = 1  
( j + ; )  

The momentum integrations can be done, again in term of the function f(r) of 
(9.51). We then obtain 

1 
QN (v,  T )  = / d 3Np d 3 N r e - m p .  r ) i @ 2 n '  x 

(9.68) 
X = Cap[ f(rl - Prl  + G;) . . - f ( rN - Pr, + G;)] 

where 

Making an expansion similar to (9.53), and an approximation similar to (9.56), 
we write 

The first product can be rewritten as 

A2 
exp - C T i w  r., 

16-77 l ,  J ,  k 

which gives rise to an effective three-body force among the particles. The second 
product is generally complicated, involving many-body forces. We shall assume 
that the range and depth of the intermolecular potential is such that we can 

neglect the terms G /  in this product. Then we can state 

9.3 SlNGULARlTlES AND PHASE TRANSITIONS 

Phase transitions are manifested in experiments by the occurrence of singularities 
in thermodynamic functions, such as the pressure in a liquid-gas system, or the 
magnetization in a ferromagnet. How is it possible that such singularities arise 
from the partition function, which seems to be an analytic function of its 
arguments? The answer lies in the fact that a macroscopic body is close to the 
idealized thermodynamic limit-the limit of infinite volume with particle density 
held fixed. As we approach this limit, the partition function can develop 
singularities, because the limit function of a sequence of analytic functions need 
not be analytic. 

Yang and Lee propose a definite scenario for the occurrence of singularities 
in the thermodynamic limit, which we shall now describe. It is formal in 
character, and belongs to a field sometimes known as "rigorous statistical 
mechanics."* 

As a concrete model consider a classical system consisting of N molecules in 
volume V, interacting with one another through a painvise potential as depicted 
in Fig. 9.4. Each molecule is taken to be a hard sphere surrounded by an 
attractive potential of finite range. Thus, a finite volume V can accommodate at 
most a finite number of molecules M(V). For N > M(V) the partition function 
vanishes because at least two molecules must "touch," rendering the energy 
infinite: 

QN(V) = 0, for N > M(V) (9.76) 

where we have suppressed the temperature to simplify the notation. The grand 

*C. N. Yang and T. D. Lee, Phys. Rev. &7, 404 (1952); T. D. Lee and C. N. Yang, Phys. Rev. 
87, 410 (1952). For rigorous stuff see also D. Ruelle, Statistical Mechanics (Benjamin, New York, 
1969), Chapters 3 and 5; and J. Glimm and A. Jaffe, Quantum Physics (Springer-Verlag, New York, 
1981), Chapter 2. 
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1 Fig. 9.4 Idealized interparticle potential. 

partition function is a polynomial of degree M ( V )  in the fugacity z: 

2 ( z ,  V )  = 1 + z Q l ( V )  + z ~ Q ~ ( v )  + . - .  +z"eM (9.77) 

Since all the coefficients Q,(V) are positive, the polynomial has no real positive 
roots. The parametric form of the equation of state is 

P 

For any finite value of V ,  however large, both P and u are analytic functions of z 
in a region of the complex z plane that includes the entire real axis. Therefore P 
is an analytic function of u in a region of the complex u plane that include all 
physical values of u, i.e., the real axis. Hence all thermodynamic functions must 
be free of singularities. From (9.78) and (9.77) we see that P > 0, and 

a p  a p  a z  
- - 1 

- - 
kT 

< o  (9.79) a u  a z  a u  u z ( a u / a z )  u 4 [ ( n 2 )  - - 

where n is the density. To have the possibility of singularities, we must go to the 
limit V+ oo at fixed u-the thermodynamic limit: 

- -  - lim V-' log 2 ( z ,  V )  
kT V + W  

1 
- - 

a 
- lim V - ' 2 - l o g 2 ( z ,  V )  

U v+w a z  
Note that, in the second equation, the order of the operations lim and z ( d / d z )  
can be interchanged only if the limits above are approached uniformly. (For an 
example see Problem 9.5.) 

The above conclusions are valid also for a quantum mechanical system since 
they depend only on the assumption that a finite volume can accommodate at 
most a finite number of molecules, which is true for molecules with a hard core, 
even in quantum mechanics. 

Yang and Lee show that phase transitions are controlled by the distribution 
of roots of the grand partition function in the complex z plane. A phase 
transition occurs whenever a root approaches the real axis in the limit V -+ 0. 
The precise results are stated in the form of two theorems. 

THEOREM 1 

The limit 
1 

F,(z) = lim - l o g l ( z ,  V )  
V - r m  v 

exists for all z > 0,  and is a continuous nondecreasing function of z. This limit is 
also independent of the shape of V ,  if the surface area of V increases no faster 
than v 2 I 3 .  

THEOREM 2 
Suppose R is a region in the complex z plane that includes a segment of the 

positive real axis, and contains no roots of the grand partition function. Then in 
this region the quantity V-' log 2 converges uniformly to its limit as V -+ co. 
The limit is analytic for all z in R .  

We refer the reader to the original literature for the proofs, and merely 
discuss their consequences here. 

A thermodynamic phase is defined by those values of z contained in any 
single region R of theorem 2. Since in any region R the convergence to the limit 
Fm(z)  is uniform, we can interchange the order of lim and z ( d / d z )  in (9.80). In 
any single phase, therefore, the equation of state is given in parametric form by 

The properties P > 0 and dP/du < 0 are maintained in the thermodynamic 
limit. We illustrate some possible behaviors of the equation of state. 

Suppose the region R includes the entire positive z axis. Then the system 
always exists in a single phase. The equation state may be obtained graphically 
by eliminating z. The situation is illustrated in Fig. 9.5. 

If on the other hand a zero of the grand partition function approaches a 
point z ,  on the real positive z axis, then there will be two distinct regions R 1  and 
R ,  in which theorem 2 holds separately. At z = z,, P ( z )  must be continuous, as 
required by theorem 1. However, its derivative may be discontinuous. The system 
then possesses two phases, corresponding respectively to the regions z < z ,  and 
z > z,. Now l / u ( z )  is a nondecreasing function of z:  

a 1 a a 
z-  - = z- z- V-' log 2 ( z ,  V )  = ( n 2 )  - (n)' 2 0 (9.83) a z  U ( Z )  az  a z  
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/Zeros of 9 (z, V )  

Fig. 9.5 Region R that is free of zeros of d ( z ,  V), leading to an 
equation of state that exhibits only a single phase. 

Fig. 9.6 Two regions R,, R ,  each free of zeros of 9(z, V), corresponding to 
an equation of state with two phases connected by a first-order phase 
transition. 

Fig. 9.7 Equation of state of system with two phases connected by a 
second-order transition. 

Hence, if dP/dz is discontinuous, l/u(z) must make a discontinuous 
upward jump when z increases through z,. The result is a first-order phase 
transition, as depicted in Fig. 9.6. The fact that l/u(z) actually assumes all the 
values between the points a and b follows from the fact that the curve of l / v ( z )  
is the limiting curve of a sequence of continuous curves. 

If in the same example dP/dz is continuous at z = z,, but d2p/dz2 is 
discontinuous, then we would have a second-order phase transition, as illustrated 
in Fig. 9.7. 

9.4 THE LEE-YANG CIRCLE THEOREM 

The scenario for the occurrence of a phase transition proposed above can be 
explicitly demonstrated in the case of a lattice gas with attractive interactions. 
The system consists of point atoms located on the sites of a discrete lattice, with 
the condition that no two atoms occupy the same site, and that atoms on 
different sites have attractive pairwise interactions. That is, the interatomic 
potential u is such that 

u = cc, (if the two atoms are on the same site) 

u < 0, (otherwise) 

The detailed nature of the interaction (e.g., whether it is of the nearest-neighbor 
type) is unspecified, as is the dimensionality or structure of the lattice. For 
example, the lattice does not even have to be periodic. 

The Lee-Yang circle theorem states that, for the lattice gas defined above, all 
roots of the equation 

2 ( z ,  v )  = 0 

lie on the unit circle in the complex z plane. 
For finite V the roots occur in complex-conjugate pairs, and none can 

touch the real axis. Only in the limit V -+ cc is it possible for any of them to 
approach the real axis at z = 1. Thus, there can be at most one transition point. 
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Denoting the phase angles of the roots by 8,, we have 

2 ( ~ ,  V)  = % n ( z  - eiOk), % = n ( - e i 0 k ) - l  (9 34)  
k k 

In the thermodynamic limit the roots become continuously distributed on the 
unit circle. We can define a distribution function g(8) by writing 

The fact that the roots occur in complex conjugate pairs means that g(8) = 

g( - 8). Using this fact, we can deduce the equation of state in the form 

P 
,=[ 

d 8  g(8)  log (1 - 22 cos 8 + z 2)  

1 z - cos 8 
(9.86) 

- = 2 ~ / ~ d 8 ~ ( 8 )  
u o 1 - 2 z c o s 8 +  z 2  

We can see from this general form that, as z varies along the real axis, the 
only point where singularities can occur is z = 1. A singularity at this point will 
occur only if the integrals diverge at 8 = 0. Therefore, no phase transitions occur 
if g(0) = 0. On the other hand, if g(0) # 0, then z = 1 will be a singular point, 
and (9.86) will give different functions for z > 1 and for z < 1, which cannot be 
analytically continued into each other. 

PROBLEMS 

9.1 Derive with the help of the saddle point integration method a formula for the 
partition function for an ideal Bose gas of N particles. 

9.2 (a) Find the equations of state for an ideal Bose gas and an ideal Fermi gas in the 
limit of high temperatures. Include the first correction due to quantum effects. (Consulta- 
tion with Problem 7.6 may be helpful.) 
(6) Estimate, for each of the following ideal gases, the temperature below which quantum 
effects would become important: H,, He, N,. 

9.3 Pair Correlation Function. The pair correlation function D(rl,r2) of a system of 
particles is defined as follows: 

D(r,, r,) d3r1 d3r2 = probability of simultaneously finding a particle in the 
volume element d3r1 about r, and a particle in the 
volume element d3r2 and r2 . 

Calculate D(rl, r,) for an ideal Bose gas and an ideal Fermi gas in the limit of high 
temperatures. Include quantum corrections only to the lowest approximation. 

Solution. Classically we have 

For our problem we use this formula with 

To avoid complications assume that the density of the gas is almost zero. The limit 
N + co, V + co should be so taken that N/V + 0. Then 

This result continues to hold for finite v with A3/v 1, although our derivation did not 
justify such a conclusion. 

9.4 Show that the equation of state (9.86) of the Lee-Yang lattice gas has the following 
electrostatic analog: 
(a )  Consider a circular cylinder of unit radius perpendicular to the complex z plane, 
cutting it at the unit circle. Suppose the cylinder is charged with a surface charge density 
that depends only on the angle 8 around the unit circle (with 8 = 0 corresponding to 
z = 1). The charge density (per unit area) is equal to g(8), with g(8) = g(-8). Let +(z) 
and E(z) be, respectively, the electrostatic potential and the electric field at a point z on 
the real axis. Then 

Y / k T  = -$+( z) 

n = :zE(z) 
where n = l / v  is the density. 

(6) Assume g(0) + 0. Show by electrostatic argument that Y is continuous at z = 1, but 
n jumps discontinuously. This shows that there is a first-order phase transition. Using 
Gauss' theorem in electrostatics, show the discontinuity in density is given by A n  = 2ng(O). 

9.5 Consider the grand partition function 

9 ( z ,  V) = (1 + z)"(1 + zav
) 

where a is a positive constant. 

(a )  Write down the equation of state in a parametric form, eliminate z graphically, and 
show that there is a first-order phase transition. Find the specific volumes of the two 
phases. 
(6) Find the roots of 9(z ,  V) = 0 in the complex z plane, at fixed V. Show that as 
V + co the roots converge toward the real axis at z = 1. 
(c) Find the equation of state in the "gas" phase. Show that a continuation of this 
equation beyond the phase-transition density fails to show any sign of the transition. This 
will demonstrate that the order of the operations z(d/dz) and V + co can be inter- 
changed only within a single-phase region. 
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APPROXIMATE METHODS 

10.1 CLASSICAL CLUSTER EXPANSION 

Many systems of physical interest can be treated classically. A large class of such 
systems is described by a classical Hamiltonian for N particles of the form 

where p, is the momentum of the ith particle and u, = u(lri - rJl) is the 
potential energy of interaction between the ith and the jth particle. If the system 
occupies a volume V, the partition function is 

where each coordinate ri is integrated over the volume V. The integrations over 
momenta can be immediately effected, leading to 

where h = \ / 2 r h 2 / r n k ~  is the thermal wavelength. The integral i i ~  (10.3) is called 
the conjiguration integral. For potentials u,, of the usual type between molecules, 
a systematic method for the calculation of the configuration integral consists of 
expanding the integrand in powers of exp (-pui,) - 1. This leads to the cluster 
expansion of Ursell and Mayer.* As we shall see, this expansion is of practical 
use if the system is a dilute gas. 

*For original literature, see J. E. Mayer and M. G. Mayer, Sraristical Mechanics (Wiley, New 
York, 1940), Chapter 13. 

Fig. 10.1 Intermolecular potential v,, and 
the function f,, . 

Let the configuration integral be denoted by ZN(V7 T): 

in terms of which the partition function may be written as 

and the grand partition function as 

Let f,, be defined by 

e-Bu,, 1 + A J  
For the usual type of intermolecular potentials, u,, and have the qualitative 
forms shown in Fig. 10.1. Thus hj is everywhere bounded and is negligibly small 
when Ir, - r,l is larger than the range of the intermolecular potential. In terms of 
f,., the configuration integral may be represented by 

in which the integrand is a product of i N ( N  - 1) terms, one for each distinct 
pair of particles. Expanding this product we obtain 

+ ( f 1 2 f 1 3  + f 1 2 f 1 4  + ' ) + . ' ' 1 (lo.9) 

A convenient way to enumerate all the terms in the expansion (10.9) is to 
associate each term with a graph, defined as follows: 

An N-particle graph is a collection of N distinct circles numbered 1,2, . . . , N ,  
with any number of lines joining the same number of distinct pairs of circles. If the 
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distinct pairs joined by lines are the pairs a, P, . . . , A ,  then the graph represents the 
term 

appearing in the expansion (10.9). 
If the set of distinct pairs {a,  p, . . . , y  ) is joined by lines in a given graph, 

replacing this set by a set {a f,  P f ,  . . . , y ' )  that is not identical with {a,  P, . . . , y )  
gives rise to a graph that is counted as distinct from the original one (although 
the integrals represented by the respective graphs have the same numerical value). 
For example, for N = 3, the following graphs are distinct: 

but the following graphs are identical: 

@ @ @  @ - Q @  

We may regard a graph as a picturesque way of writing the integral (10.10). 
For example, we may write, for N = 10, 

With such a convention, we can state that 

ZN = (sum of all distinct N-particle graphs) (10.12) 

The proof is obvious. 
Any graph can in general be decomposed into smaller units. For example, 

the graph (14.11) is a product of five factors, namely 

Each factor corresponds to a connected graph, in which every circle is attached to 
at least one line, and every circle is joined directly or indirectly to all other circles 
in the graph. 

It would facilitate the analysis of ZN if we first defined the basic units out of 
which an arbitrary graph can be composed. Accordingly we define an 1-cluster to 

be an 1 particle connected graph. For example, the following is a 6-cluster: 

@a@ 

We define a cluster integral b,(V, T) by 

1 
b,(V, T )  = - (sum of all possible 1-clusters) (10.14) 

i !P- 3~ 

The normalization factor is so chosen that 

( a )  b, ( V, T)  is dimensionless; 

(b) 3,(T) = lim b,(V, T )  is a finite number. 
V - r  m 

The property (b) follows from the fact that hj has a finite range, so that in an 
1-cluster the only integration that gives rise to a factor V is the integration over 
the "center of gravity" of the 1 particles. Some of the cluster integrals are 

Any N-particle graph is a product of a number of clusters, of which m, are 
I-clusters, with 

N 

lm, = N 
I =  1 

A given set of integers ( m , )  satisfying (10.18), however, does not uniquely 
specify a graph, because 

(a )  there are in general many ways to form an 1-cluster, e.g., 

(b) there are in general many ways to assign which particle belongs to which 
cluster, e.g., 

Thus a set of integers {m,) specifies a collection of graphs. Let the sum of all the 
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graphs corresponding to { m , )  be denoted by S{ m , ) .  Then 

where the summation extends over all sets { m , )  satisfying (10.18). 
By definition, S { m , )  can be obtained as follows. First write down an 

arbitrary N-particle graph that contains m ,  1-clusters, m ,  2-clusters, etc.; e.g., 

. .- - - 
m, factors m, factors 

m, factors 

There are exactly N circles appearing in (10.20), and these N circles are to be 
filled in by the numbers 1,2,. . . , N in an arbitrary but definite order. We can 
write down many more examples like (10.20); e.g., we may change the choice of 
some of the 3-clusters (there being four distinct topological shapes for a 3-cluster). 
Again we may permute the numbering of all the N circles in (10.20), and that 
would lead to a distinct graph. If we add up all these possibilities, we obtain 
S {  m , ) .  Thus we may write 

The meaning of this formula is as follows. Each bracket contains the sum over all 
I-clusters. If all the brackets [ . . . ] " 1  are expanded in multinomial expansions, the 
summand of will itself be a sum of a large number of terms in which every 

P 
term contains exactly N circles. The sum 1 extends over all distinct ways of 
numbering these circles from 1 to N. P 

Now each graph is an integral whose value is independent of the way its 
circles are numbered. Therefore S { m , )  is equal to the number of terms in the 
sum C times the value of any term in the sum. The number of terms in the sum C 

P P 
can be found by observing that 

(a) there are m ,  I-clusters, and a permutation of these m ,  things does not 
lead to a new graph; 

(b) in the sum over all I-clusters, such as (10.17), a permutation of the I 
particles within it does not lead to a new graph. Hence the number of 

terms in the sum is* 
P 

N1 

and the value of any term is 

Therefore 

( vA3'- 3bl )  m1 ml 
S { m , )  = N! n m,! = N ! A 3  ( b  ) (10.24) 

I= 1 I = 1  m,! A3 

From (10.5), (10.9), and (10.24) we obtain 

N 1  v m ,  
Q N ( ~ ,  T )  = E n -(-b ) 

( m / 1  
I = l  m,! A3 ' 

This formula is complicated by the restriction (10.18). The grand partition 
function is simpler in appearance: 

1 1 O0 

- log 2 ( z ,  V ,  T) = - C b,zl v A3 / = 1  

from which we obtain the equation of state in parametric form: 

This is known as the cluster expansion for the equation of state.+ 
What we have described is historically the first graphical representation of a 

perturbation series. Graphs have become indispensable tools in the many-body 
problem and in quantum field theory, in which the analog of (10.26), known 
generally by the name of the linked cluster theorem, plays an important role. 
Generally it states that the sum of all graphs is the exponential of the sum of all 
connected graphs. 

*To understand the method of counting the reader is advised to work out some simple 
examples. 

+compare this derivation with that outlined in Problem 7.6. 
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If the system under consideration is a dilute gas, we may expand the 
pressure in powers of l j u  and obtain the virial expansion. For this purpose we 
may take the equation of state to be 

where 

The virial expansion of the equation of state is defined to be 

where a l ( T )  is called the Ith virial coefficient. We can find the relationship 
between the virial coefficients a ,  and the cluster integrals 6 ,  by substituting 
(10.30) into (10.28) and requiring that the resulting equation be satisfied for 
every z :  

f ;b1zi 
I =  1 f a l (  f n h . z n ) l l  = (10.31) 

1 = 1  n = l  Z 1 6 1 ~ 1  
I =  1 

This is equivalent to the condition 

By equating the coefficient of each power of z we obtain 

Each virial coefficient therefore involves only a straightforward computation of a 
number of integrals. 

Note that (10.28) differs from (10.27) in that the limit V + m is taken term 
by term in (10.28). In so doing we have lost all information about possible phase 
transitions, as we have remarked earlier in Section 9.3. The equation of state 

\ 
Fig. 10.2 Equation of state obtained by taking the 

vo virial expansion to be exact. 

(10.30) of the gas phase cannot tell us if and when a phase transition will occur. 
Mayer* has demonstrated that the equation of state (10.30) has the general form 
shown in Fig. 10.2. The portion of the isotherm marked A is valid for u > u,, but 
the value of u, is unrelated to u,, and cannot be obtained from (10.30). The 
portion marked B is purely mathematical, and unrelated to how the isotherm 
actually behaves in that region. 

10.2 QUANTUM CLUSTER EXPANSION 

Kahn and Uhlenbeck? develop a cluster expansion in quantum statistical me- 
chanics. The method they introduce applies equally well to classical statistical 
mechanics. 

Consider N identical particles enclosed in a volume V. Let the Hamiltonian 
A? of the system have the same form as (10.1) but be an operator instead of a 
number. In the coordinate representation, pj = - iAv j ,  and uij is the same 
function of the number Ir, - r,l as that shown in Fig. 10.1. The partition 
function is 

where {qa)  is a complete set of orthonormal wave functions appropriate to the 
system considered, and the set of coordinates {r, ,  . . . r ) is denoted in abbrevia- ' ?' 
tion by ( 1 , .  . . , N ). It is important to use symrnetnc or antisymmetric wave 
functions, as required by the statistics of the particles (see Problem 10.4). Let us 
define 

W N ( l  ,..., N )  = ~ ! X ~ ~ x q : ( l , .  .., N )  e p f i z q a ( l  ,..., N )  (10.35) 
a 

The partition function can be written in the form 

*See Mayer and Mayer, loc. cit. 
+B.  Kahn and G. E. Uhlenbeck, Physica 5, 399 (1938). 
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The integral appearing in (10.36) approaches the classical configuration integral 
in the limit of high temperatures. Some properties of the function W N ( l , .  . . , N) 
are 

( a )  Wl(1) = l  

Proof 

( b )  W N ( l , .  . . , N )  is a symmetric function of its arguments. 
( c )  W N ( l , .  . . , N )  is invariant under a unitary transformation of the com- 

plete set of wave functions {qa) appearing in (10.35). 

Proof 

Suppose qa = z S a A a A ,  where Sax is a unitary matrix: 
A 

CS,*xSay = S A Y  
a 

Then 

C (qa, epw.16) = s,*~s,,(B,, e - w a Y )  = C ( a A ,  e - B X a A )  rn 
0 0 .  A A 

The following property appears to be intuitively obvious, but it is difficult to 
establish quantitatively. Suppose the coordinates r,, . . . , rN have such values that 
they can be divided into two groups containing respectively A and B coordinates, 
with the property that any two coordinates ri and r, belonging to different groups 
must satisfy the condition 

Then 

where rA and r, denote collectively the respective coordinates in the two groups. 
Consider first the case N = 2. According to (10.38) we should expect that as 

I T ,  - r2l + 00, 
w2(172 )  + w1(1)w2(2) (10.39) 

If we define a function U2(1, 2) by W2(1, 2) = W l ( l )  W2(2) + U2(1, 2), we should 
expect that, as Ir, - r21 + oo, 

4 ( 1 , 2 )  + 0 (10 .40) 

Hence the integral of U2(1, 2) over r, and r2 should be the analog of the 2-cluster 
in classical statistical mechanics. 

We proceed systematically in the following manner. Let a sequence of 
cluster functions U,(l,. . . , I )  be successively defined by the following scheme, in 
which the Ith equation is a definition of U,(l,. . . , I ) :  

~ ~ ( 1 )  = ~ ~ ( 1 )  = 1 (10.41) 

~ , ( 1 , 2 )  = ul ( l )U1(2)  + u2(1,2) (10.42) 

w3(1,2,3)  = ui (1)u1(2)u i (3)  + u1(1)u2(2,3) 

+ Ul(2) u2(3,1) u l (3 )  2) + u3(1,2,3)  (10.43) 

The last equation in this scheme, defining UN(l , .  . . , N ) ,  is 

= C C [ui< ) ui( ) I  [ u 2 ( , )  . . .  u2(,)1 A . . .  . [ U N (  , , . . . , ) ]  (10.44) 
( m 1 )  P ' 

m ,  factors m ,  factors m N  factors 

where m ,  is zero or a positive integer and the set of integers { m , }  satisfies the 
condition 

N 

lm, = N 
I= 1 

The sum over { m i )  in (10.44) extends over all sets { m , )  satisfying (10.45). The 
arguments of the U, are left blank in (10.44). There are exactly N such blanks, 
and they are to be filled by the N coordinates r,, . . . , rN in any order. The sum C 
is a sum over all distinct ways of filling these blanks. P 

We can solve the equations (10.41)-(10.44) successively for U,, U2, etc., and 
obtain 

We see that U,(l, .  . . , I)  is a symmetric function if its arguments and is de- 
termined by all the Ww with N'  I I. By the property (10.38) we expect that 
Ul + 0 as Ir, - r,l + oo, where r, and r, are any two of the arguments of U,. 

The I cluster integral b,(V, T) is defined by 

It is clear that b, is dimensionless. If U, vanishes sufficiently rapidly whenever 
any two of its arguments are far apart from each other, the integral appearing in 
(10.49) is proportional to V as V + oo, and the limit b,(oo, T )  may be expected 
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to exist. Whether this is true depends on the nature of the interparticle potential. 
We assume that it is. 

We now show that the partition function is expressible directly in terms of 
the cluster integrals. According to (10.36) we need to integrate WN over all the 
coordinates. Let us make use of the formula (10.44). An integration over all the 
coordinates will yield the same result for every term in the sum x. Thus the 

P 
result of the integration is the number of terms in the sum x times the integral 

P 
of any term in the sum C. The number of terms in the sum x is given by 
(10.22). Hence P P 

1 
= N !  (mil - [L\d3r lUl(1) ]m1L[L\d3r ld3r2U2( l ,2 ) ]m2 ml! m,! 2! - . .  

Therefore the partition function is given by 

This is of precisely the same form as (10.25) for the classical partition function. 
The discussion following (10.25) therefore applies equally well to the present case 
and will not be repeated. We point out only the main differences between the 
quantum cluster integrals and the classical ones. 

For an ideal gas we have seen in earlier chapters that 

1- 5 / 2  (ideal Bose gas) 
6;") = 

( - 1 l 5  (ideal Fermi gas) 

Thus for a Bose and a Ferrni gas 6, does not vanish for I > 1, even in the absence 
of interparticle interactions, in contradistinction to the classical ideal gas. 

The calculation of 6, in the classical case only involves the calculation of a 
number of integrals-a finite task. In the quantum case, however, the calculation 
of 6, necessitates a knowledge of U,, which in turn necessitates a knowledge of 
WN* for N' I I. Thus to find b, for 1 > 1 we would have to solve an I-body 
problem. There is no finite prescription for doing this except for the case I = 2, 
which is the subject of the next section. 

10.3 THE SECOND VlRlAL COEFFICIENT 

To calculate the second virial coefficient a ,  for any system it is sufficient to 
calculate 6,, since a ,  = -6,. A general formula for 6, (in fact, for all b,) has 
already been given for the classical case. Only the quantum case is considered 
here.* 

To find 6, we need to know W2(1, 2), which is a property of the two-body 
system. Let the Hamiltonian for the two-body system in question be 

and let its normalized eigenfunctions be qa( l ,  2), with eigenvalues E,: 

JI.qa (1 2) = Eaqa (1,') (10.54) 
Let 

Then 

E = - + e n  
a 4m 

where the quantum number a refers to the set of quantum numbers (P, n). The 
relative wave function +,(r) satisfies the eigenvalue equation 

with the normalization condition 

Using (10.56) to be the wave functions for the calculation of W,(1,2), we 
find from (10.35) that 

LA" 
w2(1,2) = 2A6x  1\1b(1,2) l 2  e-PEa = - C C I+,,(r) l 2  eBP2'4m ePBcn 

T I  

In the limit as V + oo the sum over P can be effected immediately: 

*The following development is due to E. Beth and G. E. Uhlenbeck, Physica 4, 915 (1937). 
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where h = \ /2aA2/mk~,  the thermal wavelength. Therefore 

w2(1,2) = 25/2h3C 1 +,,(r) l 2  e-p'n (10.61) 
n 

If we repeat all the calculations so far for a two-body system of noninter- 
acting particles, we obtain 

~ , ) ( 1 , 2 )  = 25/2px I +LO)(r) l 2  e-PcP' (10.62) 
n 

where the superscript (O) refers to quantities of the noninteracting system. From 
(10.49) and (10.47) we have 

Hence 

where 

6f"' = I' 2- 5/2 (ideal Bose gas) 
(10.64) 

- 2 -5/2 (ideal Fermi gas) 

To analyze (10.63) further we must study the energy spectra 6;') and 6,. For 
the noninteracting system, €Lo) forms a continuum. We write 

which defines the relative wave number k. For the interacting system the 
spectrum of e n  in general contains a discrete set of values c,, corresponding to 
two-body bound states, and a continuum. In the continuum, we define the wave 
number k for the interacting system by putting 

Let g(k) dk be the number of states with wave number lying between k and 
k + dk, and let g(O)(k) dk denote the corresponding quantity for the noninter- 
acting system. Then (10.63) can be written in the form 

We remark in passing that the factor z3I2 in front of (10.67) is the ratio 
(h/h,rn)3/2, where h is the thermal wavelength, and A,, is the thermal wave- 
length of the center-of-mass motion of the two-body system. 

Let ql(k) be the scattering phase shift of the potential u(r) for the Ith 
partial wave of wave number k. It will be shown that 

where the sum C' extends over the values 

0,2,4,6, .  . . (bosons) 
I =  { 

1 3 7 . .  (fermions) 

Therefore 

A partial integration leads finally to the formula 

It remains to prove (10.68). We may choose both IC/,(r) and +LO)(r) to be pure 
spherical harmonics, because u(r) does not depend on the angles of r with 
respect to any fixed axis. Thus we write 

For bosons +(r) = +(- r), and for fermions +(r) = - +( - r). Therefore 

0,2,4,6, .  . . (bosons) 
(10.73) 

1 3 7 . . . (fermions) 

Let the boundary conditions be 

where R is a very large radius which approaches infinity at the end of the 
calculation. The asymptotic forms of u,, and uiy are 

where 6, denotes the energy of a bound state of the interacting two-body system. 
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This defines q,(k). The eigenvalues k are determined by the boundary conditions 
(10.74): 

la  
kR + - + ql(k) = an (interacting system) 

2 (10.76) 
l a  

kR + - = an (noninteracting system) 
2 

where n = 0,1,2,. . . . It is seen that the eigenvalues k depends on n and I but 
not on m. Since there are 21 + 1 spherical harmonics Yl

m for a given I, each 
eigenvalue k is (21 + 1)-fold degenerate. 

For a given I, changing n by one unit causes k to change by the respective 
amounts Ak, Ak('): 

a 

These are the spacings of eigenvalues for a given I. Let the number of states of a 
given I with wave number lying between k and k + dk be denoted by gl(k) dk 
and g,cD)(k) dk for the two cases. We must have 

g,(k) Ak = 1 

Therefore 

Summing (10.80) over all I consistent with (10.73) we obtain (10.68). 
For I > 2 there is no known formula for 6 ,  comparable in simplicity to 

(14.71), because there is no known treatment of the I-body problem for I > 2 
comparable to the phase shift analysis of the two-body problem.* 

Lastly, we remark that there is no essential difference between a sharp 
scattering resonance and a bound state, as far as the second virial coefficient is 
concerned. In the neighborhood of a sharp resonance, the scattering phase shift 

increases by P over a small energy interval. In the idealized Limit of an infinitely 
sharp resonance, we can represent the phase shift by 

all ( k )  
= a6(k - k,) 

dk 

where ko marks the position of the resonance. From (10.70), it is clear that each 
sharp resonance contributes to the second virial coefficient a term of the same 
form as that from a bound state. This supports what we expect, namely, that a 
sharp resonance can be treated as a particle. 

1 0.4 VARIATIONAL PRINCIPLES 

In quantum mechanics we are familiar with the variational principle, which states 
that the lowest energy eigenvalue of the system is the minimum of the expecta- 
tion value of the Hamiltonian, taken with respect to a wave function that is 
completely arbitrary, except for normahation and the imposed boundary condi- 
tions of the problem. By using a trial wave function with adjustible parameters, 
one can use the variational principle to obtain an upper bound for the ground 
state energy, and improve on the bound by giving the trial wave function more 
freedom to vary. We shall describe here similar variational principles for the 
partition function. 

Gibbs Variational Principle 

Let p denote a normalized density function for an ensemble, classical or 
quantum mechanical. That is, it is a real positive quantity in the classical case, 
and a Hermitian operator with positive eigenvalues in the quantum case, and that 

Trp = 1 (10.82) 

In the classical case the operation Tr means dp dq. Now define J 
+ ( P I  = Tr(*P) + p-' Tr(P 1% P)  (10.83) 

where 2' is the Hamiltonian of the system under consideration, and P is a 
constant. The Gibbs variational principle states the following: 

( a )  Minimize + { p ) by varying p, subject only to the condition that it be a 
legitimate normalized density function. The function p that minimizes 
+ ( p ) is the density function of the canonical ensemble with kT = P-  '. 

( b )  The Helmholtz free energy is given by A = + ( p ) .  
To prove this, first calculate the variations of + when p changes by 6p: 

*An analysis of ?j3 is given by A. Pais and G. E. Uhlenbeck, Phys. Rev. 116, 250 (1959). 
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The second of these shows that I) is a convex function, so that 64 = 0 gives a 
minimum. We now vary p, takmg the normalization constraint into account 
through a Lagrange multiplier A: 

Solving for p, and determining A by (10.82), we obtain 

which proves (a). Substituting this into (10.83) gives 

I ) (P)  = -P-' logTr e-BY 

which proves (b). 

Peieris Variational Principle 

Consider a quantum mechanical system with Harniltonian 2, and partition 
function Q = Tr exp ( - P2') .  The Peierls variational principle* states that 

where (0 , )  is an arbitrary set of wave functions of the system. Obviously, the 
equality holds when { O n )  is the set of eigenfunctions of 2'. Note that the set 
( 0 , )  does not have to be complete, for the inequality holds a fortiori for an 
incomplete set since the terms on the right side of (10.88) are all positive. Thus it 
suffices to prove (10.88) under the assumption that (0 , )  is a complete set of 
wave functions. 

The Peierls variational principle is a special case of a more general theorem 
on convex functions. Suppose f ( x )  is a real convex function of a real variable x ,  
(i.e., f " ( x )  2 0 . )  Let us denote by f the average of f ( x )  over a selected set of 
x 's, with specified weights: 

where { x , )  is a arbitrary set of real numbers, and { c , )  is a set of real numbers 
such that 

By the mean-value theorem, 

for some x,.  Now average both sides: 

fo = f ( 2 )  + i ( x  - x ) ~ ~ ~ ~ ( x ~ )  (10.92) 

*R. E. Peierls, Phys. Rev. 54, 918 (1938). 

Since f " ( x , )  2 0 ,  we have the following theorem: 

Now let { @ , )  be a complete set of wave functions, and S the unitary matrix 
which relates it to the eigenfunctions {\k,) of 2': 

from which we can see that 

where { E m )  are the eigenvalues of 2'. We can write the partition function in the 
form 

and define 

q = X e - ~ ( ~ n , - l b )  = 1 exp [ - ~ ~ E I S ~ , I ' E ~ ]  (10.97) 
n n m 

Let f ( x )  = exp ( - B x ) .  For each n ,  the following definitions fulfill the require- 
ments of the previous theorem: 

Thus we can write 

According to the theorem, Q - q 2 0 term by term. 

10.5 IMPERFECT GASES AT LOW TEMPERATURES 

An imperfect gas is an extremely dilute system of particles that interact among 
themselves through an interparticle potential of finite range and of such a nature 
that there exists no two-particle bound state. The diluteness of the gas enables us 
to treat the interparticle interaction as a small perturbation on the ideal gas. An 
imperfect gas, therefore, is the first improvement on the ideal gas as a model for a 
physical gas. We shall consider an imperfect gas at extremely low temperatures. 
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For such a system there are two important parameters of the dimension of 
length: the thermal wavelength A and the average interparticle separation dl3. 
These two lengths may be of comparable magnitude, but they must be much 
larger than the range of the interparticle potential, or any other length in the 
problem, except that size of the container. 

In quantum mechanics a particle cannot be localized within its de Broglie 
wavelength, which in the present case may be replaced by the thermal wave- 
length. Thus in the present case a particle "spreads" over a distance much larger 
than the range of the interaction potential. Within the range of interaction of any 
given particle, the probability of finding another particle is small. Therefore 

( a )  the effective interaction experienced by a particle is small, even though 
the interparticle potential may have large values; 

( b )  the details of the interparticle potential are unimportant, because a 
particle that is spread out in space sees only an averaged effect of the 
potential. 

In the quantum theory of scattering it is known that at low energies the 
scattering of a particle by a potential does not depend on the shape of the 
potential, but depends only on a single parameter obtainable from the potential 
-the scattering length a. The total scattering cross section at low energies is 
4ma2. Hence roughly speaking a is the effective diameter of the potential. We 
may also say that at low energies the scattering from a potential looks like that 
from a hard sphere of diameter a. This makes it plausible that at extremely low 
temperatures it is possible to describe an imperfect gas solely in terms of the 
three parameters A, u113, and a.  Our problem is to formulate a method by which 
all the thermodynamic functions of the imperfect gas can be obtained to lowest 
order in the small parameters a/A and a/u113. 

We first show that, for the purpose of calculating the low-lying energy levels 
of an imperfect gas, the Hamiltonian of the system may be replaced by an 
effective Hamiltonian in which only scattering parameters, such as the scattering 
length, appear explicitly. The partition function of the imperfect gas can then be 
calculated with the help of the effective Hamiltonian. This method, first intro- 
duced by Fermi,* is known as the method ofpseudopotentials. 

Consider first a system of two particles interacting through a finite-ranged 
potential which has no bound state. The object of the method of pseudopoten- 
tials is to obtain all the energy levels of the system in terms of the scattering 
phase shifts of the potential. For the sake of concreteness we first assume that the 
potential is the hard-sphere potential with diameter a. The wave function for the 
two particles may be written in the form 

*E.  Fermi, Ricerca Sci. 7 ,  13 (1936). Our presentation follows that of K. Huang and C. N. 
Yang, Phys. Rev. 105, 767 (1957). 

where 

and P is the total momentum vector. The Schrodinger equation in the center-of- 
mass system is 

The hard-sphere is no more than a boundary condition for the relative 
wave function + (r). It is understood that some boundary condition for r oo is 
specified, but what it is i s  irrelevrint to our considerations. The number k is 
the relative wave number, and (10.102) presents an eigenvalue problem for k. 
When the allowed values of k are known, the energy eigenvalues of the system 
are given by 

where M is the total mass and p the reduced mass of the system. 
The aim of the method of pseudopotentials is to replace the hard-sphere 

boundary condition by an inhomogeneous term for the wave equation. Such an 
idea is familiar in electrostatics, where to find the electrostatic potential in the 
presence of a metallic sphere (with some given boundary condition at infinity) we 
may replace the sphere by a distribution of charges on the surface of the sphere 
and find the potential set up by the fictitious charges. We can further replace the 
surface charges by a collection of multipoles at the center of the sphere with 
appropriate strengths. If we solve the Poisson equation with these multipole 
sources, we obtain the exact electrostatic potential outside the sphere. In an 
analogous way, the method of pseudopotentials replaces the boundary condition 
on +(r) by a collection of sources at the point r = 0. Instead of producing 
electrostatic multipole potentials, however, these sources will produce scattered S 
waves, P waves, D waves, etc. 

Let us first consider spherically symmetric ( S  wave) solutions of (10.102) at 
very low energies (k -t 0). The equations (10.102) become 

The solution is obviously 
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Now define an extended wave function +,(r )  such that 

(V  + k 2 ) # , ( r )  = 0 (everywhere except at r = 0 )  (10.105) 

with the boundary condition 

+ e x ( @ )  = 0 
For k -, 0 we have 

where x is a constant that depends on the boundary condition at r = m. We can 
avoid explicit use of this boundary condition by writing 

which is an immediate consequence of (10.107). To eliminate the explicit require- 
ment (10.106), we generalize the equation (10.106) to include the point r = 0.  
This can be easily done by finding the behavior of (v  + k2)# , ,  near r = 0, as 
required by (10.107). Since k + 0, it is sufficient to note that according to 
(10.107) 

Therefore as k -, 0 the function +,,(r)  everywhere satisfies the equation 

The operator G(r) ( d / d r ) r  is the pseudopotential.* For small k and for r 2 a ,  
+, , (r)  satisfies the same equation and the same boundary condition as + ( r ) .  
Therefore +,, ( r  ) = + ( r )  for r 2 a ,  and the eigenvalues of k are the same in both 
cases. 

The equation (10.110) is not the exact equation we desire, because only the 
S-wave solutions with small k coincide with the actual solutions of the physical 
problem. To obtain an equation for an extended wave function that rigorously 
coincides with + ( r )  for r 2 a ii is necessary to generalize (10.110) to arbitrary 
values of k and to nonspherically symmetric solutions.+ It suffices for the present 
to state that the result of the generalization consists of the following modifica- 
tions of (10.110): 

( a )  The exact S-wave pseudopotential is 

*The foregoing derivation is due to J. M. Blatt and V. F. Weisskopf, Theoretical Nuclear Physics 
(Wiley, New York, 1952), p. 74. 

+see Huang and Yang, op. cit. 

where qo is the S-wave phase shift for the hard-sphere potential: 

( b )  An infinite series of pseudopotentials is added to the right side of 
(10.110), representing the effects of P-wave scattering, D-wave scatter- 
ing, etc. The lth-wave pseudopotential is proportional to a2'+'. 

From these results it is seen that (10.110) is correct up to the order a ' .  That 
is, if the wave function + ( r )  and the eigenvalue k are expanded in a power series 
in a ,  then (10.110) correctly gives the coefficients of a and a 2.  

The differential operator ( a / a r ) r  in the pseudopotential (10.110) may be 
replaced by unity if +,(r) is well behaved at r = 0, for then 

If +, , ( r ) -~r - '  + B, however, then 
r + O  

An illustration of the effect of ( d / d r ) r  is given in Problem 10.7. 
We now turn to the method of pseudopotentials for the case of two particles 

interacting through a general finite-ranged potential which has no bound state. 
Here (10.102) is replaced by the equation 

with some given boundary condition for r + oo. At low energies only S-wave 
scattering is important. Therefore let us consider only spherically symmetric 
solutions. Then (10.115) reduces to 

where 
u ( r )  = r + ( r )  

By assumption u ( r )  is finite-ranged and has no bound state. Therefore, as 
r + oo, u ( r )  approaches a sinusoidal function: 

~ ( r ) - ~ , ( r )  (10.118) 
r +  m 

where 

urn(') = r+ , ( r )  = const. (sin kr + tanq, cos kr )  (10.119) 

where qo is by definition the S-wave phase shift. For k + 0, 



APPROXIMATE METHODS STATISTICAL MECHANICS 

0 /a Range of * r  Fig. 10.3 Wave function in a repulsive potential with 
potential positive scattering length. 

In general q ,  is a function of k. For small k there is a well-known expansion 
analogous to (10.112), known as the effective range expansion: 

1 1  
kcot q ,  = - - + -k2r,, + - - .  

a 2 (10.121) 

where a is called the scattering length and r, the effective range. The meaning of 
the scattering length can be seen by substituting (10.121) into (10.119). For 
k + 0 we obtain (10.117). As illustrated in Figs. 10.3 and 10.4, the scattering 
length is the intercept of the asymptotic wave function r#,(r) with the coordi- 
nate axis. For the hard-sphere potential the scattering length is the hard-sphere 
diameter. In general a may be either positive or negative. It is positive for a 
predominantly repulsive potential (Fig. 10.3) and negative for a predominantly 
attractive potential (Fig. 10.4). 

At low energies we may neglect all terms in (10.121) except - l / a  and 
obtain 

1 
-- = a  

k cot q,  

This approximation, known as the "shape-independent approximation," states 
that at low energies the potential acts as if it were a hard-sphere potential of 

I 

//a O Range of 
Fig. 10.4 Wave function in an attractive poten- 

potential tial with negative scattering length. 

14 

Fig. 10.5 The three-like hypersurface in the 3N-  
dimensional configuration space. The hard-sphere in- 

13 teractions are equivalent to the boundary condition 
that the wave function vanishes on the surface of the 
"tree." 

diameter a. Therefore (10.110) can be taken over.* In general (10.110) is certainly 
valid for the calculation of the energy to the lowest order in the scattering length 
a .  Whether it is still meaningful to use (10.110) for higher orders in a depends on 
the potential. 

Having introduced the pseudopotentials in the two-body problem we are 
now in a position to discuss the generalization to the N-body problem. The 
considerations that follow are independent of statistics. 

Let us first consider the n-body problem with hard-sphere interactions. The 
Schrodinger equation for the system is 

q = O  (otherwise) 

We also require that \k satisfies some boundary condition on the surface of a 
large cube, e.g., that \k satisfies periodic boundary conditions. The hard-sphere 
interactions are equivalent to a boundary condition that requires \k to vanish 
whenever Iri - r,l = a ,  for all i # j. In the 3N-dimensional configuration space 
the collection of all points for whch Iri - rJl = a represents a tree-like hyper- 
surface, a portion of which we schematically represent by Fig. 10.5. Thus we 
draw a cylinder, labeled 12, to represent the surface in which Ir, - r,l = a, 
whereas r,, . . . , r, may have arbitrary values. The whole "tree" is the totality of 
all such cylinders, $N(N - 1) in number, which mutually intersect in a com- 
plicated way. If the hard-sphere diameter a is small, these cylinders have a small 
radius. To find the wave function outside the "tree," it is natural to replace the 
"tree"' by a series of "multipoles" at the "axes," i.e., at the lines Iri - r,l = 0. 

It can be easily shown that replacing the effect of each cylinder by multi- 
poles along its axis amount to introducing the two-body pseudopotentials de- 
scribed in the previous section. Our extended wave function would then satisfy a 

*The derivation of (10.110) remains valid if a is negative. 
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Schrodinger equation containing the sum of :N(N - 1) two-body pseudopoten- 
tials. These two-body pseudopotentials, however, do not exactly replace the effect 
of the "tree." Although they correctly give the behavior of \k near a cylinder and 
far away from any intersection of cylinders, they do not necessarily give the 
correct behavior of \k near an intersection of two or more cylinders. For 
example, the intersection corresponding to Ir, - r21 = a and Ir, - r,l = a rep- 
resents a configuration in which particles 1, 2, and 3 collide simultaneously-an 
intrinsically three-body effect which has not been taken into account in the 
two-body pseudopotentials. The sum of two-body pseudopotentials accounts only 
for the effects of binary collisions. 

Using our geometrical picture, we see that in addition to the two-body 
pseudopotentials it may be necessary to place additional multipoles (pseudo- 
potentials) at each intersection of two or more cylinders. To find the exact 
magnitude of these three- and more-body pseudopotentials we would have to 
solve three- and more-body problems. Their dependence on the hard-sphere 
diameter a ,  however, can be found by a dimensional argument. 

As an example, the three-body pseudopotential needed at the intersection of 
the lines I r, - r, 1 = 0 and I r, - r, 1 = 0 must appear in the three-body 
Schrodinger equation in the form 

= (sum of two-body pse~do~otentials) + 6 (r, - r,) 6 (r, - r, ) K* 

The quantity K must be of the dimension (length)4. At low energies (k -, 0) the 
only length in the problem is a. Therefore K must be of the order a4. In a similar 
way we deduce that four-body pseudopotentials are of the order a', and so forth. 
These pseudopotentials may be ignored, if we are only interested in an accuracy 
up to the order a2. The necessity for such n-body pseudopotentials shows that 
the pseudopotentials are not additive. This is analogous to the well-known 
situation in electrostatics that image charges are not additive. For example, the 
images of a point charge in front of two mutually orthogonal plane conductors 
are not simply the two images produced by each plane conductor taken sep- 
arately. 

If the interparticle potential is not the hard-sphere potential but a finite- 
ranged potential that has no bound state, the considerations just given can be 
taken over. The effective Hamiltonian for an imperfect gas of N identical 
particles of mass m may be taken to be 

where a is the scattering length. This is valid for both fermions and bosons. The 
eigenvalues of this Hamiltonian will be the correct eigenvalues for an imperfect 
hard-sphere gas up to order a2. For a general imperfect gas they will be correct to 
the lowest order in a. 

We note that (10.123) is not a Hermitian operator because (d/dr)r is not a 
Hermitian operator. This need not cause concern because, by its derivation, 
(10.123) has been shown to have real eigenvalues that are the approximate 
eigenvalues of the real problem. The non-Hermiticity reflects the fact that the 
eigenfunctions of (10.123) do not everywhere coincide with the eigenfunctions of 
the real problem, but do so only in the asymptotic region. The fact, however, that 
(10.123) is not Hermitian means that we cannot find its eigenvalues by variational 
methods. 

If the pseudopotentials in (10.123) are regarded as small perturbations to be 
treated only to the first order in perturbation theory, then the operators (d/dr)r 
will always act on unperturbed free-particle wave functions, whlch are well- 
behaved. Hence the operators (d/dr)r can be set equal to unity, and we can 
work with the Hamiltonian 

It is to be emphasized that this Hamiltonian is valid only for the purpose of 
applying Jirst-order perturbation theory. We must not diagonalize (10.124) exactly, 
because the exact eigenvalues are the same as those for a free-particle system-it 
being well known that a three-dimensional S-function potential produces no 
scattering. 

The first-order energy levels of X' are calculated in the Appendix a. The 
result for bosons is given in (A.36); that for fermions in (A.42). 

PROBLEMS 

10.1 (a) Calculate 8, and 8, for a classical hard-sphere gas with hard-sphere diam- 
eter a.  
( b )  Express the equation of state of a classical hard-sphere gas in the form of a virial 
expansion. Include terms up to the third virial coefficient. 

10.2 Find b, for an ideal Bose gas and compare it with 8,. Is the difference significant? 
(See (8.72).) 

10.3 Calculate the second virial coefficients for a spinless hard-sphere Bose gas and a 
spinless hard-sphere Fermi gas to the two lowest nonvanishing orders in a / X ,  where a  is 
the hard sphere diameter and X is the thermal wavelength. 

A ns wers. 

(Bose) 

5 - -2-5 /2  - (jm - 
2 - ( ;I3  + ~ t n ' ( ; ) ~  + . . ( Fermi) 
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10.4  In calculating WN defined in (10.35), the symmetry or antisymmetry of the wave 
function makes the calculation complicated. The following is a method to deal with this 
problem. 

Let the free-particle wave functions for a system of distinguishable particles be 

1 
~ ~ ( 1 , .  . . , N )  - e'(P1"~+ ..' + P N ' ~ N )  

vN/2 
Let 

( 1  ,..., Nl e-b211' ,..., N ' )  

= C . . .  x x , * ( l  ,..., N )  ePB2xp (1 ' )  . . . ,  N f )  
Pi PN 

The symbol 11,. . . , N )  may be regarded as an eigenvector of the position operators of N 
distinguishable particles. Show that with the help of this quantity (10.35) may be expressed 
in the form 

10.5 Models for Ferromagnetism. Consider a lattice of N fixed atoms of spin i. The 
quantum mechanical spin operators of the ith atom are the Pauli spin matrices a,.  
Assuming that only nearest neighbors interact via a spin-spin interaction, we obtain the 
Heisenberg model of ferromagnetism. The Hamiltonian is 

N 

*~eisenberg = -' C ' 1  . (rj - IL C at ' 
(!I) i = l  

where (ij) denotes a nearest-neighbor pair, 3' is a uniform external magnetic field, and c 
and p are positive constants. 

Another model, the Ising model, is constructed by associating with the i th atom a 
number s, that is either + 1 or - 1 and taking the Hamiltonian to be 

N 

 sing = -' C S,Sl - IL C siH 
(!I) i = l  

where H is the r component of H 
Using the Peierls variational principle prove that, for the same temperature, the 

Helmholtz free energy of the Heisenberg model is not greater than that of the Ising model. 

10.6  Mean-Field Approximation. Consider the Ising model, whose Hamiltonian is given 
in the last problem. In the mean-field approximation one assumes that each spin sees a 
mean field due to all its neighbors. Determine this mean field with the help of the Gibbs 
variational principle, as follows: 
( a )  Assume a product form for the trial density function 

p ( s , , . . . , s , )  = g(s1)  . . .  g ( s , )  

g ( s )  = c e B "  

Find C by normalizing g ( s ) .  The mean field B is to be determined. 

( b )  Instead of B ,  use as variational parameter the magnetization per spin 

m = C s g ( s )  
S 

Show that B = t a d - '  m .  

( c )  Show that the Gibbs function 4 ( p ) ,  as defined in (10.83) is given by 

4 = ~ [ - : c y r n ~  - pHm + k T ( B m  + log c ) ]  
where y is the number of nearest neighbors. 

(d) Show that JI is minimized by E ,  which satisfies 

i% = tanh[(cym + p H ) / k T ]  

(e) Show that the Helmholtz free energy per spin is given by 
A 1 + m  1 + m  1 - m  1 - m  
- - - - : c y ~ ~ + ~ H i i m + k ~  log - + - 
N 2 2 2 

These results are the same as those of the Bragg-Williams approximation, which we shall 
derive and analyze in Chapter 14. 

10.7 ( a )  Find all spherically symmetric solutions and corresponding eigenvalues of the 
equation 

( v 2  + k : ) 4 , , ( r )  = 0 

in the region between two concentric spheres of radii R and a ( R  > a ) ,  with the 
boundary conditions 

4 ( R )  = # ( a )  = 0 

( b )  Expand the eigenvalues k: in powers of a ,  keeping terms up to order a 2  

( c )  Using the method of pseudopotentials, calculate the eigenvalue k i  up to order a 2  and 
show that it agrees with the answer to ( b ) .  

Reference. K. Huang and C. N. Yang, Phys. Rev. 105, 767 (1957), §2 (b ) .  
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Then 

FERMl SYSTEMS 

In this chapter we study various examples of systems of fermions. The dominant 
common characteristic is the existence of the Fermi surface, which is a direct 
consequence of the Pauli exclusion principle. 

11.1 THE EQUATION OF STATE OF AN IDEAL FERMl GAS 

The equation of state of a spinless ideal Fermi gas is obtained by eliminating z 
from Eqs. (8.67). We first study the behavior of z as determined by the second 
equation of (8.67), namely 

where u = V / N ,  A = \/2mh2/rnk~ is the thermal wavelength, and 

is a monotonically increasing function of z. For small z we have the power series 
expansion 

For large z an asymptotic expansion may be obtained through a method due to 
Sommerfeld, as follows. For convenience put z = e Y,  so that v is related to the 
chemical potential p by 

v = log z = p/kT (11.4) 

The last step is obtained through a partial integration. Expanding y3l2  in a 
Taylor series about v, we obtain 

Now we write 

The second integral is of order e-".  Therefore 

where 

Apart from the factor t  ", the integrand is an even function of t. Hence I,, = 0 for 
odd n.  For n = 0 we have 

w d  1 
I,,= - 2 4  d t -  dt ( e t  + 1) = 1 

and for even n > 0, 
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The equation of state (8.67) then becomes 

where l ( n )  is the Riemann zeta function,* some special value of which are 

Hence 

A graph of f 3 l 2 ( z )  is shown in Fig. 11.1. For any given positive value of A3/u, 
the value of z determined by (11.1)  can be read off such a graph. It is seen that z 
increases monotonically as A3/u increases. For fixed u, z increases monotonically 
as the temperature decreases. 

High Temperatures and Low Densities (A3 /v  -=z 1)  

For A3/u -=z 1 the average interparticle separation dl3 is much larger than the 
thermal wavelength A. We expect quantum effects to be negligible. From (11.1) 
and (11.3), 

A3 z 
- - = z - - + . . .  
U 23/2 

which may be solved to give 

Thus z reduces to that of the Boltzmann gas ( E q .  (8.52)) when A3 
-+ 0 ( T  + m ) .  

The average occupation number (8.65) reduces to Maxwell-Boltzmann form: 

*cf. Handbook of Mathematical Functions, M .  Abrarnovitz and I. A. Stegun, eds., (National 
Bureau of Standards, Washington, D.C., 1964), Chapter 23. 

This is in the form of a virial expansion. The corrections to the classical ideal gas 
law, however, are not due to molecular interactions, but to quantum effects. The 
second virial coefficient in this case is 

All other thermodynamic functions reduce to those for a classical ideal gas plus 
small corrections. 

Low Temperatures and High Densities (A3/u h 1)  

For A3/u >> 1 the average de Broglie wavelength of a particle is much greater 
than the average interparticle separation. Thus quantum effects, in particular the 
effects of the Pauli exclusion principle, become all important. 

In the neighborhood of absolute zero we have, from (11.1) and (11.11), 

Hence 
z z e B ' ~  

where c,, the chemical potential at absolute zero, is called the Fermi energy: 

To study its physical significance, let us examine (n,) near absolute zero: 

If E, < c,, then the exponential in the denominator vanishes as T + 0 ( P  + m ) .  
Hence (n ,) = 1. Otherwise, (n,) = 0. Thus 

The physical meaning of this formula is clear. Because of the Pauli exclusion 
principle no  two particles can be in the same state. Therefore, in the ground state 
of the system, the particles occupy the lowest possible levels and fill the levels up 
to the finite energy level E,. Thus E, is simply the single-particle energy level 
below which there are exactly N states. In momentum space the particles fill a 
sphere of radius p,, the surface of which is called the Fermi surface. 
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With this interpretation, let us now calculate the Fermi energy indepen- 
dently, under more general conditions. Suppose all single-particle energy levels 
are g-fold degenerate. For example, g = 2s  + 1 for a particle of spin s .  The 
condition determining c ,  is then 

gC(n,),=, = N (11.21) 
P 

In view of (11.20), this states that there are N states with energy below the Fermi 
energy. Putting c ,  = pi/2rn, we find 

After a partial integration we obtain 
Hence 

which reduces to (11.18) when g = 1. We can also interpret (11.21) as follows. 
Particles with different quantum numbers are not constrained by any symmetry 
requirement with respect to the interchange of their positions. Thus we may 
consider a system of N fermions, each with degeneracy g, to be made up of g 
independent Fermi gases each with N / g  particles whose energies are nondegen- 
erate. 

To obtain the thermodynamic functions for low temperatures and high 
densities we first obtain the expansion for the chemical potential from (11.1) and 
(11.11): 

The expansion parameter is kT/c, .  If we define the Fermi temperature TF, which 
is a function of density, by 

k T F =  c ,  (11.25) 

then low temperature and high density means T -C TF. In this domain the gas is 
said to be degenerate because the particles tend to go to the lowest energy levels 
possible. For this reason TF is also called the degeneracy temperature. 

The average occupation number is 

1 
("p) = e e ~ p - u  + 

( 1  1.26) 

where v is given by (11.24). Since e ,  = p 2 / 2 m ,  n ,  depends on p only through p 2.  
A sketch of n ,  is shown in Fig. 11.2. 

The internal energy is 

It is apparent from Fig. 11.2 that d ( n , ) / d p  is sharply peaked at p = p,. In 
fact, at absolute zero it is a 6 function at p = p,. Therefore the integral in 
(11.27) can be evaluated by expanding the factor p6 about p = p,. The proce- 
dure is similar to that used in obtaining (11.11). After inserting v from (11.24) we 
obtain the asymptotic expansion 

The first term is the ground state energy of the Fermi gas at the given density, as 
we can verify by showing the following: 

The specific heat at constant volume can be immediately obtained from 
(11.28) 

C ,  m 2  k T  

It vanishes linearly as T + 0 ,  thus verifying the third law of thermodynamics. We 
know that C , / N k  approaches 2 as T + oo. Thus a rough sketch of C,/Nk can 
be made, as shown in Fig. 11.3. The fact that it is proportional to T at these low 
temperatures can be understood as follows. At a temperature T > 0, ( n , )  differs 
from that at T = 0 because a certain number of particles are excited to energy 
levels c ,  > c,. Roughly spealung, particles with energies of order k T  below c ,  
are excited to energies of order k T  above c,' (see Fig. 11.2). The number of 
particles excited is therefore of the order of ( k T / c , ) N .  Therefore the total 
excitation energy above the ground state is AU - (kT/c , )NkT,  from which 
follows C ,  - ( k T / c , ) N k .  
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From (8.78) and (11.28) follows the equation of state 

This shows that even at absolute zero it is necessary to contain the ideal Fermi 
gas with externally fixed walls because the pressure does not vanish. This is a 
manifestation of the Pauli exclusion principle, which allows only one particle to 
have zero momentum. All other particles must have finite momentum and give 
rise to the zero-point pressure. 

To obtain the thermodynamic function for arbitrary values of A3/u numeri- 
cal methods must be employed to calculate the functions f312(z) and f,/,(z). 

11.2 THE THEORY OF WHITE DWARF STARS 

It is an empirical rule that the brightness of a star is proportional to its color (i.e., 
predominant wavelength emitted). The proportionality constant is roughly the 
same for all stars. Thus if we make a plot of brightness against color, we obtain 
what is known as the Hertzprung-Russell diagram, in which most stars fall within 
a linear strip called the main sequence, as shown in Fig. 11.4. There are, however, 
stars that are exceptions to this rule. There are the red giant stars, huge stars 
which are abnormally bright for their red color; and there are the white dwarf 
stars, small stars which are abnormally faint for their white color. The white 

Brightness 
A 

I + Color 
White Red Fig. 1 1.4 Russell-Hertzprung diagram. 

dwarf star makes an interesting subject for our study, because to a good 
approximation it is a degenerate Fermi gas. 

A detailed study of the constitution of white dwarf stars leads to the 
conclusion that they lack brightness because the hydrogen supply, which is the 
main energy source of stars, has been used up, and they are composed mainly of 
helium. What little brightness they have is derived from the gravitational energy 
released through a slow contraction of the star. Probably these stars have reached 
the end point of stellar evolution. One of the nearest stars to the solar system, the 
companion of Sirius, 8 light years from us, is a white dwarf. So faint that it 
escapes the naked eye, it was first predicted by the calculations of Bessel, who 
tried to explain why Sirius apparently moves about a point in empty space. 

An idealized model of a white dwarf may be constructed from some typical 
data for such a star: 

Content: mostly helium 

Density r: lo7 g / c d  = lo7 p, 

Mass = g = M, 

Central temperature = lo7 K -- T, 

where the subscript O denotes quantities referring to the sun. Thus a white dwarf 
star is a mass of helium at an extremely high temperature and under extreme 
compression. The temperature lo7 K corresponds to a thermal energy of 1000 eV. 
Hence the helium atoms are expected to be completely ionized, and the star may 
be regarded as a gas composed of helium nuclei and electrons. We regard the gas 
of electrons as an ideal Fermi gas, with a density of approximately lo3' 
electrons/cm3. This corresponds to a Fermi energy of 

h2 1 
cF z -- - 20 MeV 

2m u213 

and a Fermi temperature of 

Since the Fermi temperature is much greater than the temperature of the star, the 
electron gas is a highly degenerate Fermi gas, which behaves no differently from 
an electron gas at absolute zero. In fact we regard the electron gas to be an ideal 
Fermi gas in its ground state. The enormous zero-point pressure exerted by the 
electron gas is counteracted by the gravitational attraction that binds the star. 
This gravitational binding is due almost entirely to the helium nuclei in the star. 
The pressure due to kinetic motion of the helium nuclei, and to any radiation 
that may be present, will be neglected. 

Thus we arrive at the following idealized model: A white dwarf is taken to 
be a system of N electrons in its ground state, at such a density that the electrons 
must be treated by relativistic dynamics. The electrons move in a background of 
N/2 motionless helium nuclei which provide the gravitational attraction to hold 
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the entire system together.* This model must then exhibit properties thal are the 
combined effects of the Pauli principle, relativistic dynamics, and the gravita- 
tional law. 

First let us work out the pressure exerted by a Fermi gas of relativistic 
electrons in the ground state. The states for a single electron are specified by the 
momentum p and the spin quantum number s = :. The single-particle energy 
levels are independent of s: 

where m e  is the mass of an electron. The ground state energy of the Fermi gas is 

where p,, the Fermi momentum, is defined by 

Changing the variable of integration in (11.32) to x = p/m,c  we obtain 

where 

and 

*The temperature in an actual white dwarf star is so high that electron-positron pairs can be 
created in electron-electron collisions. These pairs in turn annihilate into radiation. Therefore in 
equilibrium there should be a certain number of electron-positron pairs and a certain amount of 
radiation present. We neglect the effects of these. It has been speculated that neutrinos can also be 
created in electron-electron, electron-positron, and photon-photon collisions with appreciable prob- 
ability. This leads to some interesting phenomena, for neutrinos interact so weakly with matter that 
they do not come to thermal equilibrium with the rest of the system. They simply leave the star ind 
cause a constant drain of energy. (H. Y. Chiu and P. Morrison, Phys. Rev. Lett. 5, 573 (1960)) Our 
model is based on the neglect of these effects. 

If the total mass of the star is M and the radius of the star is R, then 

where m p  is the mass of a proton. In terms of M and R we have 

and 

where 

The pressure exerted by the Fermi gas is 

The nonrelativistic and extreme relativistic limits of Po are given by 

G 5 / 3  
Po 2 (3) 5 - 4.- 

15712h3 X ~ -  3 R S  (nonrel.: x, << 1 )  

m)c 5 

Po = ( 1 2 ~ ~ h ~ )  - 
R 

(extreme rel.: x ,  >> 1) 

where 

A qualitative plot of Po against R for fixed M is shown in Fig. 11.5. It is seen 
that, for small R, Po becomes smaller than what is expected on the basis of 
nonrelativistic dynamics. 

The condition for equilibrium of the star may be obtained through the 
following argument. Let us first imagine that there is no gravitational interaction. 
Then the density of the system will be uniform, and external walls will be needed 
to keep the Fermi gas at a gven density. The amount of work that an external 
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Substitution of this into (11.48) yields the linear relation 

R zero. 

agent has to do to compress the star of given mass from a state of infinite 
diluteness to a state of finite density would be given by 

- l R p 0 4 n r 2  dr (11.45) 
b0 

where Po is the pressure of a uniform Fermi gas and R is the radius of the star. 
Now imagine that the gravitational interaction is "switched on." Different parts 
of the star will now attract one another, resulting in a decrease of the energy of 
the star by an amount that is called the gravitational self-energy. On dimensional 
grounds the gravitational self-energy must have the form 

where y is the gravitational constant and a is a pure number of the order of 
unity. The exact value of a depends on the functional form of the density as a 
function of spatial distance and cannot be determined by our argument. If R is 
the equilibrium radius of the star, the gravitational self-energy must exactly 
compensate the work done in bringing the star together. Hence 

Differentiating (11.47) with respect to R we obtain the condition for equilibrium: 

Strictly speaking, (11.47) merely defines a. Its physical content is furnished by 
the assumption that a is of the order of unity. We now determine the relation 
between M and R by inserting an appropriate expression for Po into (11.48). 
This will be done for the following three different cases: 

(a) Suppose the temperature of the electron gas is much higher than the 
Fermi temperature. Then the electron gas may be considered as an ideal 
Boltzmann gas, with 

kT 3kT M 
p --=-- 

O -  u 8 n m , ~ ~  

This case, however, is never applicable for a white dwarf star. 
( b )  Suppose the electron gas is at such a low density that nonrelativistic 

dynamics may be used ( x ,  -=K 1). Then Po is given by (11.42), and 
(11.48) leads to the equilibrium condition 

where 

Thus the radius of the star decreases as the mass of the star increases: 

- 4 K ~ 1 / 3 j j  = - - 
5 K' 

(11.51) 

This condition is valid when the density is low. Hence it is valid for 
small M and large R .  

(c) Suppose the electron gas is at such a high density that relativistic effects 
are important ( x ,  >> 1). Then Po is gven by (11.43). The equilibrium 
condition becomes 

or 

where 

Numerically, 

This interesting pure number is the rest energy of X divided by the gravitational 
attraction of two protons separated by the Compton wavelength of X, where X is 
anything. The mass Mo corresponding to the reduced quantity a is (taking 
a - 1):  

the mass of the sun. The formula (11.53) is valid for high densities or for R - 0. 
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Hence it is valid for M near M,. Our model yields the remarkable prediction that 
no white dwarf star can have a mass larger than M,, because otherwise (11.53) 
would give an imaginary radius. The physical reason underlying this result is that 
if the mass is greater than a certain amount, the pressure coming from the Pauli 
exclusion principle is not sufficient to support the gas against gravitational 
collapse. 

The radius-mass relationship of a white dwarf star, according to our model, 
has the form shown in Fig. 11.6, where the solid lines indicate the regions covered 
by formulas (11.51) and (11.53). We have not been able to calculate a, so that an 
exact value of M, cannot be obtained. More refined considerations* give the 
result 

M, = 1.4Ma (11.57) 

This mass is known as the Chandrasekhar limit. Thus according to our model no 
star can become a white dwarf unless its mass is less than 1.4Ma. This conclusion 
has so far been verified by astronomical observations. If the mass of a star is 
greater than the Chandrasekhar limit then it will eventually collapse under its 
own gravitational attraction. When the density becomes so high that new 
interactions, dormant thus far, are awakened, a new regime takes over. For 
example, the star could explode as a supernova. 

1 1.3 LANDAU DIAMAGNETISM 

Van Leeuwen's theoremt states that the phenomenon of diamagnetism is absent 
in classical statistical mechanics. Landaus first showed how diamagnetism arises 
from the quantization of the orbits of charged particles in a magnetic field. 

The magnetic susceptibility per unit volume of a system is defined to be 

*S. Chandrasekhar, Stellur Structure (Dover, New York, 1957), Chapter XI 
+see Problem 8.7. 
*L. Landau, Z. Phys. 64, 629 (1930). 

where & is the average induced magnetic moment per unit volume of the system 
along the direction of an external magnetic field H: 

where X is the Hamiltonian of the system in the presence of an external 
magnetic field H. For weak fields the Hamiltonian X depends on H linearly. In 
the canonical ensemble we have 

and in the grand canonical ensemble we have 

where z is to be eliminated in terms of N by the usual procedure. 
A system is said to be diamagnetic if x < 0; paramagnetic if x > 0. To 

understand diamagnetism in the simplest possible terms, we construct an ideal- 
ized model of a physical substance that exhibits diamagnetism. The magnetic 
properties of a physical substance are mainly due to the electrons in the 
substance. These electrons are either bound to atoms or nearly free. In the 
presence of an external magnetic field two effects are important for the magnetic 
properties of the substance: (a)  The electrons, free or bound, move in quantized 
orbits in the magnetic field. (b )  The spins of the electrons tend to be aligned 
parallel to the magnetic field. The atomic nuclei contribute little to the magnetic 
properties except through their influence on the wave functions of the electrons. 
They are too massive to have significant orbital magnetic moments, and their 
intrinsic magnetic moments are about lop3 times smaller than the electron's. The 
alignment of the electron spin with the external magnetic field gives rise to 
paramagnetism, whereas the orbital motions of the electrons give rise to diamag- 
netism. In a physical substance these two effects compete. We completely ignore 
paramagnetism for the present, however. The effect of atomic binding on the 
electrons is also ignored. Thus we consider the idealized problem of a free 
spinless electron gas in an external magnetic field. 

Landau Levels 

The Hamiltonian of a nonrelativistic electron in an external magnetic field is 

where e is positive, (i.e., the charge of the electron is -e). The Schrodinger 
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equation Xt+b = ~ t + b  is invariant under the gauge transformation 

A(r) + A(r) - v w  (r) 

STATISTICAL MECHANICS 

where w(r) is an arbitrary continuous function. We consider a uniform external 
magnetic field H pointing along the z axis, and choose the vector potential, via a 
gauge transformation if necessary, such that 

This is called "choosing the gauge." The Harniltonian then reads 

We solve the Schrodinger equation by assuming a wave function of the form 

Then f ( y )  satisfies the equation for a harmonic oscillator: 

where E' = E - h2k:/2m. The natural frequency of the harmonic oscillator w, is 
the "cyclotron frequency," that of a classical charge moving in a circular orbit 
normal to a uniform magnetic field. The energy eigenvalues are thus 

where p, = hk,.  These are the Landau energy levels. Since they are independent 
of k,,  they have a degeneracy equal to the number of allowed values of k,,  such 
that yo lies within the container of the system. 

Let us put the system in a large cube of size L ,  and impose periodic 
boundary conditions. The allowed values of k ,  are of the form 277nx/L, where 
n ,  = 0, _t 1, t 2 , .  . . . For yo to lie between 0 and L ,  the values of n ,  must be 
positive and bounded by 

which is the degeneracy of a Landau level. The proportionality to L~ reflects the 
fact that the projection of the electron orbit onto the xy plane can be centered 
anywhere in the plane without changing the energy. Thus, when the external field 
is turned on, the energy spectrum associated with the motion in the xy plane 
changes from a continuous spectrum to a discrete one, and the level spacing and 
degeneracy increases with the external field. This is illustrated in Fig. 11.7. 

Fig. 1 1.7 Comparison of the energy spectra 
of a charged particle with and without 
magnetic field. 

Flux Quantlzation 

The Landau levels and the degeneracies derived above are all we need to 
calculate the partition function. However, we take the opportunity to discuss flux 
quantization briefly, to help us better understand the wave functions. 

Consider a plane with a hole in it, which contains a certain amount of 
magnetic flux a, as shown in Fig. 11.8. Suppose there is no magnetic field 
anywhere else. Then the vector potential in the plane must be "pure gauge," i.e., 
of the form 

A = v w  

We cannot transform this to zero through any continuous gauge transformation, 
because necessarily 

particle will not notice the flux if either (a)  it 
is in a localized state, or (b)  the flux is 
quantized in units of hc/e .  
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where the closed path C encloses the hole, as indicated in Fig. 11.7. A solution to 
(11.70) is 

where 8 is the angle around the hole, measured from some arbitrary axis. 
Now consider an electron moving in the plane, with the boundary condition 

that its wave function vanish in the hole. In general it is affected by the flux, 
because the Schrodinger equation involves A, which is nonzero where the electron 
moves. But since A is pure gauge, we are tempted to try to remove it from the 
Schrodinger equation through the gauge transformation 

In so doing, the wave function of the electron acquires the phase factor 

which is generally unacceptable because it will render the wave function discon- 
tinuous in space (for 8 increases by 271 each time we go around the hole). The 
objection is circumvented under either of the following circumstances: 

(a) The electron is "localized," i.e., its wave function is nonvanishing only 
in the neighborhood of some point. In this case, where (11.72) might 
lead to a discontinuity, the wave function vanishes anyway. This is not 
relevant to free electrons, but may be relevant, for example, for an 
electron trapped by an impurity in a metal. 

( b )  The electron is "extended," with a wave function that is phase-coherent 
around a closed path about the hole, but the flux is quantized in integer 
multiples of the flux quantum 

In this case, (11.72) becomes a periodic function of 8 and represents a 
legitimate gauge transformation. Thus, the vector potential can be 
transformed away, and the electron does not "know" there is flux 
through the hole. This is the basis of the Aharanov-Bohm effect,* and 
the flux quantization in superconductivity,t which have been experimen- 
tally verified. 

The relevance of flux quantization to the Landau levels lies in the fact that 
the degeneracy (11.69) is just the total magnetic flux measured in units of the flux 
quantum: 

g = @/@o (11.74) 

*Y. Aharanov and D. Bohm, Phys. Rev. 115, 465 (1959). 
+see P. G. De Gennes, Superconductiu~ty of Metul und Alloys (Benjamin, New York,  1966), 

p. 149. 

Fig. 11.9 Different bases for electron states 
in a Landau level, which is highly degener- 
ate: (a )  Member wave functions are peaked 
at different elevations (y  direction), and are 
eigenstates of momentum in the x direction. 

We have been working in a gauge in which the wave functions have definite 
linear momentum in the x direction. Thus the probability densities are indepen- 
dent of x ,  and peaked about parallel ridges at y  = y o .  The spacing between 
successive values of yo is hc/eHL,  and hence the area of the strip in the xy plane 
between two neighboring ridges is hc/eH. Thus, exactly one flux quantum hc /e  
goes through the strip. 

Since the energy levels are highly degenerate, we can make linear transfor- 
mations on the wave functions belonging to the same Landau level to obtain 
equivalent sets. Such transformations are equivalent to gauge transformations. 
We can make them eigenfunctions of angular momentum about the z axis, in 
which case the probability distributions will be peaked about circles in the xy 
plane about the z axis, with exactly one quantum of flux going through the 
annular ring between two successive circles. We can also make them into 
individual orbitals, whose centers form a regular lattice in the xy plane. In this 
case each orbital will link exactly one flux quantum (a " vortex.") These different 
bases are illustrated in Fig. 11.9. 

The qualitative fact relevant to our immediate purpose is that the flux 
quantum sets a finite minimum size of an orbit, and thereby provides the escape 
from Van Leeuwen's theorem. 

Y (b)  Member wave functions are eigenstates 

0000 of orbital angular momentum. They are 
peaked at concentric circles, with equal 

nnnn x areas between successive circles. Each ring 

0000 
between circles supports one magnetic flux 
quantum. (c) Member wave functions are 

(ci "vortices" of flux quanta, forming a lattice. 
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Magnetic Susceptibility 

The grand partition function is 

where X denotes the set of quantum numbers { p,, j, a ) ,  with a = 1,. . . , g. Thus 

log 9 = 2 1 1 log [ l  + ze -B' (~zy~) ]  
a=l J = O  p, 

2 g L m  m 

= k C L  J = O  
dp log [ l  + ze-Bc(p' J ) ]  

The average number of electrons is 

To calculate the magnetization in the classical domain we take the high-tem- 
perature limit. The condition (11.76) requires that z  += 0 to keep N finite. Thus 
we expand the above equations in powers of z ,  and retain only the first-order 
term: 

e - / 3 [ p 2 / ' 2 ~ + h y o ( J + ~ / 2 ) ~  log 9 = - 

where X = \iw and x = hwO/2kT. We keep only the lowest-order 
contribution in x: 

from which follows 

To eliminate z ,  we note from (11.77) that to first order in z ,  N is the same as 
log 9. Hence 

Solving for z and substituting the result into (11.80), we obtain the final answer 

which conforms to Curie's 1 / T  law. Since the lowest energy of an electron is 

hw0/2 = ( e h / 2 m c )  H 

we see that the magnetic moment of the minimal orbit is just the Bohr magneton 
eh/2mc. 

1 1.4 THE DE HAAS-VAN ALPHEN EFFECT 

We now turn to the low-temperature limit of electrons in Landau levels. The 
electrons will tend to occupy the lowest available levels. As the magnetic field is 
decreased, each Landau level can accomodate fewer electrons because the degen- 
eracy is decreased. Consequently, some electrons will be forced to jump up to a 
higher level. This causes the de Haas-Van Alphen effect, the oscillation of the 
low-temperature magnetic susceptibility as the magnetic field is decreased. To 
study this effect in a simple context we shall assume kT << ha, ,  so that we can 
set T  = 0. We shall also ignore the motion in the z direction.* 

Our problem is to calculate the ground state energy of a two-dimensional 
electron system of total area L~ in a uniform magnetic field H. We write the 
Landau levels €5 and their degeneracy g in the following notation: 

where n = N / L ~  is the number of electrons per unit area. The field Ho is the 
value of H above which the Landau level can hold all the N particles. 

If H / H o  > 1, then all particles can be accommodated in the lowest Landau 
level, and the ground state energy per particle is 

If H < H,, then some particles will have to occupy higher levels. Suppose H is 
such that the j lowest Landau levels are completely filled, the ( j  + 1)th level is 
partially filled, and all higher levels are empty. The condition for H is 

For H in this interval, 

*The experimental effect was discovered by W. J. De Haas and P. M. Van Alphen, Leiden 
Commun., 212 (1931). Our simplified model is that of R. E. Peierls, Z. Phys. 81, 186 (1933). For a 
more realistic treatment see J. M. Luttinger, Phys. Reu. 121, 1251 (1961). 
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Fig. 1 1 .lo De Haas-Van Alphen effect. 

Introducing the parameter 
x = H/H, 

we can summarize the results as follows: 

/POHOX (x  > 1) 

The magnetization per unit volume and the magnetic susceptibility per unit 
volume are respectively given by 

(1 1.90) 

These are shown in Fig. 11.10 

1 1.5 THE QUANTIZED HALL EFFECT 

The Hall effect was discovered in the nineteenth century: When crossed magnetic 
and electric fields are applied to a metal, a voltage is induced in a direction 
orthogonal to the crossed fields, as evidenced by an induced current flowing in 

that direction-the Hall current. This effect is easy to understand on the basis of 
the free electron theory of a metal, as follows. Crossed magnetic and electric 
fields, denoted, respectively, by H and E, act as velocity filters to free charges, 
letting through only whose those velocity v is such that E + (v/c)B = 0, or 

For free charge carriers in a metal, the current density is 

j = qnv (11.92) 

where q is the charge, and n the density. The Hall resistivity pxy is defined as the 
ratio of the electric field (in the y direction) to the Hall current density (in the x 
direction): 

Substituting this into (11.92) and then into (11.91), we obtain 

Measurements of the Hall resistivity in various metals has yielded charge carrier 
densities and provided the first demonstrations that there are not only negative 
charge carriers (electrons), but also positive ones (holes). 

The two-dimensional electron system used as a model in the last section can 
now be created in the laboratory, thanks to developments in the transistor 
technology. It can be made by injecting electrons into the interface of an alloy 
sandwich, which confines the electrons in a thin film about 500 A thick. The Hall 
experiment has been performed on such two-dimensional electron systems at very 
low temperatures, and the direct resistivities pxx and the Hall resistivities p,, 
have been measured, as indicated in Fig. 11.11. 

The experimental results are quite dramatic, as shown in Fig. 11.12. As the 
magnetic field H increases the degeneracy of the Landau levels increases. Since 
the electron density does not depend on the field the filling fraction v of the 
lowest Landau level decreases: 

hcn 
V E -  

eH 

The Hall resistivity exhibits plateaus at v = 1, j7 $, with values equal to 1 / ~ ,  in 
units of h / e 2 .  At the same time, the conventional resistivity pxx drops to very low 
values. This indicates that in the neighborhood of these special filling fractions 
the two-dimensional electron fluid flows with almost no resistance. The value at 
v = 1, called the integer quantized Hall effect, was first observed in a MOSFIT 
(metal-oxide semiconductor field-effect transistor) at T = 1.5 K. The Hall resis- 
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Uniform 
magnetic field 
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Fig. 11.11 The Hall effect. A current I flows in a 
direction orthogonal to crossed electric and magnetic 
fields. The Hall resistivity is defined as p,, = V/I .  The 
conventional resistivity p,, can be obtained by measuring 
the voltage drop along the direction of the current. 

tivity was found to be quantized with a precision of one part in lo5.* The 
fractional values were found soon after.? 

The integer effect is easy to understand on a naive basis. Since at v = 1 the 
lowest Landau level is completely filled, there is an energy gap above the Fermi 
level. Low-energy excitations are therefore impossible, and so the centers of the 
electron orbits flow like a free gas. Using (11.94) with n = eH/hc, the Landau 
degeneracy per unit area, we immediately obtain the desired result. 

But this does not explain why the Hall resistivity continues to be quantized even 
when the field is changed somewhat, so that there is a plateau of the quantized 
value, as seen in the data. 

Laughlin* offers the important insight that the integer effect is due to the 
phase coherence of the electronic wave function over the entire sample, and that 
the effect of impurities are important in producing the observed plateau. Con- 
sider a sample in the form of a ribbon forming a closed loop, as shown in Fig. 
11.13. A magnetic field H pierces the ribbon everywhere normal to its surface, 
and a voltage V is applied across the edges of the ribbon. Our object is to deduce 
the relation between the Hall current I and V. 

The Hall current produces a magnetic moment p = IA /c ,  where A is the 
area enclosed by the ribbon loop. Imagine that a small amount of magnetic flux 
6Q, is introduced through the loop, corresponding to an increase in the magnetic 

-Filling fraction v 

I I I I I 
2 1 2/3 1/2 1/3 Hall 

kg 

Magnet~c field H --t 

Fig. 1 1 .I 2 Quantized Hall effect: Schematic representation 
of experimental data. The filling fraction v is the fraction of 
degenerate states in the lowest Landau levels occupied by 
electrons. The Hall resistivity exhibits plateau of value l / v ,  
at v = 1, :, $ (in units of h/e2.) The conventional resistivity 
becomes very small at these values. The quantization is 
accurate to at least one part in lo4. 

Magnetic f~eld 

Applied voltage V 

Fig. 1 1 .I 3 Hall effect in idealized geometry. 
*K .  V. Klitzing, G. Dorda, and M. Pepper, Phys. Reu. Lett. 45, 494 (1980). 
t ~ .  C. Tsui, H .  L. Stormer, and A. C. Gossard, Phys. Reu. Lett. 48, 1559 (1982). 
*R.  B. Laughlin, Phys. Reu. B 23, 5632 (1981). See also B. I .  Halperin, Phys. Reu. B 25, 2185 

(1982). 
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field 6 H  = 6@/A normal to the plane of the loop. The energy of the system 
increases by 6E = p 6H = (IA/c)(G@/A). Hence we can find the current from 
the formula 

We recall from our discussion of flux quantization in Section 11.3 that the 
"localized" electrons will not respond to the flux, but the "extended" ones may. 
Electrons in Landau levels do have extended wave functions, and thus will 
respond to the flux and contribute to the Hall current. Across the ribbon, in the y 
direction, the wave function of an electron is peaked about some value of y, say 
yo. The allowed values of yo extends from one edge of the ribbon to the other. 
(We are using here the "strip" representation of the wave functions, as shown in 
Fig. 11.9a.) 

Consider now a completely filled Landau level. The electron density across 
the ribbon may be represented schematically as in Fig. 11.14. The electrons lying 
closer to the right edge have a hlgher electrostic energy because of the applied 
voltage. Now imagine that the flux through the loop is increased slowly from 
zero. The electrons will respond to the change until the flux reaches the quantum 
value hc/e, at which point they cannot feel the flux. During the slow increase, the 
energy of the electrons must rise by the transfer of electrons from one edge of the 
ribbon to the other. When the flux reaches one quantum, the electron distribution 
must look exactly the same as before. Overall, therefore, the electrons play 
musical chairs, moving up one position per quantum of flux penetration, as 
indicated in Fig. 11.14. Since the gain in energy is 6E = eV, and the change in 
flux is 6Q, = hc/e, we have from (11.97) I = (e2/h)v, whence 

Appl~ed voltage V r . 
Edgesof ribbon- / 

Fig. 1 1 .I 4 Schematic representation of electron density across the ribbon 
in Fig. 11.13, when the lowest Landau level is completely filled. The 
electrons move to the right by one "musical chair," when one unit of test 
flux pushes through the loop in Fig. 11.13. 

Energy 

(a) 

(b) 

Fig. 11.15 Density of state of an electron in a magnetic 
field. (a)  In a pure metal, a series of delta functions mark the 
positions of the Landau levels. (b )  In the presence of 
impurities, the Landau levels broaden to bands (shaded 
region). Localized electrons states fill the gap between 
Landau bands. E, denotes the Fermi level. 

If the total number of electrons is fixed, then changing the magnetic field 
will change the filling fraction. A filled level will either become underfilled, or it 
will spill electrons over to a hgher level. In either case, the previous analysis 
breaks down. However, in a physical sample there are always impurities that trap 
electrons into localized states. It is the presence of impurities that give rise to the 
stability of the effect, as shown by the plateau in the data. 

In Fig. 11.15 we show the density of states in a pure sample as compared 
with one with impurities. In a pure sample we have a series of 6 functions at the 
Landau levels, while in the presence of impurities each Landau level is broadened 
to a band, shown shaded in Fig. 11.15. At low impurity densities these bands do 
not overlap. The important point is that between the Landau bands the density 
of states is not zero, as would be the case for a pure sample, but is filled by 
contributions from localized states. The Fermi level can lie in a continuum 
between Landau bands, and it can shift in response to a change in the occupancy 
of the filled Landau band, so that the band beneath it remains filled. Thus, for a 
certain range of the external magnetic field the lowest Landau band remains 
completely filled, and our argument applies. 

The fractional effects are more intriguing. What accounts for the stability of 
the electron film when the Landau level is only one-third full? The answer must 
lie in the Coulomb interaction among the electrons, but so far we only have 
preliminary guesses.* 

*R. B. Laughlin, Phys. Rev. Lett. 50, 1395 (1983). 
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1 1.6 PAUL1 PARAMAGNETISM 

The Hamiltonian of a nonrelativistic free electron in an external magnetic field B 
is given by 

where po  = eh/2mc,  and a are the Pauli spin matrices. The first term gives rise 
to diamagnetism, as we have studied. The second term gives rise to paramagne- 
tism. We now consider its effect alone, and take the single-particle Hamiltonian 
to be* 

The eigenvalues of a H are sH, where s  = + 1. Hence the single-particle energy 
levels are 

An energy eigenvalue of the N-particle system may be labeled by the occupation 
numbers n,, , of the single-particle levels c ,  ,: 

where 

Let 

Then an energy eigenvalue of the system can also be written in the form 

*Following W. Pauli, Z. Phys. 41, 81 (1927) 

The partition function is 
r 

where the prime over the sum denotes the restrictions (11.103). The sum can be 
evaluated as follows. First we choose an arbitrary integer N+ and sum over all 
sets { n i l ,  { n ; }  such that E n ;  = N+, and E n ;  = N - N+. Then we sum 

P P 
over all integers N+ from 0 to N. In this manner we arrive at the formula 

where 1" is subject to the restriction I n , +  = N+, and 1"' is subject to the 
P 

restriction x n;  = N- = N - N +. Let Q$') denote the partition function of the 
P 

ideal Fermi gas of N spinless particles of mass m: 

Then 

There are N + 1 positive terms in the sum just given. The logarithm of this sum 
is equal to the logarithm of the largest term in the sum plus a contribution of the 
order of log N. Therefore, neglecting a term of order N-' log N, we have 

where 

f ( N + )  = max [ f ( ~ + ) l  

Obviously we can interpret N+ as the average number of particles with spin up. 
If N+ is known, the magnetization per unit volume can be obtained through the 



FERMl SYSTEMS 269 

formula 

270 STATISTICAL MECHANICS 

We now explicitly find N,. The condition (11.111) is equivalent to the condition* 

a A ( N ' )  a A ( N  - N')  

I p o H  - [ aN' ] N ' = g +  - [ a N f  ] N ' + g +  
= 0 (11.113) 

Let k T v ( N )  be the chemical potential of an ideal Fermi gas of N  spinless 
particles: 

Then 

a A ( N  - N') 1 = - k T v ( N  - N,) 
N , = N +  a ( ~  - N')  N - N , = N - g +  

Thus (1  1.1 13) becomes 

This condition states that at a given temperature the average number of particles 
with spin up is such that the chemical potential of the particles with spin up is 
greater than that of the particles with spin down by 2p0H. We solve (11.115) in 
the low-temperature and hgh-temperature limits. 

Let the Fermi energy for the present system be 

In the low-temperature region ( k T  << r,), we can use the expansion (11.24)? for 
k T v ( N ) :  

*We should make sure that (11.113) determines a maximum and not a minimum and that N+ 
lies between 0 and N.  It can be verified that (11.113) has only one real root that automatically satisfies 
these requirements. 

+ ~ o t e  that in (11.24) the symbol c F  stands for the Fermi energy of N spinless particles and 
does not have the same meaning as c F  here. 

Thus (1  1.1 15) becomes 

Let 

Then (1 1.11 7) becomes 

At absolute zero, r satisfies the equation 

T h s  may be solved graphically, as shown in Fig. 11.16. For << cF/2p an 
approximate solution is 

Fig. 1 1 .I 6 Graphical solution of (11.122). 
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Thus when H = 0 half the particles have spin up, and the other half spin down. 
When H > 0 the balance shifts in favor of spin up. From (11.112) and (11.121) 
we obtain, for absolute zero, 

For 0 < k T  << eF and p << cF we can solve (11.119) by expanding the left side 
in powers of r ,  and we obtain 

For high temperatures ( k T  x=- e , )  we use (11.12): 

Hence (11.115) gves 

The magnetic susceptibility per unit volume is then given by 

X "  - 
kTu 

A qualitative plot of k T x  is shown in Fig. 11.17. 

Fig. 1 1.17 Pauli paramagnetism. C F  

1 1.7 MAGNETIC PROPERTIES OF AN IMPERFECT GAS 

How would interparticle interaction affect the magnetic properties of an electron 
gas? Qualitatively speaking, the effect of a repulsive interaction will enhance the 
paramagnetism, because two electrons would prefer to be in a spatially antisym- 
metric wave function to minimize the repulsive energy. But an antisymmetric 
spatial wave function requires a symmetric spin wave function, which is a triplet 
state. Thus the repulsion tends to align the spins of the electrons. 

We demonstrate this effect by considering an imperfect gas of spin- 
fermions at very low temperatures, so that the repulsive interaction can be 
characterized by a single parameter, the scattering length a ,  or effective hard- 
sphere diameter. To first order in a, the energy for an N-particle system is given 
by (A .41 )  in the Appendix. We take our model to be defined by (11.102) plus the 
interaction energy: 

The condition for the validity of this formula is that kFl a 1 << 1 where k F  is the 
wave number of a particle at the Fermi level: k :  = ( 3 ~ ~ n ) ~ ' ~ .  Thus, the 
condition for validity is low density, i.e., na 3 ez 1.  

The partition function is 

The notation is the same as that of (11.106). Proceeding in the same way as in the 
evaluation of (11.106), we obtain 

where 

g ( N + )  = max [ g ( ~ + ) l  

Thus N+ is the root of the equations 
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It must be noted that (11.130) locates the point at which the curve g(N+) passes 
through a maximum. It is conceivable (and in fact true) that N+ may occur not 
at a maximum of the curve g(N+) but at the boundary of the range of N+, i.e., at 
N+ = 0 or N+ = N. We keep this in mind as we proceed. With v(N) defined as 
in (11.114), we rewrite (11.130) as 

where vf(N) = a v(N)/dN. Let 

Then (1 3.1 31) becomes 

a A2 
kT{~[;(l + r ) ]  - ~[; ( l  - r ) ] )  = 2p,H + -2kTr u 

(11.133) 
2aA2 

~ J N [ ~ ( ~  a r + r)]  - v[:(l - - -- u > 0 

where v[x] - v(x) and A = Jw, the thermal wavelength. The low-tem- 
perature and high-temperature approximations for v(Nx/2) are obtainable from 
(1 1.24) and (11.12), respectively. They are 

Spontaneous Magnetization 

We first consider the case H = 0. At absolute zero, (11.134) reduces to 

where 

Equation (11.135) is invariant under a change of sign of r. This is to be expected; 
in the absence of field, no absolute meaning can be attached to "up" or "down." 

Thus it is sufficient consider r 2 0. We may solve (11.135) graphically by 
referring to Fig. 11.16, where (1 + r)2/3 - (1 - r)2/3 is plotted against r. We 
need only obtain the intersection between the curve in Fig. 11.16 and the straight 
line lr .  It is seen that for 5 < 4, r = 0 is the only intersection. If 5 is such that 

then there is an additional intersection r > 0, and the value r > 0 corresponds to 
a maximum, whereas the value r = 0 corresponds to a minimum. If l > 22/3, 
then (11.135) has no solution. In this case the maximum of g(N+) must occur 
either at N+ = 0 or at N+ = N, unless g(N+) is a constant. Since g(N+) is not a 
constant, and since there is no distinction between N+ = 0 and N + = N, we can 
choose to let 1, = N, or r = 1. The value of r at absolute zero as a function of 
the repulsive strength l, is summarized as follows: 

= O  (l< t) (no spontaneous magnetization) 

0 < r < 1 (: < l < 22/3) (partial spontaneous magnetization) (11.138) 

r = l  ([ > 22/3) (saturated spontaneous magnetization) 

That is, if the repulsive strength is sufficiently strong, the system becomes 
ferromagnetic. The critical value of a at which ferromagnetism first sets in 
(5 = :) corresponds to 

77' 
kFa = - 

2 
(11.139) 

The foregoing results hold at absolute zero. At a finite but small temperature 
we have, instead of (11.135), 

Let r(T) be the solution at absolute temperature T. It is easily seen that if 
r(0) = 0, then r(T) = 0; if r(0) >' 0, then r(T) < r(0). Thus, if there is sponta- 
neous magnetization at absolute zero, the magnetization decreases with tempera- 
ture. The spontaneous magnetization vanishes above a critical temperature T, 
(the Curie temperature), which is the value of T at which both equations in 
(13.45) are satisfied for l > : and r = 0. We find that 

A qualitative plot of the magnetization pr/u is shown in Fig. 11.18. 
It must be pointed out that the model we have used is a physical model only 

if k,a << 1. Therefore the case of ferromagnetism, which requires kFa > 77/2, is 
beyond the domain of validity of the model. It is instructive, however, to see how 
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I \ _ k~ Fig. 11.18 Spontaneous magnetization of an im- 
k Tc/€F € F  perfect Fermi gas with repulsive interactions. 

the spatial repulsion between the fermions can enhance the spin alignment to 
such an extent that, if we are willing to extrapolate the results of a weak 
interaction model, ferromagnetism results. 

Paramagnetic Susceptiblllty 

We now consider the case of H > 0 .  Let ro(T)  be the value of r for H = 0 ,  but 
for an arbitrary temperature. Putting 

xu 
r = r o ( T )  + -H (11.142) 

P o  

and treating xuH/po  as a small quantity, we can solve (11.134) and obtain 

2P20/'F~ 
8 (11.143) 

- r o ) ] )  - - k F a  
2cF 3 a 

The low- and high-temperature limits are 

Hence Curie's constant is 

Note that ro depends on k F a .  It  approaches unity when k F a  exceeds a certain 
value. Thus is can be seen from (11.143) that in general x > 0 .  The system is 
either ferromagnetic or paramagnetic, never diamagnetic. 

Consider now the case of paramagnetism, for which we require ro = 0 for all 
temperatures. This means that 

0% Ideal Fermi gas Fig. 1 1 .I 9 Paramagnetic susceptibility of 
an imperfect Fermi gas with repulsive inter- 

k~ actions. The model used is well founded 
- 

0 1 € F  only for kT/cF << 1. 

Here (1 1.143) becomes 

where 

The function ( T x / C )  rises linearly at T = 0 ,  with a slope given by 

It reaches a maximum value, which is greater than unity, at kT/c  = 1. Then i t  F. 
approaches unity as T += CQ. A qualitative plot of T x / C  is shown in Fig. 11.19. 
If we calculate x for an ideal Fermi gas endowed with the same magnetic . . 

moment, we find the slope 
3 

(ideal Fermi gas) 

The imperfect gas has a steeper slope, as (11.150) shows, which is again a 
reflection of the enhancement of spin alignment by the repulsive interaction. The 
result is sometimes described by saying that imperfect gas behaves like an ideal 
gas with a hlgher Ferrni energy.* 

PROBLEMS 

1 1 .l Give numerical estimates for the Fermi energy of 
(a) electrons in a typical metal; 
( b )  nucleons in a heavy nucleus; 
( c )  He3 atoms in liquid He3 (atomic volume = 46.2 2/atom). Treat all the mentioned 
particles as free particles. 

*See, however, Problem 11.7. 
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11.2 Show that for the ideal Fermi gas the Helmholtz free energy per particle at low 
temperatures is given by 

11.3 A collection of free nucleons is enclosed in a box of volume V. The energy of a 
single nucleon of momentum p is 

where mc2 
= 1000 MeV. 

( a )  Pretending that there is no conservation law for the number of nucleons, calculate the 
partition function of a system of nucleons (which obey Fermi statistics) at temperature T. 

(b )  Calculate the average energy density. 
( c )  Calculate the average particle density. 
(d) Discuss the necessity for a conservation law for the number of nucleons, in the light 
of the foregoing calculations. 

11.4 ( a )  What is the heat capacity C, of a three-dimensional cubic lattice of atoms at 
room temperature? Assume each atom to be bound to its equilibrium position by Hooke's 
law forces. 
(b)  Assuming that a metal can be repr~%~~lt?d by such a lattice of atoms plus freely moving 
electrons, compare the specific heat due to the electrons with that due to the lattice, at 
room temperature. 

1 1.15 A cylinder is separated into two compartments by a free sliding piston. Two ideal 
Fermi gases are placed into the two compartments, numbered 1 and 2. The particles in 
compartment 1 have spin i, while those in compartment 2 have spin 5. They all have the 
same mass. Find the equilibrium relative density of the two gases at T = 0 and at T -t co. 

11.6 Consider a two-dimensional electron gas in a magnetic field strong enough so that 
all particles can be accommodated in the lowest Landau level. Taking into account both 
orbital and spin paramagnetism, find the magnetization at absolute zero. 

11.7 ( a )  Show that for the imperfect Fermi gas discussed in Section 11.6 the specific 
heat at constant volume is given by 

where 

(b) Show that when there is no spontaneous magnetization 

C V  = ( C V ) i d e a l  gas 

and hence the interpretation that the imperfect gas behaves like an ideal gas with a higher 
Fermi energy cannot be consistently maintained. 

BOSE SYSTEMS 

The dominant characteristic of a system of bosons is a "statistical" attraction 
between the particles. In contradistinction to the case of fennions, the particles 
like to have the same quantum numbers. When the particle number is conserved. 
this attraction leads to the Bose-Einstein condensation, which is the basis of 
superfluidity. In this chapter we illustrate various bose systems, discuss the 
Bose-Einstein condensation, and introduce the notion of the superfluid order 
parameter. 

12.1 PHOTONS 

Consider the equilibrium properties of electromagnetic radiation enclosed in a 
volume V at temperature T, a system known as a "blackbody cavity." It can be 
experimentally produced by making a cavity in any material, evacuating the 
cavity completely, and then heating the material to a given temperature. The 
atoms in the walls of this cavity will constantly emit and absorb electromagnetic 
radiation, so that in equilibrium there will be a certain amount of electromagnetic 
radiation in the cavity, and nothing else. If the cavity is sufficiently large, the 
thermodynamic properties of the radiation in the cavity should be independent of 
the nature of the wall. Accordingly we can impose on the radiation field any 
boundary condition that is convenient. 

The Hamiltonian for a free electromagnetic field can be written as a sum of 
terms, each having the form of a Hamiltonih for a harmonic oscillator of some 
frequency. This corresponds to the possibility of regarding any radiation field as 
a linear superposition of plane waves of various frequencies. In quantum theory 
each harmonic oscillator of frequency o can only have the energies ( n  + $)Ao, 
where n  = 0,1,2,. . . . This fact leads to the concept of photons as quanta of the 
electromagnetic field. A state of the free electromagnetic field is specified by the 
number n  for each of the oscillators. In other words, it is specified by enumerat- 
ing the number of photons present for each frequency. 
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According to the quantum theory of radiation, photons are massless bosons 
of spin A .  The masslessness implies that a photon always moves with the velocity 
of light c  in. free space, and that its spin can have only two independent 
orientations: parallel and antiparallel to the momentum. A photon in a definite 
spin state corresponds to a plane electromagnetic wave that is either right- or 
left-circularly polarized. We may, however, superimpose two photon states with 
definite spins and obtain a photon state that is linearly polarized but that is not 
an eigenstate of spin. In the following we consider linearly polarized photons. 

For our purpose it is sufficient to know that a photon of frequency o has the 
following properties: 

Energy = Ao 
o 

Momentum = Ak, I k  1 = - 
C 

(12.1) 

Polarization vector = r ,  1 r 1 = 1  k  r = 0  

Such a photon corresponds* to a plane wave of electromagnetic radiation whose 
electric field vector is 

The direction of r is the direction of the electric field. The condition r k  = 0  is a 
consequence of the transversality of the electric field, i.e., v E = 0 .  Thus for 
given k there are two and only two independent polarization vectors r. If we 
impose periodic boundary conditions on E(r, t )  in a cube of volume V = L 3,  we 
obtain the following allowed values of k :  

n = a vector whose components are 0 ,  + 1 ,  + 2 , .  

Thus the number of allowed momentum values between k  and k  + dk is 

Since atoms can emit and absorb photons, the total number of photons is not a 
conserved quantity. 

The total energy of the state of the electromagnetic field in which there are 
n k , ,  photons of momentum k  and polarization r is given by 

where o = clkl 

*For a precise meaning of this statement, we refer the reader to any book on the quantum 
theory of radiation. 

Since the number of photons is indefinite, the partition function is 
Q = x e - f i E ( n k . . )  (12 .7)  

( " k . r )  

with no restriction on { n k, ,).* The calculation of Q is trivial: 

log Q = - x log ( 1  - e-p") = - 2 x  log ( 1  - e - p h " )  (12 .8 )  
k ,  c k 

The average occupation number for photons of momentum k ,  regardless of 
polarization, is 

where the factor 2  comes from the two possible polarizations. 
The internal energy is 

a 
U = - - log Q = E A o ( n k )  

a f l  k 

To find the pressure, we express Q in the form 

l o g e  = - 2 ~  log(1 - e -  phc2nlnlV- ) (12.11) 
n 

from which we obtain 

Comparison between this equation and (12.10) leads to the equation of state 

P V =  ;u (12.12) 

We now calculate U in the limit as V -+ oo. From (12.10), (12.9), and (12.3) 
we have 

2V 30 Ack A x. o3 
--  - U=7;;;iii d k 4 r k 2 e p n , k - 1  n i c i / o  d ~ ~ p h ~ - ~  

Hence the internal energy per unit volume is 

where 
A o3 

U ( W '  T )  = lJiPi 
- 1  

*One could say that the chemical potential is 0, because a photon can disappear into the 
vacuum. 
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This is Planck's radiation law, whch gives the energy density due to photons of 
frequency o,  regardless of polarization and direction of momentum. The integral 
(12.13) can be explicitly evaluated to give 

It follows that the specific heat per unit volume is 

The specific heat is not bounded as T -+ co, because the number of photons in 
the cavity is not bounded. 

Both (12.14) and (12.15) can be verified experimentally by opening the 
black-body cavity to the external world through a small window. Radiation 
would then escape from the cavity with the velocity c. The amount of energy 
radiated per second per unit area of the opening, in the form of photons of 
frequency o, is 

C 
T )  cos 6 = - u ( o ,  T )  

4 
where the angular integration extends only over a hemisphere. Integrating over 
the frequency, we obtain 

This is known as Stefan's law, and a is Stefan's constant. The function Z(o, T )  is 
shown in Fig. 12.1, showing that the radiation peaks at a frequency that is an 
increasing function of T. The area under the curves shown in Fig. 12.1 increases 
like T 4 .  All these conclusions are in excellent agreement with experiments. 

It should be noted that although the form of u(w ,  T )  can be arrived at only 
though quantum theory the equation of state PV = U / 3  and the fact that 
U a T 4  can be derived in classical physics. 

Fig. 12.1 Planck's radiation law. 

The equation of state may be derived as follows. Consider first a plane 
wave whose electric and magnetic field vectors are E and B. The average energy 
density is 

- 
$ ( E 2  + B ~ )  = E 2  

The radiation pressure, which is equal to the average momentum flux, is 

( E x  BI =s 
Thus the energy density is numerically equal to the radiation pressure. Now 
consider an amount of isotropic radiation contained in a cubical box. The 
radiation field in the box may be considered an incoherent superposition of plane 
waves propagating in all directions. The relative intensities of the plane waves 
depend only on the temperature as determined by the walls of the box. The 
radiation pressure on any wall of the box is one-third of the energy density in the 
box, because, whereas all the plane waves contribute to the energy density, only 
one-third of the plane waves contribute to the radiation pressure on any wall of 
the box. 

To derive U a T 4 ,  recall that the second law of thermodynamics implies the 
following relation, which holds for all systems: 

From PV = U / 3  and the fact that P depends on temperature alone we have 

Using (12.19) we have 
T du 

U =  ---I 
3 dT 3U 

du dT 
- = 4 -  
u T 

Hence 

u = CT4 

The constant C cannot be obtained through classical considerations. 
If the photon had a finite rest mass, no matter how small, then it would have 

three independent polarizations instead of two.* There would be, in addition to 
transverse photons, longitudinal photons. If this were so, Planck's radiation 
formula (12.14) would be altered by a factor of 5 .  The fact that (12.14) has been 
experimentally verified means that either the photon has no rest mass, or if it 
does the coupling between longitudinal photons and matter is so small that 

*If the photon had a finite rest mass, it could be transformed to rest by a Lorentz transforma- 
tion. We could then make a second Lorentz transformation in an arbitrary direction, so that the spin 
would lie neither parallel nor antiparallel to the momentum. 
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thermal equilibrium between longitudinal photons and matter cannot be estab- 
lished during the course of any of our experiments concerned with Planck's 
radiation law. 

12.2 PHONONS IN SOLIDS 

Phonons are quanta of sound waves in a macroscopic body. Mathematically they 
emerge in a similar way that photons arise from the quantization of the 
electromagnetic field. For low-lying excitations, the Hamiltonian for a solid, 
which is made up of atoms arranged in a crystal lattice, may be approximated by 
a sum of terms, each representing a harmonic oscillator, corresponding to a 
normal mode of lattice oscillation.* Each normal mode is classically a wave of 
distortion of the lattice planes-a sound wave. In quantum theory these normal 
modes give rise to quanta called phonons. A quantum state of a crystal lattice 
near its ground state may be specified by enumerating all the phonons present. 
Therefore at a very low temperature a solid can be regarded as a volume 
containing a gas of noninteracting phonons. 

Since a phonon is a quantum of a certain harmonic oscillator, it has a 
characteristic frequency o, and an energy Ao,. The state of the lattice in which 
one phonon is present corresponds to a sound wave of the form 

where the propagation vector k has the magnitude 

in which c is the velocity of sound.? The polarization vector c can have three 
independent directions, corresponding to one longitudinal mode of compression 
wave and two transverse modes of shear wave. Since an excited state of a 
harmonic oscillator may contain any number of quanta, the phonons obey Bose 
statistics, with no conservation of their total number. 

If a solid has N atoms, it has 3N normal modes. Therefore there will be 3N 
different types of phonon with the characteristic frequencies 

0 1 , 0 2 , . . . , 0 3 ~  (12.24) 

The values of these frequencies depend on the nature of the lattice. In the 
Einstein model of a lattice they are taken to be equal to one another. An 
improved model is that of Debye, who assumed that for the purpose of finding 
the frequencies (12.24), one may consider the solid as an elastic continuum of 
volume V. The frequencies (12.24) are then taken to be the lowest 3N normal 
frequencies of such a system. Since an elastic continuum has a continuous 

*In as much as anharmonic forces between atoms, which at high temperatures allow the lattice 
to melt, can be neglected. 

+We assume an isotropic solid, for which c is independent of the polarization vector r.  

distribution of normal frequencies we shall be interested in the number of normal 
modes whose frequency lies between o and o + do. To find this number we 
must know the boundary conditions on a sound wave in the elastic medium. 
Taking periodic boundary conditions, we find as usual that k = (2~/L)n,  where 
L = v113 and n has the components 0, + 1, + 2,. . . . The number we seek is then 

no. of normal modes with - 
3v  

-- 
f ( W )  do 

I frequency between w and w + d o  , 4 r k 2  dk (12.25) 
( 2 ~ )  

where the factor 3 comes from the three possible polarizations. Since k = o/c we 
have 

The maximum frequency om is obtained by the requirement that 

which gives, with u = V/N, 

The wavelength corresponding to om is 

27Tc 
A rn = - = ( ?  , = interparticle distance (12.29) 

o m  

This is a reasonable criterion because for wavelengths shorter than A m  a wave of 
displacements of atoms becomes meaningless. 

We now calculate the equilibrium properties of a solid at low temperatures 
by calculating the partition function for an appropriate gas of phonons. The 
energy of the state in whlch there are n ,  phonons of the ith type is* 

The partition function is 

Hence 

*We should add to (12.30) an unknown constant representing the ground state energy of the 
solid, but this constant does not affect any subsequent results and hence can be ignored. 
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The average occupation number is 

286 STATISTICAL MECHANICS 

1 a 
(..) = - -- 

1 
log Q = 

P a ( A o ; )  ePho ,  - 1 

The integral energy is 

Passing to the limit V -+ cc we obtain, with the help of (12.26), 

We define the Debye function D ( x )  by 

t 3  1 - +x + &x2 + . ' .  ( x  << 1)  

D ( x )  - d t-  = (12.36) 
x ( x  >> 1)  

and the Debye temperature TD by 

Then 

where X = TD/T.  Then the specific heat is given by 

The high- and low-temperature behaviors of C, are as follows: 

I , Fig. 12.2 Specific heat of a crystal lattice in 
TD Debye's theory. 

A plot of the specific heat is shown in Fig. 12.2, which agrees quite well with 
experimental findings. 

At low temperatures C, vanishes like T 3 ,  verifying the thud law of 
thermodynamics. When the temperature is much greater than the Debye temper- 
ature the lattice behaves classically, as indicated by the fact that C, = 3NK. For 
most solids the Debye temperature is of the order of 200 K. This is why the 
Dulong-Petit law Cv = 3Nk holds at room temperatures. At extremely high 
temperatures the model of noninteracting phonons breaks down because the 
lattice eventually melts. The melting of the lattice is made possibly by the fact 
that the forces between the atoms in the lattice are not strictly harmonic forces. 
In the phonon language the phonons are not strictly free. They must interact with 
each other, and this interaction becomes strong at very hlgh temperatures. 

12.3 BOSE-EINSTEIN CONDENSATION 

Equation (8.71) gives the equation of state for the ideal Bose gas of N particles of 
mass m contained in a volume V. To study in detail the properties of the 
equation of state we must find the fugacity z as a function of temperature and 
specific volume by solving the second equation of (8.71), namely 

where u = V / N ,  and X = \ / 2 r A 2 / m k ~ ,  the thermal wavelength. To do this, we 
must first study the properties of the function g3 /2 ( z ) ,  which is a special case of a 
more general class of functions 

z' 
g n ( 4  = C - I" 

(12.42) 
I=1 

These functions have been studied* and tabulatedt in the literature. 
It is obvious that for real values of z between 0 and 1, g 3 / , ( z )  is a bounded, 

positive, monotonically increasing function of z .  To satisfy (12.41) it is necessary 

*J. E. Robinson, Phys. Rev. 83, 678 (1951). 
+F. London, Supefluids, Vol. I1 (Wiley, New York, 1954), Appendix. 
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that 
O I z I l  

For comparison we recall that 0 I z < cc in the case of Ferrni statistics. For 
small z, the power series (12.42) furnishes a practical way to calculate g3/,(z): 

At z = 1 its derivative diverges, but its value is finite: 

where $(x) is the Riemann zeta function of x.  Thus for all z between 0 and 1, 

g3/2(z) I 2.612..  . (12.45) 

A graph of g3,,(z) is shown in Fig. 12.3. 
Let us rewrite (12.41) in the form 

T h s  implies that ( n , ) / V  > 0 when the temperature and the specific volume are 
such that 

This means that a finite fraction of the particles occupies the level with p = 0. 
This phenomenon is known as the Bose-Einstein condensation. The condition 
(12.47) defines a subspace of the thermodynamic P-U-T space of the ideal Bose 
gas, which corresponds to the transition region of the Bose-Einstein con- 
densation. As we see later, in t h s  region the system can be considered to be a 
mixture of two thermodynamic phases, one phase being composed of particles 
with p = 0 and the other with p + 0. We refer to the region (12.47) as the 
condensation region. It is separated from the rest of the P-U-T space by the 
two-dimensional surface 

Fig. 12.4 (a) Graphical solution of (12.41); (b )  the fugacity for an ideal 
Bose gas contained in a finite volume V. 

For a given specific volume u, (12.48) defines a critical temperature T,: 

As indicated by (12.49), T,, is the temperature at which the thermal wavelength is 
of the same order of magnitude as the average interparticle separation. For a 
given temperature T, (12.48) defines a critical volume u,.: 

In terms of T,, and u, the region of condensation is the region in which T < T, or 
u < u,.. 

To find z as a function of T and v we solve (12.41) graphically. For a large 
but finite value of the total volume V the graphical construction in Fig. 1 2 . 4 ~  
yields the curve for z shown in Fig. 12.4b. In the limit as V + co we obtain 

1 

the root of g3l2(z)  = A3/u 

For (A3/u) I g3/2(1), the value of z must be found by numerical methods. A 
graph of z is given in Fig. 12.5. 

To make these considerations more rigorous the following point must be 
noted. It is recalled that (12.41) is derived from the condition 
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" Fig. 12.5 The fugacity for an ideal Bose gas of infinite 
1 - 

2.612 
h3 

volume. 

by replacing the sum on the right side by an integral. It is clear that t h s  integral 
is unchanged if we subtract from the sum any jinite number of terms. More 
generally, (12.41)  should be replaced by the equation 

where, in the parentheses, there appear any finite number of terms. Every term in 
the parentheses, however, approaches zero as V -+ co. For example, 

( n 1 )  1 - - - - 
1 1 1  

< - v v z - l e P e 1 - 1 -  V ePEl - 1 
where 

I ,  = sum of the squares of three integers not all zero 
Hence 

( n , )  1 2 m p V 2 l 3  
- < -  - -0 ( 1 2 . 5 3 )  

V V ( 2 n ~ ) ~ / 3 ~ 1 ,  V - +  

This sho~vs t t ~ t  (12.41)  is valid. 
By (12 .52)  and the fact that ( n o )  = z / ( l  - z )  we can write 

A plot of ( n o ) / N  is shown in Fig. 12.6. It is seen that when T < T,, a finite 
fraction of the particles in the system occupy the single level with p = 0. On the 
other hand (12.53)  shows that ( n , ) / N  is always zero for p # 0. Therefore we 
have the following situation: For T > T, no single level is occupied by a finite 
fraction of all the particles. The particles "spread thinly" over all levels. For 
T < T ,  a finite fraction 1 - ( T / T c ) 3 / 2  occupies the level with p = 0 while the rest 
of the particles "spread thinly" over the levels with p # 0. At absolute zero all 
particles occupy the level with p = 0. 

The Bose-Einstein condensation is sometimes described as a "condensation 
in momentum space." We shall see, however, that its thermodynamic manifesta- 
tions are those of a first-order phase transition. If we examine the equation of 
state alone, we discern no difference between the Bose-Einstein condensation and 
an ordinary gas-liquid condensation. If the particles of the ideal Bose gas are 
placed in a gravitational field, then in the condensation region there will be a 
spatial separation of the two phases, just as in a gas-liquid condensation.* The 
term "momentum-space condensation" merely serves to emphasize the fact that 
the cause of the Bose-Einstein condensation lies in the symmetry of the wave 
function and not in any interparticle interaction. 

By virtue of (12.52) all thermodynamic functions of the ideal Bose gas will 
be given by different analytical expressions for the region of condensation and 
for the complement of that region. Only in the condensation region will these 
analytical expressions be simple. In the other region numerical computations 
would be necessary to obtain explicit formulas. 

Throughout the remainder of this section let z be defined only for the region 
( A 3/ u )  < g 3 / 2 ( 1 ) .  Some equivalent definitions of z are 

A3 

g 3 / 2 ( z )  = y 

In the region ( A 3/ u )  > g312(1),  z need not be mentioned because z = 1. 
The equation of state can be obtained from (8 .71):  

*W. Lamb and A. Nordsieck, Phys. Rev. 59, 677 (1941). 
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Fig. 12.7 Isotherms of the ideal Bose gas. 

where 
g5I2 ( 1 )  = l($) = 1.342.  . . (12.57) 

The term V." log(1 - z )  in (8.71) is zero as V /'-, co. For u > u, t h s  is obvious. 
For u < u,., it is also true, because (1  - z )  a V-'. It is immediately seen that for 
u < u,, P is independent of u. The isotherms are shown in Fig. 12.7, and the P-T 
diagram is shown in Fig. 12.8. We may, as in the case of a gas-liquid con- 
densation, interpret the horizontal portion of an isotherm to mean that in that 
region the system is a mixture of two phases. In the present case these two phases 
correspond to the two points labeled A and B in Fig. 12.7. We refer to these 
respectively as the condensed phase and the gas phase. The horizontal portion of 
the isotherm is the region of phase transition between the two phases. The vapor 
pressure is 

Differentiation of this equation leads to 

phase KT 
Fig. 12.8 P-T diagram of the ideal Bose gas. 
Note that the space above the transition curve 
does not correspond to anything. The condensed 
phase lies on the transition line itself. 

When the two phases coexist the gas phase has the specific volume u,, whereas 
the condensed phase has the specific volume 0. Hence the difference in specific 
volume between the two phases is 

In fact (12.59) is the Clapeyron equation, and the latent heat of transition per 
particle is 

Therefore the Bose-Einstein condensation is a first-order phase transition. 
Other thermodynamic functions for the ideal Bose gas are given in the 

following. For each thermodynamic function the upper equation refers to the 
region u > u, (or T > T,) and the lower equation refers to the region u < u, (or 
T < T,): 

/ 3 kTu 

G 
- = ('0"' 
NkT 

The specific heat is shown in Fig. 12.9. Near absolute zero, C ,  vanishes like 
T 3 / 2 .  This behavior is to be contrasted with a photon gas or a phonon gas, for 
which C ,  vanishes like T~ near absolute zero. The reason for this difference lies 
in the difference between the particle spectrum c, = p2;/2m and the photon or 
phonon spectrum c, = cp. At the same energy the particle spectrum has a higher 
density of states than the photon or phonon spectrum. Consequently there are 
more modes of excitation available for a particle, and the specific heat is greater. 
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From (12.65) we see that S = 0 at T = 0, in accordance with the third law 
of thermodynamics. This means that the condensed phase (which exists at T = 0) 
has no entropy. At any finite temperature the total entropy is entirely due to the 
gas phase. The fraction of particles in the gas phase in the transition region is 
u/u,, or (T/Tc)3/2. If we rewrite S in the transition region in the form 

we find that 

which is the entropy per particle of the gas phase. The difference in specific 
entropy between the gas phase and the condensed phase is 

Comparing this with (12.61), we find that 

L = TAs 

This shows that the interpretation of the Bose-Einstein condensation as a 
first-order phase transition is self-consistent. 

The only Bose system known to exist at low temperatures is liquid He4. At a 
temperature of 2.18 K, He4 exhibits the remarkable X transition, at which the 
specific heat becomes logarithmically infinite. Since He4 atoms obey Bose statis- 
tics, it is natural to suppose that this transition is the Bose-Einstein condensation 
modified by intermolecular interactions. This is supported by the fact that no 
such transition occurs in liquid He3, whose atoms obey Fenni statistics. Further- 
more, substituting the mass of He4 and the density of liquid helium into (12.50) 
leads to the transition temperature T, = 3.14 K, which is of the right order of 
magnitude. 

Finally, we must re-emphasize that Bose-Einstein condensation can occur 
only when the particle number is conserved. For example, photons do not 
condense. They have a simpler alternative, namely, to disappear into the vacuum. 

We have pointed out in Section 7.5 that heavy-particle conservation as physicall! 
observed is a low-energy approximation to the real conservation law, which says 
that the conserved quantity is the number of particles minus the number of 
antiparticles. Thus, any discussion of the Bose-Einstein condensation for a 
relativistic Bose gas must take antiparticles into account.* 

12.4 AN IMPERFECT BOSE GAS 

The ideal Bose gas is an artificial example in that the particles condense into a 
highly idealized phase with infinite compressibility. That is, the Bose-Einstein 
condensate is unphysical and uninteresting. We now study an interacting Bose 
gas in a crude approximation, to see how the nature of the Bose-Einstein 
condensation changes. 

The Energy Levels 

We consider a dilute system of N identical spinless bosons of mass m, contained 
in a box of volume V, at very low temperatures. The bosons interact with one 
another through binary collisions characterized by the scattering length a which 
is assumed to be positive. The energy levels to the first order in a may be 
obtained from (10.124) through the use of first-order perturbation theory. 

Let the unperturbed wave functions be free-particle wave functions a,, 
labeled by the occupation numbers { . . . , n  ,, . . . ), where n, is the number of 
bosons with momentum p. The energy levels to the first order in a are 

The second term is calculated in (A.36) of the Appendix. With that, we have 

This formula is valid only under the conditions 
a 

ka << 1 
where k is the relative wave number of any pair of particles. Thus (12.72) 
becomes invalid if there are excited particles of high momentum. 

Let us first study the implications of (12.72). The ground state energy per 
particle is obtained from (12.72) by setting all n ,  = 0 for p # 0, and n o  = N: 

*H. E. Haber and H. A. Weldon, Phys. Rev. Lett. 46, 1497 (1981) 
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where p is the mass density. It is proportional to the scattering length a and to 
the mass density, and it may be interpreted to be the energy shift of an average 
particle in the "optical approximation," whereby the effect of the rest of the 
system is replaced by a medium having an index of refraction. This interpretation 
can be justified as follows. In the shape-independent approximation we may 
replace a scattering potential by one of any shape, provided it gives the same 
scattering length. Let us replace the interparticle potential by a very shallow but 
very long-ranged square well such that the scattering length is still a .  Now a 
particle moving through the system essentially "sees" a uniform potential of an 
appropriate depth. This gives (12.74). 

For an excited state in which the particles have vanishingly small momenta 
the energy per particle is 

The second term is most negative when all the excited particles are in the same 
momentum state. Thus we may say that "spatial repulsion leads to momentum 
space attraction." This is a consequence of the symmetry of the wave function.* 

The "momentum space attraction" just mentioned also leads to an "energy 
gap" in the spectrum (12.72). This may be seen as follows. The energies of the 
very low excited states of the system are approximately given by 

According to this formula, the excitation of one particle from the momentum 
state p = 0 to a state of infinitesimal momentum changes the energy by the jinite 
amount 

Thus the single-particle energy spectrum is separated from the zero point of 
energy by the amount A.  This "energy gap," however, is a feature only of the 
lowest-order formula. When the energy levels are calculated to higher orders in 
perturbation theory,+ the energy gap disappears. Instead, there is only a decrease 
of level density just above the ground state, changing the single-particle spectrum 
p 2 / 2 m  into a phonon spectrum Acp/2m, where c is a constant. The "energy 
gap," which implies that the level density is strictly zero just above the ground 
state, is a crude approximation to the actual state of affairs. 

The foregoing discussions make it clear that the energy levels (12.72), 
although not exact, possess many qualitative features of the effect of a repulsive 
interaction among bosons. We use them to calculate the partition function. The 

validity of this calculation is discussed as we proceed. We introduce a further 
simplification, namely, we take the energy levels to be 

The behavior of the model defined by (12.78) should be qualitatively the same as 
that by (12.72) when the temperature is so low that few particles are excited.* 

The Equation of State 

For the calculation of the partition function, we confine our considerations to the 
region in which 

a / A  << 1 ,  aA2/u << 1 (12.79 ) 

because these are the only dimensionless parameters in the problem involving a.  
and our model is valid only to the first order in a .  

Let n be an abbreviation for { n , ) ,  and let 6 ,  denote the first term of 
(12.78), the unperturbed energy. Introducing the parameter 

and denoting, as usual, the thermal wavelength by A = \ / 2 7 A 2 / m k ~ ,  we can 
write the partition function in the form 

Q n = , -Be,  , - ~ ( a A ~ / u ) ( 2 - 5 ~ )  = Q $ ) ( ~ - N ( ~ P / U ) ( ~ - ~ ~ )  >o (12 .81)  
n 

where Q$) is the partition function of the ideal Bose gas, and ( ), denotes the 
thermodynamic average with respect to the ideal Bose gas. Hence the free energy 
per particle is 

A A(O) kT 
- - log ( e -  ~ ( a A ~ / u ) ( 2 - t ) ~  

N N N  > 0  

It can be easily verified that the fluctuations of ( n o )  are small. In fact, for 
any k 

( n 3 0  - ( n k ) ;  = ( n k ) o  (12.83) 

Hence the mean-square fluctuation of ( [ ) 0  is of the order 1 / N .  Hence 

*See Problem 12.7. 
+see Section 13.8. 

*For a detailed study of the equation of state based on the more accurate energy levels (12.72). 
see K. Huang, C. N. Yang, and J. M. Luttinger, Phys. Rev. 105, 776 (1957). 
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Bose gas 

I 
1 Fig. 12.10 Isotherm of an imperfect Bose gas with 

* u  
uc repulsive interactions. 

Condensed I h a s  ,LTra:.on 

Fig. 12.1 1 P-T diagram of the imperfect Bose gas. 
Gas phase: In contradistinction to that of the diagram of the 

ideal Bose gas, Fig. 12.8, the space above the 
transition now corresponds to the condensed phase. 

where { = ([)0 = (no/N)o is given by (12.54). This result is extremely simple, 
being the free energy of the ideal gas plus the interaction term in (12.78), except 
that the quantum number n o  is replaced by its thermodynamic average with 
respect to the ideal gas, thereby turning it into a thermodynamic parameter. 

The pressure can be immediately obtained: 

where P(O) is the pressure of the ideal Bose gas. Using (12.54) to evaluate and 
a g / a u ,  we obtain 

An isotherm is shown in Fig. 12.10, and the P-T diagram is shown in Fig. 12.11. 
The Bose-Einstein condensation is here a second-order transition. The specific 
heat decreases across the transition point by the amount 

AC, 9a 
--  

- -g3/2(l) Nk 2X, 

We cannot deduce from these results that an imperfect Bose gas with 
repulsive interactions generally exhibits a second-order transition. The present 
model merely shows that the transition appears to be a second-order transition ii 
higher-order effects in a/A and aA2/u are neglected. 

The model here is more realistic than the ideal Bose gas in that the 
condensed phase now has finite compressibility. We see from (12.86) that the 
isothermal compressibility increases discontinuously by a factor of 2 when we gc 
from the gas to the condensed phase. 

In a nonequilibrium situation, the condensed phase presumably can flow like 
a real substance. Since the system has a paucity of energy levels just above the 
ground state, we expect it to flow with little or no dissipation. This is the 
phenomenon of superfluidity that we shall discuss at greater length in the nest 
chapter. 

12.5 THE SUPERFLUID ORDER PARAMETER 

We have suggested that the Bose-Einstein condensate is a "superfluid" in more 
realistic systems than the ideal Bose gas. This idea will be taken up in the next 
chapter. Here we shall analyze in greater depth the implications of the existence 
of a condensate. It will be necessary to use the quantized-field description of a 
many-body system (sometimes call 1 "second quantization"), as discussed in the 
appendix. 

Identifying the Order Parameter 

Let us begin by examining the one-particle density matrix 

1 
pl(x,y) = (#+(x)#(y)) = y e i ( k . x ~ q * y )  (a iak )  (12.88) 

k . q  

where ( ) denotes ensemble average, and #(x) is the quantized boson field 
operator, which is expanded in terms of an~uhilation operators a ,  for a plane-wave 
state of wave vector k (see (A.65)). Roughly speaking, this is the probability that. 
having lost a particle at x, you will find one at y. 

Consider first a translationally invariant system. Using the fact that the total 
momentum operator P commutes with the Hamiltonian, we can verify 

( [P, o : a , ] )  = 0 

by writing out the trace and using Tr(AB) = Tr(BA). On the other hand, a 
direct calculation gives 

[ P ,  a:a = h (k - q) a i a ,  

Hence for a translationally invariant system 
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where nk = a t a k .  Thus 

e i k - ( x - y )  
(np) 

k 

where we have separated out the k = 0 term before passing to the limit V - GO.  
The second term in (12.90) vanishes when I x - yl - GO,  because in that limit the 
integral gets contributions only from the neighborhood of k = 0 (see Problem 
12.9). Thus 

This does not imply a positional correlation over infinite distances, as it might 
seem at first sight. It says only that there is a constant density of zero-momentum 
particles over the entire system. 

Note that in a general interacting system, the single-particle momenta are 
not good quantum numbers. In particular no does not commute with the 
Hamiltonian. But (no)/N can still be used as a characterization of a Bose- 
Einstein condensate. 

In analogy with (12.91), Penrose and Onsager* proposed the following 
general criterion for Bose-Einstein condensation: 

To be of practical value, this criterion must be applicable to real systems with 
nontranslationally invariant geometry, and under nonequilibrium situations. It is 
then not obvious (in fact, it is somewhat of a mystery) how the criterion can be 
satisfied. Consider, for example, a Bose fluid contained in two separate tanks 
connected by a pipe a mile long. (For added realism, have an experimentalist kick 
the apparatus from time to time.) Suppose x lies in one tank, and y the other. It is 
physically absurd to suppose that there can be any correlation between x and y. 
But then how does it come about that these separate points are characterized by 
the same function f ?  

The way out is to make f dependent only on local dynamical variables. It is 
now generally accepted that the correct choice is f = (+).+ Thus the Penrose- 
Onsager criterion takes the more specific form 

*O. Penrose, Philos. Mag. 42, 1373 (1951); 0. Penrose and L. Onsager, Phys. Rev. 104, 576 
( 1956). 

The first use of this was implicit in N. N. Bogoliubov, J. Phys. USSR 1 1 ,  23 (1947). J. 
Goldstone, N. Cim., 19, 154 (1961), clarified its meaning in terms of "broken symmetry." For a 
review see P. W. Anderson, Rev. Mod. Phys. 38, 298 (1966). 

We call the complex number 

(+(x))  = r(x) ei+(X) 

the superfluid order parameter. The fact that r(x) > 0 implies the existence oi 
momentum-space order, i.e., a Bose-Einstein condensate. As we shall see in the 
next chapter, the phase +(x) is the velocity potential for superfluid flow. 

Spontaneous Symmetry Breaking 

The ensemble average (I)) should be taken in a grand canonical ensemble. 
because we are interested in open systems, where the number of particles is not 
definite. Thus, 

d [ + ]  = z- p N  

where 2 is the Hamiltonian and N is the number operator. The notation &[$I 
indicates that d is a functional of Ir/. The immediate question is why the 
ensemble average above should not be always zero. There is a trivial and a subtle 
aspect to this question. 

First, the trivial aspect. Since + annihilates a particle, its expectation value 
with respect to any eigenstate of N is zero. This makes one feel uneasy about 
taking its ensemble average. In the grand canonical ensemble, however, the 
relevant basis are not the simultaneous eigenstates of 2 and N ,  but those of 
2- pM, and the latter need not be eigenstates of M.  In the infinite-volume 
limit, the eigenvalues of 2- pM are highly degenerate: systems with different 
particle numbers can maintain the same eigenvalue by going into different energ! 
levels. One can form a new basis by superimposing these degenerate states (of 
different particle numbers), with respect to which the expectation value of + will 
have the form (12.94). The phase + labels the degenerate states. 

But, one argues, the ensemble of + is still zero, because one has the freedom 
to calculate the trace using a basis with definite particle numbers. This is true. 
and is a reflection of the fact that particle number is conserved, which can be 
expressed formally by saying that the Hamiltonian has a "global gauge invari- 
ance" -an invariance under the transformation 

4 (x) - eia 44x1 (12.96) 

where a is an arbitrary real number. Thus, in the ensemble average, every value 
+ = r exp (ia) will be canceled by a value + = r exp (ia + im) of equal weight. 
This argument is technically correct, and illustrates the need to redefine the 
ensemble average more carefully. This is the subtle part of the problem. 

There is a parallel between (I)) and the spontaneous magnetization of a 
ferromagnet : 
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where M  is the total magnetic moment. Since the Hamiltonian 2 in the absence 
of external field is invariant under rotations, the ensemble average of M  is always 
zero because M  and - M  occur with equal probability. The mathematical 
correctness of this statement is irrefutable. But we know that it is physically the 
wrong answer, for we do have ferromagnets in nature. 

The resolution of the apparent paradox lies in the recognition that the 
symmetry of a system may be "spontaneously broken," in that the ground state 
of a Hamiltonian does not possess the symmetry of the Hamiltonian. This 
requires that the ground state be degenerate. The symmetry is realized by the fact 
that any one of the degenerate ground states is equally as good as the physical 
ground state, and by the existence of characteristic "Goldstone excitations."* For 
a ferromagnet, the ground state is not rotationally invariant, because the magne- 
tization points along a definite axis in space. The Goldstone excitations in this 
case are the spin waves. 

The essential point in the present context is that, once the system magnetizes 
along a certain direction it cannot make a transition to another direction, even 
though doing so requires no expenditure in energy. For to do so requires that all 
the atomic magnetic moments in the system spontaneously and simultaneously 
rotate through exactly the same angle. The probability for this to happen is 
essentially zero for a macroscopic system. (One would have to wait for a time of 
the order of a PoincarC cycle to see this happen.) The ensemble average has 
physical significance only if it corresponds to time averages over microscopic 
relaxation times. One must therefore redefine it in such a way that M  and - M  
are not both included among the configurations. This can be done most simply 
by placing the system in an external field H pointing along an arbitrary but fixed 
direction, and calculating the ensemble average in the limit H + 0. To emphasize 
the importance of various limiting processes, we explicitly indicate the infinite- 
volume limit: 

( M )  -- 
1 ~r [e-p(31a-MH) M ]  

= lim lirn - 
V H-OV-mV  re-^(^^^) 

The thermodynamic limit of (12.97), which is not physically relevant, correspond- 
ing a reversal of the limiting process above+: 

T ~ . [ ~ - ~ ( + M H )  M ]  
lim lim = 0 

V- m H-o ~r e-B(& MH) 

Returning to the Bose system, we see that Bose-Einstein condensation 
corresponds to a spontaneous breahng of the global gauge invariance. In analogy 
with ferromagnetism, we imagine subjecting the system to an external field 
coupled to $(x), calculate the ensemble average of $(x) in the thermodynamic 

*J. Goldstone, op. cit. A brief discussion of this phenomenon will be given in Section 16.6. 
' ~ o t e  that in calculating the spontaneous magnetization in the model in Section 11.6, we in 

eKect used the correct average (12.98) instead of (12.99), because we ignored the - M solution (by 
common sense). 

limit, and then let the external field go to zero: 

Tr [e-pc[G,sl 4 (x)] 
) )  '5 T~ ,-pS[$,q] 

1) 

where 

The only essential difference with the ferromagnetic case is that, unlike the 
magnetic field, the external field q(x) here is a mathematical device that cannot 
be realized experimentally.* 

PROBLEMS 

12.1 (a) Show that the entropy per photon in blackbody radiation is independent of the 
temperature, and in d spatial dimensions is given by 

f n-d-l 
s = ( d  + 1) "=: 

C n-" 
n=l 

(b) Show that the answer would have been d + 1 if the photons obeyed Boltzman 
statistics. 

12.2 Some experimental valuest for the specific heat of liquid He4 are given in the 
accompanying table. The values are obtained along the vapor pressure curve of liquid 
He4, but we may assume that they are not very different from the values of c, at the same 
temperatures. 

Temperature (K) Specific Heat (joule/g-deg) 

*The Base-Hnstein condensation of the ideal gas has been reanalyzed in terms of the superfluid 
order parameter by J. D. Gunton and M. J. Buckingham, Phys. Rev. 166, 152 (1968). 

+ ~ a k e n  from H. C. Kramers, "Some Properties of Liquid Helium below 1°K," Dissertation. 
Leiden (1955). 
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( a )  Show that the behavior of the specific heat at very low temperatures is characteristic 
of that of a gas of phonons. 
( b )  Find the velocity of sound in liquid He4 at low temperature. 

12.3 Equation (12.64) states that G  = 0  for u < u,.. Using the formula S = - ( d G / d T ) , ,  
we would obtain S = 0 for u < u,., in contradiction to (12.65). What is wrong with the 
previous statement? 

12.4 In the neighborhood of z = 1  the following expansion may be obtained (F. London, 
loc. cit.): 

where v =- -log z. From this the corresponding expansions for g3,2, gIl2, and g- 
may be obtained by the recursion formula gnpl  = - dgn/d v. Using this expansion show 
that for the ideal Bose gas the discontinuity of dC, /aT at T  = T,. is given by 

12.5 Show that the equation of state of the ideal Bose gas in the gas phase can be written 
in the form of a virial expansion, i.e., 

r2.6 ( a )  Calculate the grand partition function 9 ( z ,  V,  T )  for a two-dimensional ideal 
Bose gas and obtain the limit 

1 
lim - log 9( 2, V ,  T )  

V-m V  

where V = L2 is the area available to the system. 
( b )  Find the average number of particles per unit area as a function of z and T. 
( c )  Show that there is no Bose-Einstein condensation for a two-dimensional ideal Bose 
gas. 

12.7 Consider two free bosons contained in a box of volume V  with periodic boundary 
conditions. Let the momenta of the two particles be p and q. 

( a )  Write down the normalized wave function $,(r,, r , )  for both p + q and p = q. 

( b )  Show that for p + q 

( c )  Explain the meaning of the statement "spatial repulsion leads to momentum space 
attraction." 

12.8 For the imperfect Bose gas discussed in Section 12.4, show that in the gas phase 

12.9 Consider an ideal Bose gas. Let $(x)  be the boson field operator. 
( a )  Show 

( n o )  ( B ( x ) $ ( Y ) )  = y + f (Ix - Y I) 
where 

with ro = h/ 4- 
( b )  Let T  + T,, from the high-temperature side. Find ro as a function of t = (T  - q , ) / 7 ;  
as t  + 0 .  
( c )  The density-density correlation function is defined as 

r ( x )  = ( P ( x ) P ( o ) )  - ( N / V 2  
where p(x) = $t(x)$(x) is the density operator. Show 

Work out r ( x )  more explicitly, using the results of ( a )  and ( b ) .  

Thus we can conclude that the third and higher virial coefficients, if they depend on a ,  
must involve orders of a 2  or higher. 


