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1. Consider a system with the 2-dimensional phase space (g, p), position and momentum,
with the dynamical equation p = @ and ¢ = 1, with the boundary conditions 0 < ¢,p < 1.1s
this system ergodic? Here dot denotes time derivative and a is a constant.

2. Consider a system of volume V and N particles at thermal equilibrium with a very large

reservoir of temperature T. This composite system is isolated from the rest of the universe.

(i) Obtain an expression for the probability distribution P(E) for the system to have energy E
in term of Q(E), the number of microstates of the system compatible with energy E.

(i) Write the system partition function Z(E, N, V) in terms of Q(E).

(iii) Let Q(E) = aE/, where a is a constant and f = O(N) is the number of the degrees of
freedom of the system. Approximate P(E) with a Gaussian function around its maximum
point. Find the relative width of this distribution and thence argue that the canonical
probability distribution P(E) is sharply peaked around its maximum.

3. An atom in a solid has two energy levels: a ground state of energy e; with degeneracy g,
and an excited state of e, = ¢; + A with degeneracy g,. (Reminder: Degeneracy means the
number of repetitions of an energy level.)

(i) Compute the partition function of a single atom Z;..
(i) Compute the heat capacity associated to an atom.

(iii) Now consider an N-particle (monoatomic) gas of such atoms. Compute the partition

function and the heat capacity.

4. Consider a box of volume V containing N identical non-interacting classical harmonic
oscillators at equilibrium with a thermal bath of temperature T. In both microcanonical and
canonical ensembles calculate entropy of the system.

5. State the Poincaré recurrence theorem clearly and prove it. In addition, give an intuitive
argument that why in typical thermodynamical systems such a recurrence is almost never
observed. (Or yet better, through a simple example give an estimate for the recurrence time.)

6. Assume that we have N diatomic molecules attached to the flat surface of a horizontal
metallic layer of temperature T. Each molecule can be in a vertical state (in the z direction) or
a horizontal state (in either of x or y directions). Let the energy of each horizontal and vertical
molecule be ¢, > 0 and 0, respectively.

Obtain Q(E, N), the number of microstates corresponding to a macrostate of energy E,
S(E, N), entropy of the system, and C(T, N ), heat capacity of the system.



