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آزمون پایانی درس ترمودینامیک و مکانیک آماری ١ (آزمونِ در خانه) 

توجه:  
١. نام و نام خانوادگی و شماره دانشجویی تان را در صفحەی اول پاسخ نامە بنویسید.  

٢. لطفاً تلاش کنید پاسخ ها را با خطی خوانا و نگارشی ساده بنویسید. طبیعی است که اگر پاسخی خوانا نباشد تصحیح 
نمی شود، و اعتراضی از این بابت پذیرفتەنمی شود.  

٣. فرض ها و نتیجەهای فرعی را که در حل هر مساله به کار می برید بەروشنی بیان کنید. بەجز نتیجەهایی که در متنِ درسیِ کتابِ 
اصلی یا درس نامەهای این کلاس آمدەاست، هر نتیجه یا رابطەای را که بەکار می برید اثبات کنید. 

۴. همەی مسالەها هم نمرەاند. تنها به ۵ مساله از ٨ مساله به انتخابِ خود پاسخ دهید.  
۵. استفاده از کتاب های درسی و درس نامەها برای یادآوری مطالب یا روابطِ اصلی آزاد است، اما نباید پاسخ مسالەای را از آن ها 
رونویسی یا برداشت کرد. اگر از برخی از نتایجِ منابعی جز کتاب درسیِ اصلی استفاده  می کنید، به آن ها ارجاعِ مناسب بدهید. 
فرض بر این است که در پاسخ نامەتان نتیجە ی تلاش فکری، خلاقیت، و محاسباتِ خودتان را می نویسید، نه رونوشتی از نتایجِ 
دیگران یا حاصلِ مشورت با آن ها. تاکید می شود که دانشجویان ملزم به رعایت اصول حرفەای و آداب شرکت در آزمون های 

غیرحضوری (که دانشگاه آن ها را اعلام کردە) هستند.  
۶. لطفاً نسخەای الکترونیکی و (تا حد ممکن) کم حجم از پاسخ نامەتان را بەصورتِ تایپ شده یا دست نویسِ اِسکن شدەای در 

قالب یک فایلِ pdf از آدرس ای  میلِ رسمی ِ دانشگاهی تان به آدرس ای میلِ من (rezakhani@sharif.edu) بفرستید.  
٧. تنها یک فایل از هر دانشجو پذیرفته می شود. لطفاً پاسخ نامەتان را چند بار نفرستید.  

٨. در برنامەریزیِ زمانی برای آماده کردن فایلِ پاسخ نامەها پیش بینی های لازم را بکنید تا مشکلاتِ تکنیکیِ احتمالی منجر به 
دیرکرد در فرستادن پاسخ نامه نشود. در پنج دقیقەی اولِ تاخیر پنج درصد و در ده دقیقەی بعدی پانزده درصد از نمرەی کلِ این 

آزمون بەعنوان جریمه کم می شود. دیرکردِ بیش از پانزده دقیقه نیز برابر با تحویل ندادنِ برگەی پاسخ نامه در نظر گرفتەمی شود.  
)، نمرەی  )، نمرەی آزمون پایان ترم ( ) بر پایەی نمرەی آزمون میان ترم ( ٩. قاعدەی محاسبەی نمرەی پایانیِ درس (

) بەصورت زیر است:   )، و نمرەی مسالەهای امتیازی ( تمرین ها (
 

http://physics.sharif.edu/) درس  وب گاه  در  ظهر   ١٢ ساعت  تیر   ٢٩ روز  از  امتیازی  مسالەهای 
thermodynamics~) در دسترس خواهدبود. زمانِ تحویلِ پاسخِ آن ها در همان  روز اعلام می شود. این مسالەها حداکثر ٢ 

نمرەی اضافی خواهند داشت. بندهای ١ تا ٧ نیز در مورد آن ها برقرار است. 
١٠. موفق باشید.  

TMF
HB

T = max {(3/20)M + (13/20)F , (6/20)M + (10/20)F} + H + B .
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Exercises 103

Chapter summary

• The thermal diffusion equation (in the absence of a heat source) is

∂T

∂t
= D∇2T , (10.72)

where D = κ/C is the thermal diffusivity.

• “Steady state” implies that

∂

∂t
(physical quantity) = 0. (10.73)

• If heat is generated at a rate H per unit volume per unit time,
then the thermal diffusion equation becomes

∂T

∂t
= D∇2T +

H

C
. (10.74)

• Newton’s law of cooling states that the heat loss from a solid or
liquid surface is proportional to the area of the surface multiplied
by the temperature difference between the solid/liquid and the gas.

• The particle diffusion equation is

∂n

∂t
= D∇2n, (10.75)

where D is the diffusion constant.

Exercises

(10.1) One face of a thick uniform layer is subject to sinu-
soidal temperature variations of angular frequency
ω. Show that damped sinusoidal temperature oscil-
lations propagate into the layer and give an expres-
sion for the decay length of the oscillation ampli-
tude. A cellar is built underground and is covered
by a ceiling, which is 3 m thick and made of lime-
stone. The outside temperature is subject to daily
fluctuations of amplitude 10◦C and annual fluctua-
tions of 20◦C. Estimate the magnitude of the daily
and annual temperature variations within the cel-
lar. Assuming that January is the coldest month of
the year, when will the cellar’s temperature be at
its lowest?

[The thermal conductivity of limestone is
1.6 Wm−1 K−1, and the heat capacity of limestone
is 2.5 × 106 JK−1 m−3.]

(10.2) (a) A cylindrical wire of thermal conductivity κ, ra-
dius a and resistivity ρ uniformly carries a current
I. The temperature of its surface is fixed at T0 us-
ing water cooling. Show that the temperature T (r)
inside the wire at radius r is given by

T (r) = T0 +
ρI2

4π2a4κ
(a2 − r2).

(b) The wire is now placed in air at temperature Tair

and the wire loses heat from its surface according to
Newton’s law of cooling (so that the heat flux from
the surface of the wire is given by α(T (a) − Tair),

74 Exercises

Notice that both λ and τ decrease with increasing pressure at fixed
temperature. Thus the frequency of collisions increases with increasing
pressure.

Chapter summary

• The mean scattering time is given by

τ =
1

nσ〈vr〉
,

where the collision cross-section is σ = πd2, d is the molecular
diameter and 〈vr〉 ≈

√
2〈v〉.

• The mean free path is

λ =
1√
2nσ

.

Exercises

(8.1) What is the mean free path of an N2 molecule
in an ultra-high-vacuum chamber at a pressure of
10−10 mbar? What is the mean collision time? The
chamber has a diameter of 0.5 m. On average,
how many collisions will the molecule make with
the chamber walls compared with collisions with
other molecules? If the pressure is suddenly raised
to 10−6 mbar, how do these results change?

(8.2) (a) Show that the root mean square free path is
given by

√
2λ where λ is the mean free path.

(b) What is the most probable free path length?

(c) What percentage of molecules travel a dis-
tance greater than (i) λ, (ii) 2λ, (iii) 5λ?

(8.3) Show that particles hitting a plane boundary have
travelled a distance 2λ/3 perpendicular to the plane
since their last collision, on average.

(8.4) A diffuse cloud of neutral hydrogen atoms in space
has a temperature of 50 K and number density
500 cm−3. Estimate the mean scattering time (in
years) between hydrogen atoms in the cloud. Es-
timate the mean free path (in astronomical units).
(1 astronomical unit is the Earth–Sun distance; see
Appendix A for a numerical value.)

Exercises 69

Chapter summary

• The molecular flux, Φ, is the number of molecules striking unit
area per second and is given by

Φ =
1

4
n〈v〉.

• This expression, together with the ideal gas equation, can be used
to derive an alternative expression for the particle flux:

Φ =
p√

2πmkBT
.

• These expressions also govern molecular effusion through a small
hole.

Exercises

(7.1) In a vacuum chamber designed for surface–science
experiments, the pressure of residual gas is kept as
low as possible so that surfaces can be kept clean.
The coverage of a surface by a single monolayer
requires about 1019 atoms per m2. What pressure
would be needed to deposit less than one monolayer
per hour from residual gas? You may assume that
if a molecule hits the surface, it sticks.

(7.2) A vessel contains a monatomic gas at tempera-
ture T . Use the Maxwell–Boltzmann distribution
of speeds to calculate the mean kinetic energy of
the molecules.
Molecules of the gas stream through a small hole
into a vacuum. A box is opened for a short time
and catches some of the molecules. Neglecting the
thermal capacity of the box, calculate the final tem-
perature of the gas trapped in the box.

(7.3) A closed vessel is partially filled with liquid mer-
cury; there is a hole of area 10−7 m2 above the
liquid level. The vessel is placed in a region of high
vacuum at 273 K and after 30 days is found to be
lighter by 2.4×10−5 kg. Estimate the vapour pres-
sure of mercury at 273 K. (The relative molecular
mass of mercury is 200.59.)

(7.4) Calculate the mean speed and most probable speed
for a molecule of mass m which has effused out of
an enclosure at temperature T . Which of the two
speeds is the larger?

(7.5) A gas effuses into a vacuum through a small hole of
area A. The particles are then collimated by pass-
ing through a very small circular hole of radius a, in
a screen a distance d from the first hole. Show that
the rate at which particles emerge from the second
hole is 1

4nA〈v〉(a2/d2), where n is the particle den-
sity and 〈v〉 is the average speed. (Assume that no
collisions take place after the gas effuses through
the second hole, and that d $ a.)

(7.6) Show that if a gas were allowed to leak through a
small hole into an evacuated sphere and the parti-
cles condensed where they first hit the surface they
would form a uniform coating.

(7.7) An astronaut goes for a space walk and her space
suit is pressurized to 1 atm. Unfortunately, a tiny
piece of space dust punctures her suit and it devel-
ops a small hole of radius 1 µm. What force does
she feel due to the effusing gas?

(7.8) Show that the time dependence of the pressure in-
side an oven (volume V ) containing hot gas (molec-
ular mass m, temperature T ) with a small hole of
area A is given by

p(t) = p(0)e−t/τ , (7.25)

with

τ =
V

A

r

2πm
kBT

. (7.26)
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(17.4) The entropy S of a surface can be written as a
function of its area A and temperature T . Hence
show that

dU = T dS + γ dA (17.46)

= CA dT +

»

γ − T

„

∂γ

∂T

«

A

–

dA.

(17.5) Consider a liquid of density ρ with molar mass M .
Explain why the number of molecules per unit area
in the surface is approximately

(ρNA/M)2/3. (17.47)

Hence, the energy contribution per molecule to the
surface tension γ is approximately

γ/(ρNA/M)2/3. (17.48)

Evaluate this quantity for water (surface tension
at 20 ◦C is approximately 72 mJ m−2) and express
your answer in eV. Compare your result with the
latent heat per molecule (the molar latent heat of
water is 4.4×104 Jmol−1).

(17.6) For a stretched rubber band, it is observed exper-
imentally that the tension f is proportional to the
temperature T if the length L is held constant.
Show that:
(a) the internal energy U is a function of temper-
ature only;
(b) adiabatic stretching of the band results in an
increase in temperature;
(c) the band will contract if warmed while kept
under constant tension.

(17.7) A soap bubble of radius R1 and surface tension γ
is expanded at constant temperature by forcing in
air by driving in a piston containing volume Vpiston

fully home. Show that the work ∆W needed to in-
crease the bubble’s radius to R2 is

∆W = p2V2 ln
p2

p1
+ 8πγ(R2

2 − R2
1)

+p0(V2 − V1 − Vpiston), (17.49)

where p1 and p2 are the initial and final pressures
in the bubble, p0 is the pressure of the atmosphere
and V1 = 4

3πR3
1 and V2 = 4

3πR3
2.
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5.  

 

 

 
6. By what factor does the number of states increase if 1J heat is added (reversibly) to a 
system at room temperature (300 K)?  

 
7. At absolute zero show that , where , , , and  are, respectively, chemical 
potential, temperature, pressure, and number of particles. 

 
8. Le Chatelier’s principle states: “a system at thermodynamic equilibrium, when subjected to 
a disturbance, responds in such a way as to minimize the disturbance.” Prove it. 

 

(∂μ /∂T )p,N = 0 μ T p N

3
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Exercises

(23.1) The temperature of the Earth’s surface is main-
tained by radiation from the Sun. By making the
approximation that the Sun is a black body, but
now assuming that the Earth is a grey body with
albedo A (this means that it reflects a fraction A
of the incident energy), show that the ratio of the
Earth’s temperature to that of the Sun is given by

TEarth = TSun(1 − A)1/4

r

RSun

2D
, (23.65)

where RSun is the radius of the Sun and the Earth–
Sun separation is D.

(23.2) Show that the maxima in the functions uν and
uλ can be computed by maximizing the function
xα/(ex−1) for α = 3 and α = 5 respectively. Show
that this implies that

x = α(1 − e−x). (23.66)

This equation can be solved by iterating

xn = α(1 − e−xn−1); (23.67)

now show that (using an initial guess of x1 = 1)
this leads to the values given in eqns 23.53 and
23.54.

(23.3) The cosmic microwave background (CMB) radia-
tion has a temperature of 2.73 K.
(a) What is the photon energy density in the Uni-
verse?
(b) Estimate the number of CMB photons that
fall on the outstretched palm of your hand every
second.
(c) What is the average energy due to CMB radi-
ation that lands on your outstretched palm every
second?
(d) What radiation pressure do you feel from CMB
radiation?

(23.4) What is the ratio of the number of photons from
the Sun to the number of CMB photons that irra-
diate your outstretched hand every second (during
the daytime!)?

(23.5) Thermal radiation can be treated thermodynam-
ically as a gas of photons with internal energy
U = u(T )V and pressure p = u(T )/3, where u(T )
is the energy density. Show that:

(a) the entropy density s is given by s = 4p/T ;

(b) the Gibbs function G = 0;

(c) the heat capacity at constant volume Cv = 3s
per unit volume;

(d) the heat capacity at constant pressure, Cp, is
infinite. (What on earth does that mean?)

(23.6) Ignoring the zero-point energy, show that the par-
tition function Z for a gas of photons in volume V
is given by

ln Z = − V
π2c3

Z ∞

0

ω2 ln(1 − e−!ωβ) dω, (23.68)

and hence, by integrating by parts, that

ln Z =
V π2(kBT )3

45!3c3
. (23.69)

Hence show that

F = −4σV T 4

3c
, (23.70)

S =
16σV T 3

3c
, (23.71)

U =
4σV T 4

c
, (23.72)

p =
4σT 4

3c
, (23.73)

and hence that U = −3F , pV = U/3, and S =
4U/3T .

(23.7) Show that the total number N of photons in black-
body radiation contained in a volume V is

N =

Z ∞

0

g(ω) dω

e!ω/kBT − 1
=

2ζ(3)

π2

„

kBT

!c

«3

V,

(23.74)
where ζ(3) = 1.20206 is a Riemann zeta function
(see Appendix C.4). Hence show that the average
energy per photon is

U
N

=
π4

30ζ(3)
kBT = 2.701kBT, (23.75)

and that the average entropy per photon is

S

N
=

2π4

45ζ(3)
kB = 3.602kB. (23.76)

The result for the internal energy of a photon gas is
therefore U = 2.701NkBT , whereas for a classical
ideal gas one obtains U = 3

2NkBT . Why should
the two results be different? Compare the expres-
sion for the entropy of a photon gas with that for
an ideal gas (the Sackur–Tetrode equation); what
is the physical reason for the difference?
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