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A possible ideal-gas cycle operates as follows:

(i) from an initial state (p1, V1) the gas is cooled
at constant pressure to (p1, V2);

(ii) the gas is heated at constant volume to
(p27 ‘/2)7

(iii) the gas expands adiabatically back to (p1, V41).
Assuming constant heat capacities, show that the
thermal efficiency is

W /Ve) -1
b (p2/p1) — 1

(You may quote the fact that in an adiabatic
change of an ideal gas, pV7 stays constant, where

vy =cp/ev.)

(13.41)
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In a heat engine, heat can diffuse between the hot
reservoir and the cold reservoir and in Chapter 10
we showed that this takes place on a timescale
which scales with the square of the linear size
of the system (see Example 10.4). The mechan-
ical timescale of an engine typically scales simply
with the linear size of the engine. Explain why
this means that heat engines don’t work on very
small scales. [This is one why reason why the “en-
gines” powering biological systems, which have to
be extremely small, are not heat engines. Instead,
useful energy is extracted directly from chemical
bonds. Heat engines also often run on chemical
fuel but use the fuel to heat one of the reservoirs
and then extract work from the temperature dif-
ference thereby generated.]

Consider n moles of a gas, initially confined within
a volume V and held at temperature 7. The gas
is expanded to a total volume aV, where « is a
constant, by (a) a reversible isothermal expansion
and (b) removing a partition and allowing a free
expansion into the vacuum. Both cases are illus-
trated in Fig. 14.9. Assuming the gas is ideal,
derive an expression for the change of entropy of
the gas in each case.

partition

Show that another expression for the entropy per
mole of an ideal gas is

S =Cp,InT — RInp + constant. (16.89)

Hence show that

ONG
AG—AH_T<M,)p, (18.10)

and explain what happens to these terms as the
temperature T — 0.
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Show for the ideal gas that (OU/0P), = 0.

Give an argument why

0 0
S (1/T) = 5 (P/T)

should hold as a general thermodynamic identity. Hint: d.S' is exact.

Prove that between any two equilibrium states there exists only one adiabatic path. (Use a
method different from the one we discussed in the class.)

Prove that the thermodynamic temperature is always nonnegative. What does it mean to have
a negative temperature?

Find a differential equation for the probability distribution function P(x, t) of a symmetric
random walker who moves on a line back and forth with sufficiently small step sizes.

Calculate the range of possible final temperatures Ty in equilibrium for a system consisting of
two partial systems A and B, if A and B have initial temperatures T, T and heat capacities
C4, CE which are independent of temperature.

To this end, consider the limiting cases of a totally irreversible process (§W = 0) and
a totally reversible process (8 Wia). Calculate the mechanical work that one can maximally
extract from this system and the change of entropy of the partial systems in the irreversible
case.



