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138 Exercises

(13.4) A possible ideal-gas cycle operates as follows:
(i) from an initial state (p1, V1) the gas is cooled
at constant pressure to (p1, V2);
(ii) the gas is heated at constant volume to
(p2, V2);
(iii) the gas expands adiabatically back to (p1, V1).
Assuming constant heat capacities, show that the
thermal efficiency is

1 − γ
(V1/V2) − 1
(p2/p1) − 1

. (13.41)

(You may quote the fact that in an adiabatic
change of an ideal gas, pV γ stays constant, where
γ = cp/cV .)

Fig. 13.12 The Otto cycle. (An isochore is a line of
constant volume.)

(13.5) Show that the efficiency of the standard Otto cycle
(shown in Fig. 13.12) is 1−r1−γ , where r = V1/V2

is the compression ratio. The Otto cycle is the
four-stroke cycle in internal combustion engines in
cars, lorries, and electrical generators.

(13.6) An ideal air conditioner operating on a Carnot cy-
cle absorbs heat Q2 from a house at temperature
T2 and discharges Q1 to the outside at tempera-
ture T1, consuming electrical energy E. Heat leak-
age into the house follows Newton’s law,

Q = A[T1 − T2], (13.42)

where A is a constant. Derive an expression for T2

in terms of T1, E, and A for continuous operation
when the steady state has been reached.

The air conditioner is controlled by a thermostat.
The system is designed so that with the thermo-
stat set at 20◦C and outside temperature 30◦C the
system operates at 30% of the maximum electrical
energy input. Find the highest outside tempera-
ture for which the house may be maintained inside
at 20◦C.

(13.7) Two identical bodies of constant heat capacity Cp

at temperatures T1 and T2 respectively are used
as reservoirs for a heat engine. If the bodies re-
main at constant pressure, show that the amount
of work obtainable is

W = Cp (T1 + T2 − 2Tf) , (13.43)

where Tf is the final temperature attained by both
bodies. Show that if the most efficient engine is
used, then T 2

f = T1T2.

(13.8) A building is maintained at a temperature T by
means of an ideal heat pump, which uses a river
at temperature T0 as a source of heat. The heat
pump consumes power W , and the building loses
heat to its surroundings at a rate α(T −T0), where
α is a positive constant. Show that T is given by

T = T0 +
W
2α

“

1 +
p

1 + 4αT0/W
”

. (13.44)

(13.9) Three identical bodies of constant thermal capac-
ity are at temperatures 300 K, 300 K, and 100 K.
If no work or heat is supplied from outside, what is
the highest temperature to which any one of these
bodies can be raised by the operation of heat en-
gines? If you set this problem up correctly you
may have to solve a cubic equation. This looks
hard to solve but in fact you can deduce one of
the roots [Hint: what is the highest temperature
of the bodies if you do nothing to connect them?].

(13.10) In a heat engine, heat can diffuse between the hot
reservoir and the cold reservoir and in Chapter 10
we showed that this takes place on a timescale
which scales with the square of the linear size
of the system (see Example 10.4). The mechan-
ical timescale of an engine typically scales simply
with the linear size of the engine. Explain why
this means that heat engines don’t work on very
small scales. [This is one why reason why the “en-
gines” powering biological systems, which have to
be extremely small, are not heat engines. Instead,
useful energy is extracted directly from chemical
bonds. Heat engines also often run on chemical
fuel but use the fuel to heat one of the reservoirs
and then extract work from the temperature dif-
ference thereby generated.]

mailto:rezakhani@sharif.edu


ساعت ١١ صبح تا ۴ عصر  دانشگاه صنعتی شریف
دانشکده فیزیک

٢۶ اردی بهشت ١٣٩٩

 

2

138 Exercises

(13.4) A possible ideal-gas cycle operates as follows:
(i) from an initial state (p1, V1) the gas is cooled
at constant pressure to (p1, V2);
(ii) the gas is heated at constant volume to
(p2, V2);
(iii) the gas expands adiabatically back to (p1, V1).
Assuming constant heat capacities, show that the
thermal efficiency is

1 − γ
(V1/V2) − 1
(p2/p1) − 1

. (13.41)

(You may quote the fact that in an adiabatic
change of an ideal gas, pV γ stays constant, where
γ = cp/cV .)

Fig. 13.12 The Otto cycle. (An isochore is a line of
constant volume.)

(13.5) Show that the efficiency of the standard Otto cycle
(shown in Fig. 13.12) is 1−r1−γ , where r = V1/V2

is the compression ratio. The Otto cycle is the
four-stroke cycle in internal combustion engines in
cars, lorries, and electrical generators.

(13.6) An ideal air conditioner operating on a Carnot cy-
cle absorbs heat Q2 from a house at temperature
T2 and discharges Q1 to the outside at tempera-
ture T1, consuming electrical energy E. Heat leak-
age into the house follows Newton’s law,

Q = A[T1 − T2], (13.42)

where A is a constant. Derive an expression for T2

in terms of T1, E, and A for continuous operation
when the steady state has been reached.

The air conditioner is controlled by a thermostat.
The system is designed so that with the thermo-
stat set at 20◦C and outside temperature 30◦C the
system operates at 30% of the maximum electrical
energy input. Find the highest outside tempera-
ture for which the house may be maintained inside
at 20◦C.

(13.7) Two identical bodies of constant heat capacity Cp

at temperatures T1 and T2 respectively are used
as reservoirs for a heat engine. If the bodies re-
main at constant pressure, show that the amount
of work obtainable is

W = Cp (T1 + T2 − 2Tf) , (13.43)

where Tf is the final temperature attained by both
bodies. Show that if the most efficient engine is
used, then T 2

f = T1T2.

(13.8) A building is maintained at a temperature T by
means of an ideal heat pump, which uses a river
at temperature T0 as a source of heat. The heat
pump consumes power W , and the building loses
heat to its surroundings at a rate α(T −T0), where
α is a positive constant. Show that T is given by

T = T0 +
W
2α

“

1 +
p

1 + 4αT0/W
”

. (13.44)

(13.9) Three identical bodies of constant thermal capac-
ity are at temperatures 300 K, 300 K, and 100 K.
If no work or heat is supplied from outside, what is
the highest temperature to which any one of these
bodies can be raised by the operation of heat en-
gines? If you set this problem up correctly you
may have to solve a cubic equation. This looks
hard to solve but in fact you can deduce one of
the roots [Hint: what is the highest temperature
of the bodies if you do nothing to connect them?].

(13.10) In a heat engine, heat can diffuse between the hot
reservoir and the cold reservoir and in Chapter 10
we showed that this takes place on a timescale
which scales with the square of the linear size
of the system (see Example 10.4). The mechan-
ical timescale of an engine typically scales simply
with the linear size of the engine. Explain why
this means that heat engines don’t work on very
small scales. [This is one why reason why the “en-
gines” powering biological systems, which have to
be extremely small, are not heat engines. Instead,
useful energy is extracted directly from chemical
bonds. Heat engines also often run on chemical
fuel but use the fuel to heat one of the reservoirs
and then extract work from the temperature dif-
ference thereby generated.]

154 Exercises

(a) of a bath containing water, initially at 20 ◦C,
when it is placed in thermal contact with a
very large heat reservoir at 80 ◦C,

(b) of the reservoir when process (a) occurs,

(c) of the bath and of the reservoir if the bath is
brought to 80 ◦C through the operation of a
Carnot engine between them.

The bath and its contents have total heat capacity
104 J K−1.
[Hint for (c): which of the heat transfers consid-
ered in parts (a) and (b) change when you use a
Carnot engine, and by how much? Where does the
difference in heat energy go?]

(14.5) A block of lead of heat capacity 1 kJ K−1 is cooled
from 200 K to 100 K in two ways.
(a) It is plunged into a large liquid bath at 100 K.
(b) The block is first cooled to 150 K in one liquid
bath and then to 100 K in another bath.
Calculate the entropy changes in the system com-
prising block plus baths in cooling from 200 K to
100 K in these two cases. Prove that in the limit of
an infinite number of intermediate baths the total
entropy change is zero.

(14.6) Calculate the changes in entropy of the Universe
as a result of the following processes:
(a) A capacitor of capacitance 1 µF is connected to
a battery of emf. 100V at 0 ◦C. (NB think carefully
about what happens when a capacitor is charged
from a battery.)
(b) The same capacitor, after being charged to
100 V, is discharged through a resistor at 0 ◦C.
(c) One mole of gas at 0 ◦C is expanded reversibly
and isothermally to twice its initial volume.
(d) One mole of gas at 0 ◦C is expanded reversibly
and adiabatically to twice its initial volume.
(e) The same expansion as in (d) is carried out by
opening a valve to an evacuated container of equal
volume.

(14.7) Consider n moles of a gas, initially confined within
a volume V and held at temperature T . The gas

is expanded to a total volume αV , where α is a
constant, by (a) a reversible isothermal expansion
and (b) removing a partition and allowing a free
expansion into the vacuum. Both cases are illus-
trated in Fig. 14.9. Assuming the gas is ideal,
derive an expression for the change of entropy of
the gas in each case.

Fig. 14.9 Diagram showing n moles of gas, initially
confined within a volume V .

Repeat this calculation for case (a), assuming that
the gas obeys the van der Waals equation of state

„

p +
n2a
V 2

«

(V − nb) = nRT. (14.55)

Show further that for case (b) the temperature of
the van der Waals gas falls by an amount propor-
tional to (α − 1)/α.

(14.8) The probability of a system being in the ith mi-
crostate is

Pi = e−βEi/Z, (14.56)

where Ei is the energy of the ith microstate and
β and Z are constants. Show that the entropy is
given by

S/kB = ln Z + βU, (14.57)

where U =
P

i PiEi is the internal energy.

(14.9) Use the Gibbs expression for entropy (eqn 14.48)
to derive the formula for the entropy of mixing
(eqn 14.40).
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(16.4) (a) The natural variables for U are S and V . This
means that if you know S and V , you can find
U(S, V ). Show that this also gives you simple ex-
pressions for T and p.
(b) Suppose instead that you know V , T and the
function U(T, V ) (i.e., you have expressed U in
terms of variables that are not all the natural vari-
ables of U). Show that this leads to a (much more
complicated) expression for p, namely

p
T

=

Z
„

∂U
∂V

«

T

dT

T 2
+ f(V ), (16.87)

where f(V ) is some (unknown) function of V .

(16.5) Use thermodynamic arguments to obtain the gen-
eral result that, for any gas at temperature T , the

pressure is given by

P = T

„

∂P
∂T

«

V

−
„

∂U

∂V

«

T

, (16.88)

where U is the total energy of the gas.

(16.6) Show that another expression for the entropy per
mole of an ideal gas is

S = Cp ln T − R ln p + constant. (16.89)

(16.7) Show that the entropy of an ideal gas can be ex-
pressed as

S = CV ln

„

p

ργ

«

+ constant. (16.90)
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T → 0. It is therefore opportune to consider more sophisticated models
based on the microscopic properties of real systems, and that brings us
to statistical mechanics, the subject of the next part of this book.

Chapter summary

• The third law of thermodynamics can be stated in various ways:

• Nernst: Near absolute zero, all reactions in a system in internal
equilibrium take place with no change in entropy.

• Planck: The entropy of all systems in internal equilibrium is the
same at absolute zero, and may be taken to be zero.

• Simon: The contribution to the entropy of a system by each aspect
of the system which is in internal thermodynamic equilibrium tends
to zero as T → 0.

• Unattainability of T = 0: it is impossible to cool to T = 0 in a
finite number of steps.

• The third law implies that heat capacities and thermal expansivi-
ties tend to zero as T → 0.

• Interactions between the constituents of a system become impor-
tant as T → 0, and this leads to the breakdown of the concept of
an ideal gas and also the breakdown of Curie’s law.

Exercises

(18.1) Summarize the main consequences of the third law
of thermodynamics. Explain how it casts a shadow
of doubt on some of the conclusions from various
thermodynamic models.

(18.2) Recall from eqn 16.26 that

H = G − T

„

∂G
∂T

«

p

. (18.9)

Hence show that

∆G − ∆H = T

„

∂∆G
∂T

«

p

, (18.10)

and explain what happens to these terms as the
temperature T → 0.
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Prove that between any two equilibrium states there exists only one adiabatic path. (Use a 
method different from the one we discussed in the class.) 

 

 Prove that the thermodynamic temperature is always nonnegative. What does it mean to have
 a negative temperature?

 

 Find a differential equation for the probability distribution function  of a symmetric
  random walker who moves on a line back and forth with sufficiently small step sizes.

 
 

 

P(x , t)

3

24 ⌅ Thermodynamics

1.9 Using the results of Exercise 1.8,

a. Show that under adiabatic conditions
3dP

dV

4

adiabatic
= ≠ “

—V
,

where “ © CP /CV is the ratio of the heat capacities. Equation (1.29) implies that “ > 1.
The locus of points in state space reachable by a process in which d̄Q = 0 is known as an
adiabat.

b. Show that under isothermal conditions
3dP

dV

4

isothermal
= ≠ 1

—V
.

Hence we have the result
3dP

dV

4

adiabatic
= “

3dP

dV

4

isothermal
.

Because “ > 1, dP/dV on adiabats is always larger in magnitude than dP/dV along
isotherms.

1.10 For an adiabatic process involving the ideal gas, show that either PV “ = constant or
TV “≠1 = constant. Use the result of Exercise 1.9 applied to the ideal gas.

1.11 Show for the ideal gas that (ˆU/ˆP )
T

= 0. Hint: One could simply apply the chain rule
to Eq. (1.31), or one could use the result derived in Exercise 4.6. The internal energy of the
ideal gas is a function only of the temperature—Joule’s law. Joule discovered this result by
allowing gases to expand into a vacuum under adiabatic conditions (Section 4.9). An ideal is
such that PV = nRT with the proviso that U = U(T ).

1.12 The isothermal bulk modulus is defined as

BT © ≠V

3
ˆP

ˆV

4

T

.

Show that
3

ˆP

ˆT

4

V

= –BT , where – is the thermal expansivity.

1.13 a. Show for an adiabatic transformation of the ideal gas that the first law can be written

CV

T
dT + nR

V
dV = 0 .

Does this expression represent an exact differential? If so, is there is a quantity f(T, V )
that’s constant in an adiabatic process? Hint: Use the value of CV for the ideal gas.

b. Show that for a general transformation of an ideal gas

d̄Q = CV dT + nRT

V
dV .

Is this an exact differential? Is there a quantity Q(T, V ) stored in the system?

c. Is there an integrating factor that would turn d̄Q into an exact differential?

52 ⌅ Thermodynamics

3.5 The internal energy function, U = U(S, V, N), has a minimum value in equilibrium for a fixed
value of the entropy (Section 4.1). Repeat the stability analysis for U against fluctuations in
�S, �V , �N . Show that the second derivatives USS , UV V , UNN are each positive (and
hence U is a convex function, Section 4.2). Show that stability requires CV > 0, —S > 0, and
(ˆµ/ˆN)

S,V
> 0.

3.6 Show that
ˆ(u, v)
ˆ(x, y) = ≠ˆ(v, u)

ˆ(x, y) = ˆ(v, u)
ˆ(y, x) . These properties follow by swapping rows and

columns of determinants.

3.7 Show that
ˆ(P, V )
ˆ(T, S) = 1. Thus, by the rules of calculus dPdV = dTdS.

Hint: Write
ˆ(P, V )
ˆ(T, S) = ˆ(P, V )

ˆ(T, V )
ˆ(T, V )
ˆ(T, S)

and make use of a Maxwell relation, Table 4.2. This identity is a one liner with the use of
Jacobians. Without Jacobians, it’s difficult to derive.

3.8 Show that
ˆ(U, T )
ˆ(V, P ) =

3
ˆU

ˆS

4

T

. Hint: Make use of Exercise 3.7.

3.9 Use Eq. (3.27) (our tentative formula for the entropy of the ideal gas) to calculate the change
in entropy for a free expansion where the volume doubles.

3.10 Show that
3

ˆU

ˆV

4

S

=
3

ˆU

ˆV

4

T

≠ T

3
ˆS

ˆV

4

T

. Hint:
ˆ(U, S)
ˆ(V, S) = ˆ(U, S)

ˆ(V, T )
ˆ(V, T )
ˆ(V, S) .

Then use a Maxwell relation to conclude that
3

ˆU

ˆV

4

S

=
3

ˆU

ˆV

4

T

≠ T

3
ˆP

ˆT

4

V

.

3.11 Give an argument why
ˆ

ˆV
(1/T ) = ˆ

ˆU
(P/T )

should hold as a general thermodynamic identity. Hint: dS is exact.

3.12 A metal bar of heat capacity CM at temperature T is suddenly immersed in a mass of water
having heat capacity CW at temperature T0, with T > T0. Calculate the change in entropy.
Hint: First find the temperature at which the metal bar and the water come to equilibrium.

EXERCISE 2.6: MIXTURE TEMPERATURES 55 

is effectively drawn off from the cold reservoir. Hence, the engine performs the work 

(2.60) 

while cooling the cold reservoir. This is exactly a perpetuum mobile of the second kind, 
which permanently performs work and merely cools a heat reservoir. The vain efforts 
lasting for centuries to construct such an engine, which does not contradict the energy law 
but rather the entropy law, resulted in the recognition that !l. Q e = W B - W A = 0, or 

'fIA = 'fiB = 
Th - Te 

Th 
(2.61) 

for all reversible processes at given Th and Te. 
Let us now consider the work diagrams of some processes. In 

P 

T ___ 

V 

Otto 
the Figure 2.10 the p V diagram and the T S diagram are depicted 
for the Carnot process. The work performed per cycle corresponds 
to the hatched area 

!l.W = - f pdV = f T dS (2.62) 

s 
Figure 2.10. Work diagrams of two 

It is exactly as large as the difference of the heats !l.Qh = Th!l.S 
and !l. Qe = Te!l.S (see marked areas in the figure). Real processes, 
as for instance in an Otto-cycle engine, deviate more or less from 
this diagram. The working materials do not behave ideally and the 
processes are in most cases strongly irreversible. In addition, in such 
engines the working material is exchanged after one cycle. Because 
of irreversibility thermodynamic equilibrium is not achieved in real 
engines, but the processes are connected with strong turbulence and engines. 

pressure gradients (especially in the combustion stage), so that the 
diagrams describe only average properties (average temperature, pressure, etc.). 

When interpreting the diagrams of the Otto-cycle engine one should note that two 
piston cycles correspond to one working cycle (upper dead center, intake stroke, lower dead 
center, compression, upper dead center, ignition, performance of work, lower dead center, 
emission of exhaust, upper dead center). 

Exercise 2.6: Mixture temperatures 

Solution 

Calculate the range of possible final temperatures Tj in equilibrium for a system consisting of 
two partial systems A and B, if A and B have initial temperatures TA , TB and heat capacities 
C¢' Ce which are independent of temperature. 

To this end, consider the limiting cases of a totally irreversible process (8W = 0) and 
a totally reversible process (8Wmax ). Calculate the mechanical work that one can maximally 
extract from this system and the change of entropy of the partial systems in the irreversible 
case. 

First case: Totally irreversible process 8W = 0, dU = 8QA + 8QB = O. 


