مقدمات مکانیک کوانتوئی

در این فصل از خواص اساسی که هیچ نوع آشنا برای کسی که ویژگی مکانیک کوانتوئی ندارند، اصول و ساختار این نظریه را توضیح می‌دهیم. دانشجویان ویژگی می‌توانند قسمت‌های اولیه این فصل را کرده و آن‌ها را بیشتر بیابند. این دستورالعمل به جای دادن مفاهیم و نظریه مشخصات این شونده. به عنوان مثال برای این‌که چگونه ذرات می‌توانند در این اثرات گری می‌توانند، بررسی سرباریکی از الگو با توصیفی به‌طور مستقیم و عضوی از آنها با استفاده از نشان دهنده مفاهیم می‌باشد که این قوانین که در مجموعه وسیعی از پیداه ما مشاهدات متفاوت به صحت آنها مطابقت شده ام، مورد نظر را به صورت رابطه $\theta = \sqrt{1 - \theta^2}$ استفاده می‌کنیم. تطبیقی است که در اینجا از اندازه گیری سرعت کاملاً به صورت غیرمستقیم و با کمک بیشتر نظریه بدست آمده است. در عضویت آزمایش‌ها می‌توانیم سرعت ذرات دیگری که انحراف‌های دیگری پیدا می‌کنند نیز پیدا کنیم. بنابراین، این دستگاه، یک نوع اندازه‌گیری است که ذرات را بررسی سرعت آنها در این گروهی که "جدا" می‌کند.

به صحت قوانین الکترومغناطیسی می‌توانیم نسبت بار الکتریکی جرم ذرات را بررسی کنیم. به عبارت دیگر این دستگاه نشان می‌دهد که برای این ذرات به ازبین گذاشته گردد. در این صورت باید به‌طور آزمایش کنیم که انحرافات هنگام تغییر میدان مغناطیسی می‌توان به سبق قانونی برگرداند. این اتفاق به‌طور مستقیم به جای گذاشته شده است. از آنجا که در این اتفاق از پیدایش و شکل‌گیری میدان مغناطیسی نیز وجود دارد. در مورد با استفاده از جهت انحنای مسری ذرات علامت بار آنها را نشان نمی‌دهد. این دستگاه ذرات را بررسی می‌کند. به عبارت دیگر این آنها از هم "جدا" می‌کند. می‌توان با استفاده از ضخامت مسری ایجاد شده که نشانگر فلزات آب ایجادشده در مسری حرکت ذرات است و همین چنین شعاع انحنای مسری حرکت هم افزایه و هم برالکتریکی ذرات را نیز تعیین کرد.

1 مقدمه ای درباره مشاهده و اندازه گیری
به یک مثال دیگر نظیه کنیم. هرگاه یک توری پراش در مسیر یک پرونر قرارگیرد روی پرده ای که دریافت نوی پراش
قرارداد رشته ای خطوط حسی بازیابی بکار نمی‌گیرد، می‌تواند این خطوط ناشی از
داخل سایز‌های امواج نور با طول موج‌های میان دریافت می‌شود. این اتحاد و با ابزارهای ثابت‌یافته نوی پراش
به عنوان دستگاهی عمل می‌کند که ابزارهای نور را بر حسب طول موج آن‌ها از یکدیگر جدا می‌کند.
به عنوان آخرین مثال دستگاه‌های استرن - گرلاخ را در نظر می‌گیریم که به‌نفع عمده آن را یک میدان
مغناطیسی متغیر در رابطه با نسبت می‌گیرد و منجر به میدان

می‌شود.

از مجموعه مثال‌های بالا دو نتیجه می‌توان گرفت. اول آنکه هر نوع اندازه‌گیری درون‌پرداز یک پرآنتن است که تهویه آن یک
دستگاه مکریوسکوپی درشت را بر حسب یک خاصیت می‌گیرد و نتیجه نتایج آن
تمتیک بریدن نظریه است که بدین‌نگارنده، آن نظریه نمی‌توان به‌نفع آن اندازه‌گیری می‌تواند و منطقه‌ای نسبت داد.

این امر در مورد اندازه‌گیری های بسیار معمولی نظریه وزن‌گیری که بیشتر با نزول و گذشته ای نیازی ندارد. برای هر
نظریه ای که به‌کار برده شده است مناسب بوده و به جز از اینکه طرف تعداد نیرو و گشتاور از طرف دیگر بوده است.
جلاکدی نشان‌دهنده با دقت و توسط انسان انجام می‌شود. اما در مورد اخر این دو مدل به‌صورت دستی برنامه‌ریزی
جایی برای تخته‌نگارنده که است. دراین مورد این نمایش داده شده است که با استفاده نظریه اندازه‌گیری می‌گیریم بقدری به ادراک حسی و وابسته می‌باشد
در جمله کنید. دراین مورد آنچه را که با استفاده نظریه اندازه‌گیری می‌گیریم بقدری به ادراک حسی و وابسته می‌باشد.

نشریه‌ها و سیستم‌های این است که می‌گذارد و با استفاده نظریه دارای گونه‌ای اندازه‌گیری های دیگری ها نبایدی می‌گیریم. اما برای چه
آشیای مورد مطالعه ما قدر تا رسیدن واردیت‌های مناسبی ما دورتر می‌شود و اخلاقیت های نظری هم از نظر عادلان
از نظر پیچیده‌ها بیشتری می‌شود. با جایگذاری دیگر بزرگ‌تر می‌توان گفت آن‌انچه که ما اندازه‌گیری می‌گیریم واقعاً همان چیزی است که
اکنون جای بخش خود مطمئن‌تری می‌توانیم بگیریم. به نظر می‌رسد که از

یک روشی این اندازه‌گیری خود مطمئن‌تری شود. به عنوان مثال می‌توانیم جرم را با کمک این همکاره های غیر منطقی
که در بالا به آن اشاره کردم دریافت می‌گیریم. حالا می‌توانیم تعداد خیلی زیادی از این امر (فلاک‌های مولکولی از آنها) را که
به طرفی (با استفاده از تعداد آن‌ها مطمئن‌تری شده ایم درک که نازار قرارداریم و با رویه های خاص معمولی وزن آن
اراده‌گیری نمی‌گردد، با تمرکز به اینکه می‌توانیم به جویی است که به ما خواهد نبود

آیا درنیازی می‌کریوسکوپی اندازه‌گیری خصوصیت‌های ویژه ای علایق بر آن‌انچه که دریافت گنده شده داریم به عنوان خواهیم

به این سوال پاسخ دهیم.

در نهایت می‌کریوسکوپی برخی از خواص اشباع نوگنداری می‌تواند احتمال کند که مثل جرم، اندازه و نگاه‌های وظیفه‌ی

بعضی از خواص به‌کنار گذارنده می‌گردد اما را به‌زودی می‌گردد مثل تعداد ، با امتداز قطعی تور، برای این‌گونه روند با بیشتر بودن

به‌خودی رنگ یک خاصیتی مانند جهاد می‌کریوسکوپی نیست. آن‌انچه که یکنواختی منحصر به فرد از آن‌های می‌کریوسکوپی است
درنیای مارکوسکویی می‌توانیم خصوصیات گوناگونی از یک شی را یکی یا چند مدل طراحی کنیم. این طرح مولتی‌مودال هسته‌ای می‌تواند از نظریه‌های دیگری برای تفکیک محتوای شی، یا حتی برای تعیین کیفیت برای این مدل‌ها استفاده شود. ممکن است بگوییم که یکی از مهم‌ترین تلاش‌های ماکرونیکی می‌تواند این کیفیت برای این مدل‌ها را ارائه دهد.

در حالی که در این راستا کاری می‌شود که ریتریکسیون که به فرآیند چرخشی می‌گویند بی‌این اتقان به وزن این کیفیت است. این تلاش‌ها می‌تواند به تدریج به بهبود پیوسته در نتایج منجر شود. در نهایت، این تلاش‌ها می‌تواند به بهبود پیوسته در نتایج منجر شود.
شکل 1: دستگاه انداره گیری A. در درای این حالت های مختلف $|a_N\rangle$، $|a_1\rangle$ تجزیه می‌شوند. حالت $|\psi\rangle$ یک حالت ناشناخته است.

همواریک چیز است. به‌عنوان در حالت $|b\rangle$ کامل‌الهیانه طور تصادفی خود را در حالت های (1) و (2) نشان خواهد داد. ممکن است که این تصادفی بودن نتیجه متغیرهای پرازهای خردتری باشد که دسترسی به آنها و یکسانی کردن آنها هنگام تکرار آزمایشات فعلیاتی ما مقدور نباشد. این فرض را فعالیتی توان آزمودن و دریغ آن تهیه‌کاری که می‌توان کرد که است که در آزمایشگاه احتمالات گذار را که هم تعدادی که هم کاریک هستند به‌عنوان تطبیق کرد. بنابراین مرحله دوم آن است که می‌توان گذاری از همه احتمالات گذار برای خصوصیات مختلف تطبیق کرد. از این به بعد احتمال گذار حالت (3) به (4) را با

$$P(b, a)$$

نشان می‌دهم. واضح است که شرط زیر برآورده می‌شود:

$$\sum_{j=1}^{N} P(b_j, a) = 1.$$

ابن هم یک نتیجه آزمایشی است که بین احتمالات تفاوت وجود دارد. به‌عنوان اینکه:

$$P(a_i, b_j) = P(b_j, a_i).$$

هم چنین رابطه زیر ناشی از آزمایش است:

$$P(a_j, a_i) = \delta_{ij}$$

ابن رابطه به این معناست که تعريف حالت به شکلی که دریال انجام گذاشته‌شده و آن دریایی را به که در آزمایش A در جهت جدا شده است اگر دوباره تحت همان آزمایش قرار گیرد (البته بدون اینکه زمان برآن بگذرد) بازهم همان خشکت را از خود نشان خواهد داد.
شکل ۳: آزمایش در شکاف: تناها شکاف بالایی باز است و طرح \(I_1 \) روی پرده مشاهده می‌شود.

۳ تداخل

حالی که می‌خواهیم خصوصیات میکروسکوپی می‌رسیم. در شکل (۱) درستی ثبیت می‌شود که شکاف بالایی وجود دارد که بخشی از شرایط بازیابی را از خود می‌پذیرد. شکاف بالایی می‌تواند شده است. هرگاه که شکاف بالایی بگیرد در دفاتر (1) قرار می‌گیرد و سپس روی پرده در حالت (2) به نقطه مشتمل آن روی پرده را (وسط هنگام آزمایش) نشان می‌دهد. نتایج این آزمایش را برای مدت طولانی انجام دهم تأثیرات شدت در روی برش می‌شود. به طور کلی در دفاتر می‌تواند با تعداد ذرات مشتمل شده روی نقطه این آزمایش را به کار بگیریم.

\[
I_1(y) = P(y, 1)P(1, P_y).
\] (۵)

دراین رابطه \(P(1, P_y) \) است که برای یک دارایی که در حالت \(P_y \) است، از ذرات شکاف 1 بگیرد و در حالت (1) قرار گیرد. همچنین احتمال آن است که در حرارتی که در حالت (1) است و آذرینی 1 گذشته است در حالت (2) به نقطه مشتمل به درون دفاتر \(P(y, 1) \) قرار گیرد. ضرب احتمالی هم از ذراتی که می‌توانند در دفاتر به پرده انتقال کنند، به‌همراه یک دارایی این آزمایش را نشان می‌دهد.

با این تفاوت که این باز شکاف بالایی است. به‌همان معنایی درازه‌پیشین این بالا دارایی:

\[
I_2(y) = P(y, 2, P_y) = P(y, 2)P(2, P_y).
\] (۶)

شکل (۴) همان آزمایش را نشان می‌دهد با این تفاوت که این باز هر دوشکاف باز خسته است. اندازه‌گیری این باز می‌تواند زیر برق را پیدا کند:

\[
I_{1+2}(y) = P(y, 1)P(1, P_y) + P(y, 2)P(2, P_y) = I_1(y) + I_2(y).
\] (۷)
شکل ۳: آزمایش دو شکاف: تنهایی شکاف‌های پایینی باز است و طرح اول روز پرده مشاهده می‌شود.

اما آنچه که در آزمایش می‌بينیم آن است که ذرات متعلق به طرح I_2 که یک طرح نداخالی است روز پرده می‌نشینند.

دربان طرح جنوب تکه جلب و شکست گسترده وجود دارد.

الف: درجاهاي از پرده بازکردن هردوشکاف باهم باخته شده است که تعداد حتی کمتری ذرات نسبت به وقتی که تنها یک شکاف بازبود به آن نقطه برسد. درجاهاي نیز مثل وسط پرده تعداد ذرات دوربین آن مجموع تعداد ذراتی است که درصورت بازبودن هرکدام از شکافها به آن نقطه به پرده می‌رسد.

ب: برعکس درجاهاي دیگري از ذرات بازکردن هردوشکاف بااخته شده است که تعداد ذراتی که به آن نقطه می‌رسد بیشتر از مجموع ذراتی شود که درصورتی که هردوشکاف بازمی بود به آن نقطه می‌رسد.

ج: شکل این طرح تداخلی با رقیق گردیدن چشمه ذرات بطوریکه دره آن فقط و فقط یکی از ذرات از شکاف ها عبور کند، تغییر نمی‌کند. بنابراین نمی‌توان گفت که ذرات هنگام بازبودن هردوشکاف پاکتر می‌گردد و با این حال که اثرات با‌البیا دیده شود.

د: هرکدام از ذرات را روزی پرده به طور کامل گیرا نشسته آشکارسازی نمی‌کند و آشکارسازی ما به دو نیوانت بازی می‌کند. بنابراین نمی‌توان گفت که دره دراین آزمایش مثل یک موقعیت پوستار عمل کرده است و بخشی از آن از یک شکاف و بخشی دیگر از یک شکاف دیگر عبور کرده است.
شکل ۲: آزمایش دو شکاف: هردو شکاف باز هستند. طرح روي برده يعني طرح I_{1+2} طرح ای است که انتظار داریم بینینم.

ه: البته می‌توان در کار گذاری (د) شک کرد. ممکن است که ذره در حین عبور از دو شکاف به صورت یک پیوست (چیزی شبیه یک ابر) برخاست می‌کند و سپس در انتهای موقع نشستن روی برده نما می‌کند این ابر دورباره به صورت یک ذره کچک متمرکز می‌شود. برای پی بردن به راز رفتار ذره می‌توان درست بسیار شکاف ها آشکار سازهایی گذاشته نانوهیمکه ذره درست موقع عبور از شکاف ها چگونه رفتار می‌کند. اگر چنین کاری بکنیم متخود می‌شود که در آنجا هم ذره به صورت یک ابر یا زله یا چیزی شبیه به آن رفتار نمی‌کند بلکه به نامی (یکنواح حرم و بار و دیگر خصوصیات خود) در آشکار سازیت می‌شود. ولی دراینجا متوسط بسیار انتظار مهم می‌شود و آن این است که نشان می‌دهد می‌تواند به راز رفتار ذره باعث شده است که طرح داده یک I_{12} از بین رفت این طرح را به طرح معمولی I_{1+2} داده است. ظاهرآ یا در نتیجه که برای پی بردن به رفتار اسیرام اگر انجام داده ایم عصبانی شده است و دیگر آن کار شگفت‌انگیزی نمی‌کند.

و: حال که در نتیجه به مشاهده ظريف خود رامی دهد ما می‌توانیم به منطق ساده روي آوریم. با اگر به هر ذره ای که روی برده نشستن با شکاف ۱ آمد است با این شکاف ۲، تعداد ذراتی که روی برده نشستن اند برای بدی با تعداد ذراتی که از شکاف ۱ آمد است نیاز به شکاف ۲ و تعداد ذراتی که از شکاف ۲ عبور کرده و روی برده نشسته اند برای بدی با I_1 پس حتی بدون مشاهده نزدیکی شکاف ها می‌توانیم حکم کنیم که طرحی که سرچشمال روی برده بنت می‌شود می‌بایست برای با $I_1 + I_2$ باشد. در صورتی که اینجا درست مثل اشتباهی که ما یا آنها آشنا هستیم مثل بون فروتال عمل کرده بیانش است迭ال با نسبت است. با اگر به هر ذره ای از شکاف بالایی عبور کرده و به رده رسیده است و با از شکاف بالایی و می‌باشد طرح مشاهده شده همان طرح بدون ناخوری I_{1+2} پا را. در حال حاضر ما می‌توانیم به همراه که الکترون‌ها یا ذرات میکروسکوپی دیگر چاپی‌های رفتاری از خود بروز می‌دهند. مشکل که حتی از این هم بدتر است. مانند نشان می‌توانیم که اگر فشتاور الکترون‌ها را توضیح دهم حتی چگونگی
شکل ۵: آزمایش دو شکاف: هردو شکاف با همستان. طرح روي پرده يعني طرح \(I_{12} \) طرح ای است که واقعاً روی پرده می‌بینیم.

رفتار آن را بهتر از این نمی‌توانیم توضیح دهیم. در مقایسه این نوع که "بی‌خانگی کردن" یا "به‌کنار گذاشتن" شکاف عمومی کند ویا از آن شکاف و دراین صورت نمی‌باشد طرح تداخل داشته باشیم. بنابراین نمی‌توانیم به این بسته کنیم که کمیته وکتی سوال عمومی کردن از شکاف خواهد باشد. ولی تجربیات می‌توانیم به‌وسیله می‌توانیم ترجیح دهیم که طرح تداخل این بین می‌روید و به‌ویژه که توانایی این شکاف عمومی از نظر تجربی می‌تواند آن را تهیه کنیم که اگرچه عمل ما قربانی موفقیت است، اما کلیه دیگر آن کارگردنگان انگیزه را که در هنگام مشاهده انجام می‌داد انگیزه مسیر دیده و کاملاً بسباره شده. دستگاه شکست

انگیزه مکانیک کوانتومی از این نهایت آغاز می‌شد که ما کامی به اینکه در این بکراین این دیفیکاً و این که این اتفاقات با شهود می‌گویند باعث به‌مدت می‌شود که آغاز و انجام یک‌بار قرارداد را به‌وسیله مجموعه احتمالات گذاشته واند و این که این

اولین به حالت نهایی را در آزادی‌بندی نمی‌توانیم این شکاف می‌گیرد دیگری بودن یک بکراین دیگر و در دیگری به این شکاف می‌گیرد دیگری بکراین دیگری بکراین می‌کنم و سعی می‌کنم یک که با بک دستگاه نظری شوی کرتا این احتمالات وقوع را به نشان دهیم موفقیت دستگاه مکانیک کوانتومی است و این موفقیت آگاهی از نظر مفاد است. بکراین دیگری دیگری بکراین

گذشت بسیار عظیم بوده است. اما ما همین‌طور حق در این بکراین ایشین که از خود پریپنس آیا مکانیک کوانتومی ما را فردی که دنبال میکروکوپی را فردیم با خبر در این‌باره است که دنبال‌های خلاقانه دل‌افدا می‌کند. این‌طور می‌کنیم با خبر در این‌باره است که دنبال‌های خلاقانه دل‌افدا می‌کند.

بنابراین نخستین کار ما آن است که بیانیم آن‌طوری که طرح

\[
I_{12} = |\phi_1| \phi_2.
\]

امواج پراکنده گردید، اگر \(I_1 \) را مربع یک عدد مختلط \(\phi_1 \) و \(I_2 \) را نیز مربع یک عدد مختلط \(\phi_2 \) بگیریم

\[
I_1 = |\phi_1|^2, \quad I_2 = |\phi_2|^2, \quad I_{12} = |\phi_{12}|^2.
\]

(8)

8
که درآن

\[\phi_{12} = \phi_1 + \phi_2. \]

(9)

تا انجا این فرض می‌تواند برقراری بیشتر را که دردستی خواهد داشت اگر دره دهد، یکی توضیح دهد زیرا:

\[I_{12} = I_1 + I_2 + \phi_1^* \phi_1 + \phi_2^* \phi_1. \]

(10)

و جملات سوم و چهارم که به جملات نخستی موسوم هستند مثلاً هم جهانی چه در مورد امواج محملی دهلی کاهش و یا افزایش تعداد درهای مختلف پرده توضیح دهد.

اما اعداد مختلف \(\phi_1 \) چه هستند؟ به باد می‌آوریم که طبقاً با آن‌چه که در بالا گفتیم، قرار است ما سوالی دریازه جویی گی به کننده بسیار بسیار زیاد و تنها به این بازی و آن‌ها به فردان مدیران. بنابراین \(\phi_{12} \) دامنه احتمالی این که یکی از جملات \(|y| \) به جملت \(|1\) و سپس از جملت \(|1\) به جملت \(|y| \) تحویل یک‌پارکه است. بنابراین، به این‌که در ماهی‌های متوالی خود احتمال نیز درهم ضرب‌می‌شود می‌توانیم فرض کنیم که دامنه های احتمال نیز درهم ضرب می‌شود. در نتیجه قرار می‌دهیم:

\[\phi_1 = \langle y|1\rangle\langle 1|P_y \rangle \quad \phi_2 = \langle y|2\rangle\langle 2|P_y \rangle \]

(12)

که یک‌پارکه درج چیزی نظیر ضرب داخلی بودارها و یا به‌علت فرسوده به آن‌ها دردستی نشان دهنده باشد. اما

\[\langle y|P_y \rangle = \langle y|1\rangle\langle 1|P_y \rangle + \langle y|2\rangle\langle 2|P_y \rangle \]

(13)

این ما را به از صورت زیر نوشته:

\[c_k|a_i \rangle = \sum_j \langle c_k|b_j \rangle \langle b_j|a_i \rangle. \]

(14)
آنتی‌که در آزمایشگاه قابل حصول است که کمی می‌توانیم با انجام آزمایش‌های گوناگون روی یک حالت احتمال گذار آن حالت را به حالتهای دیگر اندوزه‌گیری کنیم. به عنوان مثال روزی حالتی است که در آزمایش‌های گیاهی با تعدادی از یک حالت داده می‌شود. این انتها در این آزمایش‌ها مربوط به گیاهی‌ها و اسم آن آزمایش‌ها برای یک شاخه A بیش‌ترین کمیت A

\[
|\psi\rangle_A = \begin{pmatrix}
\langle a_1\rangle_A \\
\langle a_2\rangle_A \\
\vdots \\
\langle a_N\rangle_A
\end{pmatrix}
\]

(15)

درحال مشاهدات دیگر آزمایشگر می‌تواند به همین ترتیب مجموعه‌ای از آزمایش‌ها مثل وظیفه آن را انجام کند.

حال مثال این است که این آزمایش‌ها چه برای یک حالتی می‌پذیرد؟ نخست بااین انتها که مشاهده‌اند تجربه نشان می‌دهد که دامنه گذاری یک حالت

\[
|\psi\rangle = \frac{1}{\sqrt{2}} (|\psi\rangle + e^{i\theta} |\psi\rangle) = a_1 |\psi\rangle + a_2 |\psi\rangle
\]

که در حال مشاهده‌ای که نشان می‌دهد می‌باشد برای آزمایش اولیه را با فاصله‌ای انجام دهیم که فرض ماه همین است. بنابراین خواهیم داشت:

\[
|a_1\rangle_A = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \quad |a_2\rangle_A = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \quad \ldots \quad |a_N\rangle_A = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}.
\]

(16)

یادآوری این نکته لازم است که آزمایشگر دیگر با مجموعه‌ای از آزمایش‌هایی به هم مرتبه دامنه هر یک از این آزمایش‌ها را دراده خواهیم دید.

آزمایشگر می‌پایست به‌صورت منفی شهره نهایی در آزمایش‌های آری را به دست خواهد داد و به فاصله‌ای آن را. تجربه ای از آزمایش‌های آزمایش‌های را دراده کرده.

کد. این سوالی است که در یکنواخت آنده به آن پاسخ خواهیم گفت.

6 بردارهای حالت

اگر دراین لحظه به رابطه (14) توجه کنیم و آرنج با شکل زیر بارانوی‌سی کنیم

\[
\langle b_j | \psi \rangle = \sum_i \langle b_j | a_i \rangle \langle a_i | \psi \rangle.
\]

(17)

موجه شبانه نام و تمام رابطه درایه های در آزمایش‌های A و |\psi\rangle_A مولفه‌های یک بردار می‌شوند. در هر آزمایش‌های A مولفه‌های یک بردار را دارای مولفه |\psi\rangle_A آزمایش‌های A نمی‌باشد. با این حال |\psi\rangle_A و |\psi\rangle_B از دیدگاه یک بردار دیگری که آرنج با شکل زیر بارانوی‌سی کنیم

\[
|\psi\rangle = \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_N \end{pmatrix}
\]

(16)

فرم مولفه‌های یک بردار را دارای |\psi\rangle_A و |\psi\rangle_B بالاتر از |\psi\rangle_A و |\psi\rangle_B مولفه‌های یک بردار دیگری که آرنج با شکل زیر بارانوی‌سی کنیم

\[
|\psi\rangle = \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_N \end{pmatrix}
\]

(16)

با یک بردار |\psi\rangle و |\psi\rangle_B کاملاً مشابه با |\psi\rangle_A و |\psi\rangle_B مولفه‌های یک بردار را دارای مولفه |\psi\rangle_A آزمایش‌های A نمی‌باشد. با این حال |\psi\rangle_A و |\psi\rangle_B از دیدگاه یک بردار دیگری که آرنج با شکل زیر بارانوی‌سی کنیم

\[
|\psi\rangle = \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_N \end{pmatrix}
\]

(16)

فرم مولفه‌های یک بردار را دارای |\psi\rangle_A و |\psi\rangle_B بالاتر از |\psi\rangle_A و |\psi\rangle_B مولفه‌های یک بردار دیگری که آرنج با شکل زیر بارانوی‌سی کنیم

\[
|\psi\rangle = \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_N \end{pmatrix}
\]

(16)

با یک بردار |\psi\rangle و |\psi\rangle_B کاملاً مشابه با |\psi\rangle_A و |\psi\rangle_B مولفه‌های یک بردار را دارای مولفه |\psi\rangle_A آزمایش‌های A نمی‌باشد. با این حال |\psi\rangle_A و |\psi\rangle_B از دیدگاه یک بردار دیگری که آرنج با شکل زیر بارانوی‌سی کنیم

\[
|\psi\rangle = \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_N \end{pmatrix}
\]

(16)

با یک بردار |\psi\rangle و |\psi\rangle_B کاملاً مشابه با |\psi\rangle_A و |\psi\rangle_B مولفه‌های یک بردار را دارای مولفه |\psi\rangle_A آزمایش‌های A نمی‌باشد. با این حال |\psi\rangle_A و |\psi\rangle_B از دیدگاه یک بردار دیگری که آرنج با شکل زیر بارانوی‌سی کنیم

\[
|\psi\rangle = \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_N \end{pmatrix}
\]

(16)

با یک بردار |\psi\rangle و |\psi\rangle_B کاملاً مشابه با |\psi\rangle_A و |\psi\rangle_B مولفه‌های یک بردار را دارای مولفه |\psi\rangle_A آزمایش‌های A نمی‌باشد. با این حال |\psi\rangle_A و |\psi\rangle_B از دیدگاه یک بردار دیگری که آرنج با شکل زیر بارانوی‌سی کنیم

\[
|\psi\rangle = \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_N \end{pmatrix}
\]

(16)
هایی مختلف ($a_i|\psi\rangle$) را به عنوان مولفه‌های مختلف آن بردار در یک پایه بدست می‌دهد. در اینجا می‌پیش‌تازه به یک تکیه $P(a_i, \psi)$ مهم اشاره کنیم و آن این است که هرگونه تابع دامنه‌ای ($a_i|\psi\rangle$) را در یک فضای ضرب چند ترکیبی تغییری در احتمالات وجود نخواهد آمد. بنابراین با آزمایش A تابع توان با این پی برده که آن فازی در دامنه‌ای ضرب شده است باشد. حال تکیه مهم این است که بنابراین (14) همان فضای در دامنه‌ای دیگری به عنی ($\langle b_i|\psi\rangle$) نیز ضرب خواهد شد و بنابراین با هر چیزی $\langle \psi|b_i\rangle$ تابع دامنه‌ای نیز ضرب شده در آن را تشخیص داد. در نتیجه این آن‌ها را همان‌واره می‌توان در یک فازکلی ضرب کرد. بنابراین

هم‌چنین با قابلیت رابطه (17) به عنوان رابطه ای بین مولفه‌های b_i بردار در یک پایه مختلفی می‌توانیم از این به دامنه $P(a, b) = P(b, a)$ احتمال ($\langle b|\psi\rangle$) به عنوان ضرب داخلی دو بردار با هم با پرکت ($\langle b|\psi\rangle$) نگاه کنیم. ضمناً از تقارن (18) آوریم که

\[\langle a|b \rangle = \langle b|a \rangle^*. \]

علی‌وقت پیانی بدلیل رابطه (4) فرض می‌کنیم که در هریابی ای

\[\langle a_i|a_j \rangle = \delta_{ij}. \]

البته این رابطه ساده‌ترین فرضی است که می‌توان در مورد رابطه دو دامنه احتمال در نظر گرفت.

5. عملگرها

تاکنون یادگری‌کننده این که وقایع دارای در حالات (ψ) است انتزاع عضوی خاصی A مقداری را با احتمال $P(a_i, \psi)$ تولید می‌کند. حال می‌توانیم متغیر متوسطی را را پس از جنگ بیاندازه گیری بدست می‌آید حساب کنیم. این مقدار را با ($A|\psi\rangle$) نشان می‌دهم برابر است با:

\[\langle A|\psi\rangle = \sum_{i=1}^{N} a_i \langle a_i|\psi\rangle = \sum_{i=1}^{N} a_i \langle \psi|a_i\rangle \langle a_i|\psi\rangle \]

(20)

که در آن

عملگری است که به این انتزاع عضوی نسبت داده شده است و به شکل زیر است:

\[A = \sum_{i=1}^{N} a_i |a_i\rangle \langle a_i| \]

(21)

مسلم است که این عملگرخوانی خودی بعنی پایه A قطری است و شکل زیر را دارد:

\[\hat{A}_{A} = \begin{pmatrix} a_1 & \cdots & \cdots & \cdots \\ \cdots & a_2 & \cdots & \cdots \\ \cdots & \cdots & \cdots & \cdots \\ \cdots & \cdots & \cdots & a_N \end{pmatrix} \]

(22)
مثال: اسب‌بن

شکل (٦) بطور شماتیک آزمایشی را نشان می‌دهد که در آن اتم های یک عنصر مثل بروز از درون یک میدان مغناطیسی که گرایش آن در راستای است عبور می‌دهد. این نوع آزمایش را آزمایش اشتیک گرایش در راستای x می‌خوانیم و به طور اختصاری آن اندوزه گری بای آزمایش را پا ای نامیش می‌دهیم. این آزمایش دیدن را با دیدن می‌کنیم. این گروه اتم هایی که به جهت بالا متحرک می‌شوند در حالت (+|x| و اتم هایی که به طرف پایین متحرک می‌شوند در حالت (−|x| قرار گرفته اند. حال در آزمایشگاه می‌توان احتمالات زیر را بدست آورد:

\[P(z+, x+) = P(z-, x+) = \frac{1}{2}, \]

که از آن تجربه می‌شود

\[|z + x| = \frac{1}{\sqrt{2}}, \quad |z + x| = \frac{1}{\sqrt{2}} \]

و در نتیجه

\[|x| = \frac{1}{\sqrt{2}} e^{i\alpha} |z+| + \frac{1}{\sqrt{2}} e^{i\beta} |z-|. \]

با پیش‌بینی حالت‌های (+|x| و (−|x| می‌توانیم فاراهی فوق را از بین برمی‌گیریم. بنابراین رابطه فوق به صورت زیر در می‌آید:

\[|x| = \frac{1}{\sqrt{2}} |z+| + \frac{1}{\sqrt{2}} |z-|. \]
به طریق مشابه از روابط تجربی

\[P(z+, x-) = P(z-, x-) = \frac{1}{2} \] \hspace{1cm} (27)

می توان نتیجه گرفت

\[|x-\rangle = \frac{1}{\sqrt{2}} (e^{i\gamma}|z+\rangle + e^{i\delta}|z-\rangle). \] \hspace{1cm} (28)

فازهای فوق را دبگر نصیب توان بازمی‌گردد حالت های \(\pm \) از بین برده. تنها یکی از آنها را می‌توان با یک تجربی \(|x-\rangle \) از بین برده و در نتیجه خواهیم داشت:

\[|x-\rangle = \frac{1}{\sqrt{2}} |z+\rangle + \frac{1}{\sqrt{2}} e^{i\delta}|z-\rangle. \] \hspace{1cm} (29)

در اینجا رابطه تجربی \(P(x+, x-) = 0 = 0 \) و با استفاده می‌کنیم و بدست می‌آوریم:

\[|x-\rangle = \frac{1}{\sqrt{2}} |z+\rangle - \frac{1}{\sqrt{2}} |z-\rangle. \] \hspace{1cm} (30)

به همین ترتیب با استفاده از روابط تجربی مشابه برای آزمایش اشترن گرلاخ در راستای \(y \) می‌توان نوشت:

\[|y+\rangle = \frac{1}{\sqrt{2}} |z+\rangle + \frac{1}{\sqrt{2}} e^{i\gamma}|z-\rangle. \] \hspace{1cm} (31)

\[|y-\rangle = \frac{1}{\sqrt{2}} |z+\rangle + \frac{1}{\sqrt{2}} e^{i\delta}|z-\rangle. \] \hspace{1cm} (31)

حال از رابطه 0 = 0 بدست می‌آوریم \(y+ + |y-\rangle \) "باید تعیین کنیم" مقدار \(\theta \) است. برای این آخرين جزیی به پایه تعیین کنیم مقدار \(\theta \) است. برای این کار از یک رابطه تجربی باقیمانده استفاده می‌کنیم و آن اینکه

\[P(x+, y+ +) = \frac{1}{2} \] \hspace{1cm} (32)

ابن رابطه الزام می‌کند که

\[|x + |y+\rangle|^2 = \frac{1}{4} |(1 + e^{i\gamma})|^2 = \frac{1}{2} \] \hspace{1cm} (33)

که نتیجه می‌دهد \(\pm \) بدون هیچ ارجاع خاصی جواب‌های انتخاب می‌کنیم. بنابراین خواهیم داشت:

\[12\]
به نقطه از میژ کلاسیکی و نحوه برم انتیک میزان مغناطیسی ناپاک و میان مغناطیسی و هم چنین رابطه
ممان مغناطیسی با گشتاورژاوی یا به همان شکلی که در مقدمه این فصل گفته شد، در آزمایش اشتورن گرلاخ یا ذراتی را که در حال در حال انتظار (+) و (-) قرار دارند، جنین تفسیری که مولفه گشتاورژاوی ای آنتی‌مادماد = برای با یک است و ذراتی را که در حال (+) و (-) قرار دارند، جنین تفسیری که مولفه گشتاورژاوی ای آنتی‌مادماد = برای با یک است که در آن h ناب در یک و برای h با $\frac{\hbar}{2\pi}$ است و 6.627 × 10⁻³⁴ h زول نامبر است. در تئوریِ می‌توانیم باوجه یا رابطه (21) عملگرهای S_x, S_y, S_z را به شکل زیر بیویسم:

$$
S_x = \frac{\hbar}{2} (|x+\rangle \langle x+| - |x-\rangle \langle x-|) = \frac{\hbar}{2} \begin{pmatrix} 1 \\ i \\ 1 \end{pmatrix}
$$

$$
S_y = \frac{\hbar}{2} (|y+\rangle \langle y+| - |y-\rangle \langle y-|) = \frac{\hbar}{2} \begin{pmatrix} 1 \\ i \\ 1 \end{pmatrix}
$$

$$
S_z = \frac{\hbar}{2} (|z+\rangle \langle z+| - |z-\rangle \langle z-|) = \frac{\hbar}{2} \begin{pmatrix} 1 \\ i \\ 1 \end{pmatrix}
$$

لباق محاسبه ساده می‌توان نشان داد که رابطه زیر بین این عملگرهای برقرار است:

$$
[S_x, S_y] = i \hbar S_z, \quad [S_y, S_z] = i \hbar S_x, \quad [S_z, S_x] = i \hbar S_y.
$$

این رابطه سیستم رابطه ای است که به مولفه‌های گشتاورژاوی درکلاسیکی کلاسیک وجود دارد هرین ناپاکت که درکلاسیک کلاسیک کمیت های عملگرهای S_x, S_y, S_z عملگرهای رابطه بین آنها نیز رابطه کروش پیوست و به رابطه کتبی می‌باشد.

7 دینامیک کوانتومی

دینامیک کوانتومی را می‌توان با انکا پراچال و بالا و پایین به سیاست بیشتر و ساده ای به دست آورده. فرض کنید که بردارهای یک دستگاه کوانتومی در حالت $\psi(t)$ را با $|\psi(t)\rangle$ نمایش دهیم. درایر هر نوع برهمین کیف در حالت در حالت $\psi(t)$ تغییرات خواهد بود از...
فرض اساسی دینامیک کوانتومی آن است که این بردار حالت جدید را می‌توان با یک عملگر خطی از بردار حالت قدیمی بدست آورد بحثی:

\[
\psi(t') = U(t', t)\psi(t).
\]

از آن‌جا که هر دو بردار می‌باشند نرم‌الیسی به‌اشکال این شرط حکم می‌کند که عملگر \(U \) می‌باشد و یک عملگر یک‌ساختاری باشد.

\[
U(t', t)U(t', t)^\dagger = I.
\]

هم چنین با استفاده از دو تحویل پی در پی از زمان \(t' \) تا \(t \) و سپس از زمان \(t' \) تا \(t'' \) بدست می‌آوریم:

\[
U(t'', t')U(t', t) = U(t', t).
\]

علاوه بر این واضح است که:

\[
U(t, t) = I
\]

هرگاه تحویل فقط به اندازه زمان بی‌نهایت کرکی مثل انحنام شود، می‌توان را برحسی عکس داد و نوشت:

\[
U(t + \epsilon, t) = I - i\epsilon H(t) + O(\epsilon^2) \approx e^{-i\epsilon H(t)}
\]

یکانی بودن الگومی کننده \(H \) هرمیتی باشد. حال با استفاده از رابطه (40) می‌توان عملگرهای تحویل را برای هر باره زمانی نوشت. خواصی داشت:

\[
U(t', t) \approx e^{-iH(t'+(N-1)\epsilon)} e^{-iH(t'+(N-2)\epsilon)} \cdots e^{-iH(t)}
\]

ویا در حد \(0 \rightarrow \infty \) و \(\epsilon \rightarrow 0 \) با شرط:

\[
U(t', t) = \lim_{N \rightarrow \infty} \prod_{i=0}^{N-1} e^{-iH(t+i\epsilon)} = T(e^{-i \int_{t'}^{t} H(\tau) d\tau})
\]

چون در زمان آخرين عبارت سمت راست عبارات نمایی مرتب شده نام دارد و به صورت جبر طرف جنبه تعریف می‌شود. مهم‌ترین حالات خاصی اینکه در آن \(H \) تابع زمانی باشد. در این صورت همه عبارات های نمایی با اهم جابجایی شوند و می‌توان نمایانی آنها را با اهم جمع کرد و نوشت:

\[
U(t', t) = e^{-i(t'-t)H}.
\]
 حالات های خالص و حالات های مخلوط

ناکارانی که می‌تواند کرده است که حالات دستگاه کوانتمی با یک بردار \(|\psi\rangle\) مشخص می‌شود. بنابراین حالات دستگاه کوانتمی این امر مستلزم آن است که اول‌اً ما از آنجایی که گویایی از یک روی دستگاه کوانتمی انجام شده است و طی آن حالات دستگاه مشخص شده است مطلع هستیم و نتیجه این دستگاه کوانتمی از محتوی خود منرودی باقی مانده است. برای دستگاه‌های واقعی هیچ کدام از این دو نظر صحت نیستند. این از این از این اوخمه بازی فیلم‌گر گروه پیوسته نشده. درک شده است یک دستگاه رابط کوانتمی است و نمی‌توانیم یک طریقی که انمی‌می‌اند درک حالات خاص هستند. هم‌چنین است بازیکفای از از هیچ چیزی پیوسته یکی را مشخص کرده است که هنگامی که یک حالات رابط‌دیگر حالت یک اصل دیگر مثل اصول مکانیک کوانتمی بسته می‌آوریم. در موارد حضور گوناگون اطلاعات که یک حالات رابط‌دیگر حالت یک ترجیح دهی می‌نماید باطمینان قدر کمی که توزیع‌ها روزی حالات مختلف کاملاً از این شدید که باطلیس یک بازیکفای از از همان فرد وارید می‌نماید و یک طریقی که آنها جهت قطعیت خود یک دستگاه کوانتمی را یک چگونه می‌باشد توصیف کنیم. فرض کنید که فاصله‌ی مثل ماتریس چگالی خاصیت‌های زیرداراده:

\[
\langle M \rangle = \sum_i p_i |\psi_i\rangle \langle M |\psi_i\rangle = tr(\rho M)
\]

(46)

که در آن \(\rho \) عبارت است از:

\[
\rho = \sum_i p_i |\psi_i\rangle \langle \psi_i|
\]

(47)

و ماتریس چگالی دستگاه کوانتمی خواننده می‌شود. بنابراین حالات زنگی دستگاهی با تعداد آنها یک بردار حالت مشخص شود با یک ماتریس چگالی مشخص می‌شود. این ماتریس چگالی دارا برداری نمایش اطلاعاتی است که ما می‌توانیم از دستگاه کوانتمی کسی کنیم. به‌طور کلی هر از کثیف‌تر که ماتریس چگالی خاصیت‌های زیرداراده:

\[
tr(\rho) = 1
\]

\[
\rho^\dagger = \rho
\]

\[
\rho \geq 0.
\]

(48)

می‌توان ماتریس چگالی \(\rho \) را دریابیم و به برداری خودش نوشته. در این صورت خواهایم داشت:

\[
\rho = \sum_{i=1}^N \lambda_i |\psi_i\rangle \langle \psi_i|
\]

(49)

که در آن \(\lambda_i \) یک عدد بزرگ‌تر از هیچ عدد نیست و به همین دلیل برداری \(|\psi_i\rangle \) یک مجموعه‌ی معنی‌دار مشکی‌کننده و هم‌هیپرمهای ریاضی به‌طور ماتریسی \(\rho \) ندارد، اما رابطه‌ی 49 نجیبه‌ی طبیعی ماتریسی
چگالی را بیان می‌کند و بردارهای نیز برای ماتریس چگالی هستند و تعداد آنها نیز برابر با بعد ماتریس چگالی با بعد فضایی هیلبرت است.

اگر چگالی خاصیت دیگری را نیز می‌توان بدست آورد و آن اینکه:

\[tr(\rho^2) = \sum_{i} \lambda_i^2 \leq 1, \] \hspace{1cm} (50)

که در آن از میان بودن \(\lambda_i \)'ها و اینکه مجموعه همه آنها برابر با 1 است استفاده کرده‌ایم. هم چنین از تجزیه طبیعی قضیه زیر را بدست می‌آوریم که ابتدا آن ساده است:

قضیه: حالت \(\rho \) یک حالت خالص است اگر و فقط اگر \(tr (\rho^2) = 1 \).

نتایج توانسته‌می‌باشد خاصیت \(M \) را وقتی که دستگاه در حالت \(\rho \) فرآمده دارد بدست آورم. حال می‌پرسم دانشگاه‌گری انتظار این اندازه که انتظار می‌دهم خاصیت \(M \) بوده و این خاصیت \(\rho \) نیز مقدارهای متفاوتی دارد.

\[P(m) = \sum_{i} p_{i} |\psi_i\rangle P_m |\psi_i\rangle = tr(P_m \rho) \] \hspace{1cm} (51)

که در آن از این موضوع استفاده کرده‌ایم که انتظار مقدار

\[m \]

برای وقتی که دستگاه کوانومی در حالت خالص \(\psi \) و توانسته‌می‌باشد خاصیت

\[m \]

است و برای \(\rho \) با \(\psi \) توانسته‌می‌باشد که بعد از دانشگاه‌گری خاصیت

\[P_m \]

توجهی به توانسته‌می‌باشد. دستگاه کوانومی با ماتریس چگالی

\[P_m \]

توانسته‌می‌باشد. این درک‌ها این انتظار است که مقدار

\[m \]

رای دانشگاه‌گری باشیم و با انتظار گری خود این دسته‌ای از دیگر دیگر دیگر می‌تواند به عنوان دستگاه‌های کوانومی (از دیگر ذرات جدا کرده باشیم. هر چند این جداسازی ای انجام نداده باشیم حالت دستگاه از آن‌دانه‌گری هیچ یک دستگاه چرخه‌ای به صورت زیر خواهد بود:

\[\rho_1 = \sum_{m} q_m P_m \] \hspace{1cm} (52)

که در آن انتظار این است که مقدار

\[m \]

بدست آمده باشد. با توجه به رابطه (51) که این انتظار را تعيين می‌کند می‌توان این رابطه را به شکل زیر بزنیم:

\[\rho_1 = \sum_{m} tr(P_m \rho) P_m. \] \hspace{1cm} (53)

از دیدگاه زاویه دیگر نیز می‌توان به ماتریس چگالی نگاه کرد. فرض کنید که دو زاویه دایره اسپین به دوم دایره و این دو عدد

\[2 \]

درک‌ها مثل حالت زیر قرار دارند:

\[|\psi\rangle_{AB} = a|+, +\rangle + b|+, -\rangle + c|-+, +\rangle + d|-+, -\rangle \] \hspace{1cm} (54)

می‌پرسم که حالت زاویه \(A \) چیست. در اینجا درست است که نمک‌های دیگر حالت مشخص قرار دارند ولی نمک \(A \) بردار حالت مشخص نسیم داد. در این رت و در دیگر موارد مشابه که دستگاه کوانومی مورد نظر ما جزئی از یک دستگاه

17
پرداختن به جمله آن با یک ماتریس چگالی مشخص می‌شود. برای اینکه آن موضوع را به طور کلی موردبحث قراردهیم، فرض کنید که دو دستگاه B و A در یک جایگاه کانتونمی مشخص قرار دارند که به‌درسپرسه بردارهای پایه فضای هیلبرت

سیستم A و سیستم B بسط آن به شکل زیر است:

\[|\psi\rangle_{AB} = \sum_{i,j} \psi_{ij}|i, j\rangle. \] \(55\)

در نتیجه خواهیم داشت:

\[\langle M\rangle_A = \langle \psi | (M \otimes I) | \psi \rangle = tr_A (tr_B ((M \otimes I) | \psi \rangle \langle \psi |)) \]
\[= tr_A (M \rho_A) \] \(56\)

که در آن

\[\rho_A = tr_B (|\psi\rangle \langle \psi|) \] \(57\)

ماتریس چگالی دستگاه A نامیده می‌شود. به این ترتیب در عنصر ماتریسی روي دستگاه A را می‌توان به صورت \(tr(M \rho)\) را در آن از رابطه بالا تبعیین می‌شود و جانشین جایگاه کانتونمی دستگاه A است. به طریق مشابه ماتریس چگالی دستگاه A به داده می‌شود. می‌توان فرم صریح ترماتریس چگالی را نیز بدست آورد. با توجه به

\[\rho_B = tr_A (|\psi\rangle \langle \psi|) \] \(55\) خواهیم داشت:

\[\rho_A = \sum_{i,j} \rho_{ij}|i, j\rangle \] \(58\)

که در آن

\[(\rho_A)_{ij} = \sum_{\mu} \psi_{\mu i}^* \psi_{\mu j} \] \(59\)

و

\[\rho_B = \sum_{\mu, \nu} \rho_{\mu \nu}|\mu \rangle \langle \nu| \] \(60\)

که در آن

\[(\rho_B)_{\mu \nu} = \sum_{i} \psi_{\mu i}^* \psi_{\nu i} \] \(61\)

با توجه به این عبارت ها برای تاپ می‌توان خواص سه گانه ماتریس چگالی را تحقیق کرد یعنی این که پیک ماتریس هرمیتی

ثبت با برای رده‌بندی واحد است.
1.8
تجزیه اشتمال
فرض کنید که دستگاه مربوط به یک گروه از آن‌ها در حال یک است "A + B" هستند. در این صورت همواره می‌توان این حال را به شکل زیر بار نویسی کرد:

\[|\psi\rangle_{AB} = \sum_i \lambda_i |i, i\rangle \]

که در آن \(\lambda_i \) ها اعداد مثبت و \(|i, i\rangle \) به ترتیب مجموعه بردارهای مشابه جهت یکی از فضاهای هستند. این تجزیه را تجزیه اشتمال می‌خوانیم. برای یکی از آن‌ها این تجزیه به ترتیب زیر عملی می‌نماید. برای فضای هستند به یک پارامتر انتخاب می‌کنیم که در آن ماتریس \(\rho_A \) قطعی‌بندی می‌شود. این پارامتر را با \(|i\rangle \) نشان می‌دهیم. در نتیجه بردار حالت به شکل زیر نوشته می‌شود:

\[|\psi\rangle_{AB} = \sum_i |i\rangle \phi_i \]

که در آن \(\{\phi_i\} \) بردارهایی بهره‌مند یا یکی از فضاهای هستند. حال دقت می‌کنیم که به ترتیب:

\[\rho_A = tr_B (|\psi\rangle_{AB} \langle \psi|) = \sum_i |i\rangle \langle i| \phi_i \phi_j\rangle. \]

اماجون ماتریس چگالی \(\rho_A \) دریابیم انتخاب شده قطری است با بدست‌آوردن می‌رایم که:

\[\langle \phi_i | \phi_j \rangle = \delta_{ij} \]

با تعریف \(|\phi_i\rangle = \lambda_i |i\rangle \) به تجزیه اشتمال بعنی رابطه (62) می‌رسیم.

2.8
خالص‌سازی
فرض کنید که دستگاه \(A \) توسط یک ماتریس چگالی \(\rho \) توصیف می‌شود. آن‌ها می‌توان دستگاهی مثل \(B \) وجود داشته باشد که:

\[\rho = tr_B (|\psi\rangle_{AB} \langle \psi|) \]

باشد. اگر جهت خالصی بیابد کنیم حالت جدیدی از ماتریس چگالی \(\rho \) می‌خوانیم. برای اینکه خالص
شده دستگاه \(B \) باشد \(|\psi\rangle_{AB} \) به ترتیب زیر عملی می‌نماید. و دریابیم \(|\psi\rangle_{AB} \) با استفاده از ماتریس چگالی \(\rho_A \) بازه‌های مقدارهای \(p_i \) را دستگاهی می‌گیریم که:

\[p = tr_B (|\psi\rangle_{AB} \langle \psi|) \]
بعد فضایی هیلبرت آن یعنی H_B دردسته A باشد. هرگاه بردارهای $|i\rangle$ یک مجموعه بردار متعامد برای H_B است.

$$
\psi_{AB} = \sum_i \sqrt{p_i} |i, i\rangle
$$

(67)

که در آن $|i\rangle$ یک مجموعه بردار متعامد برای H_B هستند. در این صورت $|\psi_{AB}\rangle$ یک خالص سازی است.

2.8. کره بلنخ

کلی ترتیب جالت یک درهم سلیم یک دوم و یا هر دو دیگری که فضایی هیلبرت آن دردسته است با یک ماتریس جبرایی دردسته می‌شود. این ماتریس را با ρ نشان می‌دهیم. از آن‌جا که ماتریس $|i\rangle$ و $|i\rangle$ های پاوولی بیابانی برای فضای ماتریس های دردسته تشکیل می‌دهد می‌توان این ماتریس را به شکل زیرنوشت:

$$
\rho = \frac{1}{2}(r_0 I + \sigma^2, \sigma^2) = \frac{1}{2} \begin{pmatrix}
 r_0 + z & x - iy \\
 x + iy & r_0 - z
\end{pmatrix}
$$

(68)

که در آن $\sigma^2 = \begin{pmatrix}
 \sigma_1 & i \sigma_2 \\
 -i \sigma_2 & \sigma_3
\end{pmatrix}$ ماتریس های پاوولی است و ضریب $1/2$ برای راحتی بیرون کشیده شده است.

حال دقت می‌کنیم که:

الف: هرمنی است. بنابراین ضرایب ρ حقیقی هستند.

$$
x_0 = 1. \text{ بنابراین } r(\rho) = 1
$$

ب: بنابراین $x_0 = 1$. $r(\rho)$ بنابراین 1 طراحی است.

$$
\lambda_{1,2} = \frac{1}{2}(1 \pm r)
$$

(69)

که در آن r اندوزه بردار ρ است.

بنابراین برای میثبط بودن کافی است که طول بردار ρ از یک کمتر باشد: بعنی $1 \leq \rho$. به این ترتیب بین هرکدام که دو عدد از یک عدد باشد به نظر بگیریم یک عدد از یک عدد تعدادی که در شکل زیر نشان داده است. نقطه روش سطح کره بلنخ نقاطی هستند که در آنها $r = 1$ و با نیاز به موقعیت ρ برای یک از ورود r هستند. در نتیجه این یک نقاطی از جالت های خاص هستند. در اینجا می‌توان نشان داد که هرگاه $1 = r$ باشد، به معنی

$$
\rho \equiv \frac{1}{2}(I + n \cdot \sigma) = |n\rangle\langle n|
$$

(70)
که در آن \(p = \frac{1}{2} (I + r \cdot \sigma) \) است.

به این ترتیب حالت مخلوط را از حالت‌های خالص باوری به صورت گروهی از خلاله‌های خالص انتگرالی از حالت‌های خالص باوری به صورت

\[
\rho = \int d\phi d\cos \theta \ p(\theta, \phi) |n(\theta, \phi)||n(\theta, \phi)|
\]

در این شرط که \(1 = \frac{1}{2} (I + r \cdot \sigma) \) است.

به این ترتیب حالت مخلوط را از حالت‌های خالص باوری به صورت مجموعه از حالت‌های خالص و با جمع به صورت

\[
\rho = \frac{1}{2} (I + r \cdot \sigma) = \sum_{i=1}^{N} p_i |n_i||n_i|
\]

با این ترتیب از حالت‌های خالص باوری که در حالت‌ها اکثر خواهی نشان داده شده است. فرض کنید که برای حالت مخلوط‌اندازه‌ای با برداشته درتایی بازی ریز را در دکتر نقطه را از حالت را به صورت مجموعاً بازی ریز را در دکتر نقطه که \(n_1 \) و \(n_2 \) نشان داده‌ای به محاسبه ساده سالان دهیم آن‌گاه باوری شده که \(n \) توان

\[
\rho = p_1 |n_1||n_1| + p_2 |n_2||n_2|
\]
تمرین‌ها:

1- تحلیل دو حالات کوانتومی ρ و σ به صورت زیر تعریف می‌شود:

$$F(\rho, \sigma) = \sqrt{\text{tr}(\sigma^{1/2} \rho \sigma^{1/2})}.$$ \hspace{1cm} (75)

الف: نشان دهنده دو حالات کوانتومی ρ و σ را که به ترتیب متناظر با بردارهای r و s هستند محاسبه کنید.

ب: نشان دهید که اگر $\sigma = \sigma_1 \otimes \sigma_2$ و $\rho = \rho_1 \otimes \rho_2$ آنگاه

$$F(\rho, \sigma) = F(\rho_1, \sigma_1)F(\rho_2, \sigma_2).$$ \hspace{1cm} (76)

2- حالات (11) $|\psi\rangle = \cos \theta |00\rangle + \sin \theta \cos \phi |01\rangle + \sin \theta \sin \phi |11\rangle$ چگالی آیس و باب را بدست آورید. تجزیه اشتباهی‌اند حالات را بدست آورید.

3- حالات (11) $|\psi\rangle = \cos \theta |00\rangle + \sin \theta \cos \phi |01\rangle + \sin \theta \sin \phi |11\rangle$ که در آین $p = (1 - x^2) |\psi\rangle \langle \psi|$ است. ماتریس چگالی کوانتومی که در دست آیس و باب هستند و محاسبه کنید.

4- به‌طور مقدارهای این دو ماتریس را حساب کنید. یک خالص سالار از حالات ρ را بدست آورید.

$$\text{tr}(\rho^2) = 1$$ باشد.

22