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The point is that the messenger 

remains separable at all stages.
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But the initial state should be very peculiar. 
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To understand this result
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Our Goal:
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Generalization to d-level states
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M

V ?U ?

⇢AB =?
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Generalization to GHZ states
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Let us start from the very beginning:

0

A B

M

ψ k = 1
2
0 +α k 1( ) φk = 1

2
0 + βk 1( )

After Alice CNOT | kiAM =
1p
2
(|00i+ ↵k|11)
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A B

M

| 1
kiAMB =

1

2
(|00i+ ↵k|11) (|0i+ �k|1i)

The messenger is sent to Bob:

| 1
kiAMB = 1

2 (|000i+ ↵k|110i+ �k|001i+ ↵k�k|111i)

We rearrange the indices for simplicity

| 1
kiABM = 1

2 (|000i+ ↵k|101i+ �k|010i+ ↵k�k|111i)



A B

M
↵k�k = 1

From the previous page:

| 1
kiABM = 1

2 (|000i+ ↵k|101i+ �k|010i+ ↵k�k|111i)

| 2
kiABM =

1

2
(|000i+ ↵k|101i+ �k|011i+ |110i)

After Bob CNOT operation, the state is:

χ k = 1
2

α k 10 + βk 01( )

=
1p
2
(|�+i|0iM + |�ki|1iM )
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However the particle M has entangled itself


 with A and B

 


in both stages of the process.
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 In stage 1: After Alice operation:

A B

M

| 1
kiAMB =

1

2
(|00i+ ↵k|11) (|0i+ �k|1i)
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A B

M

In stage 2: After Bob’s Operation 

=
1p
2
(|�+i|0iM + |�ki|1iM )| 2

kiAMB
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How to remove the entanglement?

For (2) we use Mixing

For (1) we use Symmetrization
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φ+ = 1
2
00 + 11( ) φ− = 1

2
00 − 11( )

1
2

φ+ φ+ + φ− φ−( ) = 12 00 00 + 11 11( )

Mixing

=+
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+ 1
2

φ+ χ k ⊗ 0 1 + χ k φ+ ⊗ 1 0( )
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M
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=
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2
(|�+ih�+|⌦ |0ih0|+ |�kih�k|⌦ |1ih1|)

⇢2
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=
X
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| 2
kih 2

k|

| 2
kiABM =

1p
2
(|�+i|0i+ |�ki|1i)

(2)
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χ k = 0
k
∑

χ k = 1
2

α k 10 + βk 01( )

α k = 0
k
∑

We demand that;
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⇢2
ABM

=
X

k

1

2
(|�+ih�+|⌦ |0ih0|+ |�kih�k|⌦ |1ih1|)

A B

M

So after Bob’s operation we have this:



(1): Removing entanglement in the first stage

A B

M

| 1
kiAMB =

1

2
(|000i+ ↵k|110i+ �k|001i+ |111i)

| 1
kiAMB =

1

2
(|00i+ ↵k|11i) (|0i+ �k|1i)

| 1
kiAMB =

1

2

⇣p
2|GHZi+ ↵k|110i+ �k|001i

⌘



20

A B

M

B is obviously separate from A and M.

So If we make the state symmetric with respect to B and M,

then M will be separate from A and B.
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| 1
kiAMB =

1

2

⇣p
2|GHZi+ ↵k|110i+ �k|001i

⌘

⇢AMB =
X

k

| 1
kih 1

k|We want this to be symmetric:

α k
2 = 0

k
∑The Term  |110><001| vanishes if we assume that:

The Term  |GHZ><110| vanishes due to :
α k = 0

k
∑

The Term  |GHZ><001| vanishes due to :{
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So we add the terms π101 +π 010

| 1
kiAMB =

1

2

⇣p
2|GHZi+ ↵k|110i+ �k|001i

⌘

π110 +π 001But two terms remain which are not symmetric::

This addition does not affect the process?
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α k
2 = 0

k
∑
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k
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T. S. Cubitt, F. Verstraete, W. Du ̈r, and J. I. Cirac, 


Phys. Rev. Lett. 91, 037902 (2003).
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CNOT CNOT
�1

CNOT |i, ji = |i, i+ ji

Distribution of d-level Bell States
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Distribution of d-level Bell States

How many states we need?

What are the form of these states?

| ik =
1p
d
(|0i+ ↵k|1i+ �k|2i+ · · · ⇠k|d� 1i)
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Distribution of d-level Bell States

! = e
2⇡i
K

The number of states = K

| ki = 1p
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Distribution of d-level Bell States

! = e
2⇡i
K

| 1
kiAM = 1p

d

Pd�1
j=0 !

ksj |j, ji

| kiA = 1p
d

P
j !

ksj |ji | kiB = 1p
d

P
j !

�ksj |ji

| 1
kiAMB = 1p

d

P
j,j0 !

(sj�sj0 )k|j, j, j0i

| 2
kiAMB = 1p

d

P
j,j0 !
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(i, j) = (k,l)

(i, j) = (l,k)

}
si + sj = sk + sl

si = sj �! i = j

sj <
K
2a:

c:

b:



0 1 2 3 d-1

s0 s1 s2 s3 sd�1

si + sj 6= sk + sl



0 1

si + sj 6= sk + sl

2

si 0 1 2

0 1 3

For d=3 (Qutrits)
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| kiA = 1p
3
(|0i+ !k|1i+ !3k|2i)

0 1 3 sj <
K
2

si

K=7 ! is the 7th root of unity. 



0 1

si + sj 6= sk + sl

2

si

3

0 1 3 4

0 1 3 5

0 1 3 6

0 1 3 7



Distribution of GHZ 
states

34
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0 + βk 10 + γ k 1

0 +α k 1

α kβkγ k = 1

|0i |0i

000 +α k 111
A

B C

M1 M2

| 1
kiAM1M2BC = (|000i+ ↵k|111i) (|0i+ �k|1i) (|0i+ �k|1i)
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B C
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The results of measurement of the messengers 

determine the type of GHZ state obtained!

|�01
k i = 1p
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�
�k|000i+ �k
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|�10
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�
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Removing the entanglement after stage 2 by mixing:

P
k ↵k = 0

P
k �k = 0

P
k �k = 0

α k

βk

=
k
∑ α k

γ k

=
k
∑ βk

γ k

=
k
∑ 0
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Symmetrization

A

B C

Messengers are separate from B and C

All local operations are done by A on the messengers

We make this state symmetric with respect to

 (M      B) and (M      C)1 2
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α 2
k =

k
∑ β 2

k =
k
∑ γ 2

k =
k
∑ 0

Removing the entanglement after stage 1 by 
symmetrization
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α k

βk

=
k
∑ α k

γ k

=
k
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=
k
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α k =
k
∑ βk =

k
∑ γ k =

k
∑ 0

α 2
k =

k
∑ β 2

k =
k
∑ γ 2

k =
k
∑ 0

Removing the entanglement after stage 1 by 
symmetrization
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α k = 0
k
∑ α k

2 = 0
k
∑

α k
3 = 0

k
∑

βk = 0
k
∑

γ k = 0
k
∑

α k

βk

= 0
k
∑

α k

γ k

= 0
k
∑

βk

γ k

= 0
k
∑

α k
4 = 0

k
∑

α k
5 = 0

k
∑α k

6 = 0
k
∑

Solution

α kβkγ k = 1

βk =α k
2

βk
2 = 0

k
∑

γ k
2 = 0

k
∑

γ k =α k
−3
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α k = 0
k
∑ α k

2 = 0
k
∑

α k
3 = 0

k
∑

α k
4 = 0

k
∑

α k
5 = 0

k
∑α k

6 = 0
k
∑

Solution
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α k =ω
k

1+ω 1 +ω 2 +ω 3 +ω 4 +ω 5 +ω 6 = 0

1+ω 3 +ω 6 +ω 2 +ω 5 +ω 1 +ω 4 = 0

1+ω 2 +ω 4 +ω 6 +ω 1 +ω 3 +ω 5 = 0

.........
ω = e

2πi
7



We can distribute GHZ states with probability 
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1
7



Summary:

46

There is a systematic way to produce 

Bell states and GHZ GHZ(n) 


states in any dimension, by using only separable 
messengers. 
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