9/5/12




9/5/12

Motivation

* Information encoded in a state of a quantum system

* The system interacts with its (large) environment

* The information “dilutes” into a reservoir (“equilibrates”)
*  Where the original information goes ?

» Is the process reversible ?

+ Can we recover diluted information ?

+ Can we derive a master equation?

* What is the role of quantum correlations in reservoir?

Quantum superposition: Qubit

_ igp
Superposition of basis vectors ‘ 77b> =« ‘ O> =+ ﬁe

Amplitudes of probability a, Be’

Probability 8.5

P+P=1 .

Poicnare sphere — state space




Physics of information transfer

System S - a single qubit initialle/
prepared in the unknown state 939)

Reservoir R - composed of N qubits all
prepared in the state £ , which is arbitrary
but same for all qubits. The state of
reservoir is described by the density
matrix &V

Interaction U - a bipartite unitary

operator. We assume that at each time N y 1':
step the system qubit interacts with just a » 1 ) i

single qubit from the reservoir. Moreover, I l 1 ] 1 \[

the system qubit can interact with each of 5 0 5 8 6 &

the reservoir qubits at most once. RESERVOIR

R.Alicki & K.Lendi, Quantum Dynamical Semigroups and Applications, Lecture Notes in Physiscs (Springer, Berlin, 1987)
U.Weiss, Quantum Dissipative Systems (World Scientific, Singapore, 1999)
B.M.Terhal & D.P.diVincenzo, Phys. Rev. A 61, 022301 (2001).

Before and after
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Dilution of quantum information

Definition of quantum homogenizer

- Homogenization is the process in which

YVN>N; ...... DoV, €) <6 o
VI<ESN ..... D(&,,6) <6

D(.,.) is some distance defined on .
the set of all qubit states S(#) . At the -1
output the homogenizer all qubits are ‘
approximately in a § vicinity of the

state §. ) . o)
+
Ps ®‘§ ? ‘f

No cloning theorem

« Covariance




Dynamics of homogenization:
Partial Swap

Transformation satisfying the conditions of homogenization form a one-parametric
family

U(n) = cosnl + isinnS

where S is the swap operator acting as

Se®EST=¢® o

The partial swap is the only transformation satisfying
the homogenization conditions

Dynamics of homogenization:
Partial Swap

1
Let gg)) = 51 +w.¢ with three-dimensional real vector |qjj| < 1/2

Defining & = 51 +%.5 we find that after n steps the density operator
reads o 1 .
oM = Tg[gg)] = =1 [(1 — i+ T?u}’] G

2

where s :=sinn and ¢ := cosn . o] 1 LT —

. . . ('_‘_‘\ N\ 'd E
where T is a matrix acting on a Aot | ‘
four-dimensional vector (1, @) ¢ e

1 0
T — = - 2,7 ¢ —
3 <tT§> Tew = c*w — 2cst X W
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Homogenization of Gaussian states

« Quantum homogenization - squeezed vacuum

reservoir state

signal state

signal after @0 interactions

Homogenization of Gaussian states

e Quantum homogenization - squeezed vacuum

reservoir state

signal state

signal after m&#y interactions

9/5/12



9/5/12




Entanglement: CKW inequality

3 2

5

C?y+CF3 < CF g3
The CKW inequality Osborn generalization

V.Coffman, J.Kundu, W.K.Wootters, Phys.Rev.A 61,052306 N

(2000)] S;(n) = Z [Cjk(n)]2 < 7j(n)

k=0,k#j

Homogenized qubits saturate the CKW inequality

Si(n) =T1;(n) forall j=0,...,] N

Where the information goes?

Initially we had gg)) and N reservoir particles in state §

Forlarge N, § — 0 ands — (0 all N+1 particles are in the state

Moreover all concurrencies vanish in the limit N — oo . Therefore, the
entanglement between any pair of qubits is zero, i.e.
W) _ 0

Also the entanglement between a given qubit and rest of the homogenized
system, expressed in terms of the function Sy (V) is zero.

Information cannot be lost. The process is UNITARY !
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Information in correlations

Pairwise entanglement in the limit N — oo tends to zero.

We have infinitely many infinitely small correlations between qubits and it
seems that the required information is lost. But, if we sum up all the mutual
concurrencies between all pairs of qubits we obtain a finite value

1 2

lim Z[C(N) = hm ZS

N—o0 = P 5
5 4

The information about the initial state of the system is “hidden” in mutual
correlations between qubits of the homogenized system.

Can this information be recovered?

Reversibility

Perfect recovery can be performed only when the N + 1 qubits of the
output state interact, via the inverse of the original partial-swap
operation, in the correct order.

kept in order to reverse quantum

gz Classical information has to be
process
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4th reser. object - - -
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Reversibility

T T
stochastic evolution

\\ T *Recovery of the initial state

further stochastic ev.
inverse evolution -

\ U=P(n) m=p U'=P(-n)

R L
0 200 400 600 800 1000
n

a reservoir composed of 100 qubits

one particular stochastic evolution of the system S (red line) up to 500 interactions

«“Spontaneous” recurrence - number of
steps needed for 90% recovery is 10°

Master equation & dynamical
semigroup

« Standard approach (e.g. Davies) — continuous unitary
evolution on extended system (system + reservoir)

* Reduced dynamics under various approximations —
dynamical continuous semigroup & =& &

» From the conditions CP & continuity ofe, -> dynamical

semigroup can be written as ., _ S
t
: : 9p
» Evolution can be expressed via the generator 0 =3[p]
» Lindblad master equation
90p _

=, =PI X, (A b J+[Aup A4 )
a.p
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D(p3, p2)

D(p, p1)

W S(ph) s (ph)

s(p2)
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Conclusions: Infodynamics

* Dilution of quantum information via homogenization

* Universality & uniqueness of the partial swap operation

+ Physical realization of contractive maps

+ Reversibility and classical information

» Stochastic vs deterministic models

* Lindblad master equation

+ Still many open questions — spin gases, stability of reservoirs
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