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Quantum States of Light

Single mode field = quantum harmonic oscillator

E(r, t) = \/580 (de—iwt + d’reiwt) u(r)

« u(r) the spatial field distribution G= \/E i+ dt] p=—— [@ — &t]
. & = (hw/2¢V)2  electric field per photon ' 2
o [a,af] =1

Description of states

- State vector [¥)

* density operator p

+ moments of system operators ((a')™a")
* Wigner function

Wigner function: an insight into
a quantum state
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The probability of a configuration is given in classical theory by the Boltzmann
formula exp [— V/kT] where V is the potential energy of this configuration. For high
temperatures this of course also holds in quantum theory. For lower temperatures,
however, a correction term has to be introduced, which can be developed into a power
series of 4. The formula is developed for this correction by means of a probability func-
tion and the result discussed.
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Wigner Functions of Light States

v
Wig,p) = ey / C(q,p') exp { P

i(qgp’ — pq’
(g1 pPq ):| (/’/I’//)I

characteristic function

displacement operator

p

s (g,p) = Tr [pD(q, )

D(q,p) = exp [£(qp — pq))

P;(q) = \/%ﬁ/deﬁ(q,p) = V2rh{qlplq)

Marginal distributions

Pauli problem

M.Hillery, R.F.O’ Connell, M.O.Scully, and E.P.Wigner, Phys. Rep. 106, 121 (1984)

Quantum tomography

- rotated quadratures

Zg = \/g [ae™® +ale®]  Fpinpp = % [ae= — ate”]

* marginal distribution for

Py(z9)

K.Vogel and H.Risken, Phys. Rev. A 40, 2847 (1987);

U.Leonhardt: Measuring the quantum state of light
(Cambridge University Press, Cambridge, 1997).

Py(xg)

Marginal distribution

Projection plane

Wixy) )
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Inverse transformations

’/‘,/(/y,),{ o < zp < 00;0 <0 <7} »H'r«/_/n‘

¢ Inverse Radon transformation
* Transformation via sampling functions
* Pauli prob'em Pmn = f() ffoo Pg(l‘g)an(CCg, 0) dlEG do

local oscillator
laser

’ Ey
signal wave Es

e -
)
Ei detector 1

detector 2 50%-beam splitter

to data acquisition

subtract ip-ip

K.Vogel and H.Risken, Phys. Rev. A 40, 2847 (1987);
Th.Richter, Phys. Lett. A 211, 327 (1996);
G.M.D’ Ariano, C.Macchiavelo, and M.G.A.Paris, Phys. Rev. A 50, 4298 (1994).

Experiments

* M.G.Raymer — first tomographic reconstruction 1993
» J.Mlynek — WF of squeezed light 1996, 1997

G.Breitenbach

D.T.Smithy, M.Beck, M.Besley, M.G.Raymer: Phys. Rev. Lett. 70, 1244 (1993)
G.Breitenbach, S.Schiller, J.Mlynek: Nature 387, 471 (1997)
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Knowledge about physical situation

...existing quantum theory must be supplemented with some principle that
tells us how to translate, or encode, the results of measurements into a definite
state description p . Note that the problem is not to find p which correctly
describes “true physical situation”. That is unknown, and always remains so,
because of incomplete information. In order to have a usable theory we must
ask the much more modest question:What p best describes our state of
knowledge about the physical situation?

E.T.Jaynes

E.T.Jaynes: “Information theory and statistical mechanics” in 1962 Brandeis Lectures, p 181

Incomplete observation levels

When instead of the density operator p, expectation values G, of a set O
of operators G, (v = 1,...,n) are measured then a large number of density
operators which fulfill the conditions

Trﬁ{é} = 1,
Tr (p{é}éy) =G, v=1,2,..,n;

can be found for a given set of expectation values G, = (éy) That is, the
conditions specify a set C of density operators which has to be considered.
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Laser Cooling of CS Atoms in
Optical Traps

Salomon et al. use cesium atoms pre-cooled in a
magneto-optical from a vapor cell to load a dipole trap.
This non dissipative trap is realized by crossing two
focused Nd:YAG laser beams. The initial density is a
few times 102 atoms/cm?3, corresponding to a million
atoms at a temperature of 20 micro K, i.e. a velocity
dispersion of 10 recoil velocities (v, = 3.5mm/s for
cesium). The lifetime of the crossed dipole trap is of
the order of one to two seconds. In this trap, the atoms
are further cooled by a subrecoil cooling technique,
Raman cooling: the number of atoms is increased
with a velocity close to v=0 by controlling the
momentum exchanges between the atoms and the
laser photons. Using chirped Raman pulses, it is . . .
possible to get the final velocity dispersion of 3 V. It Absorption picture of the crossed dipole
is also possible to cool the atoms evaporatively just by trap Leen e Gl s MOT has been
lowering slowly the trapping Nd:YAG laser power. By switched off. The atoms initially at the
combining these two cooling methods, it is possible to crossing of the two Nd:YAG beams
cool the atomic sample to 640 nK, which corresponds remain trapped for one to two seconds,

to a velocity dispersion of 1.8 v,... The phase space whereas the others fall due to gravity.
density is th):an ofpthe order of 5.104. P P The trapping volume is of the order of
(40 microns)

M.Morinaga, l.Bouchole, J.-C.Karam, and C.Salomon, Phys. Rev. Lett. 83, 4037 (1999).

Reconstruction of vibrational

5‘11 (Zk) = TﬁIJ‘Fo (éo)l}+ (Tj)

P

V.Buzek and R.Derka: “Quantum observations ” in Coherence and Statistics of Photons and Atoms ed.
J.Perina (John Wiley & Sons, New York, 2001) pp. 198-261

0(Tj)d§0 4 ¢ X
Wigner function reconstructed from
experimental data from ENS, Paris.

G.Drobny and V.Buzek: “Reconstruction of motional states of neutral atoms via MaxEnt principle.”
Phys. Rev. A 65, 053410 (2002)

EQ o
03 & :
MaxEnt reconstruction of density j:“ N TN
operator e e
~02 ]: :
g L "
1 Nl Nﬂ [ e R )
p. = Eexp /l”n + szzf;tj'kﬁ;k = o1 ,
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Non-resonant atom-field interaction

* One atom interacting with n photons:
en T AF,
d - Copling: {e,n|V/ g,n+l>=Q\/m
| g, n+1> — AE, ., - "Vacuum Rabi frequency”
- Dispersive regime: o > Q\/m

2

Q
AE,, =h=—(n+1
e.n 45 (n )

2
AE, :—hQ—n
- 40

The cavity frequency is shifted: atom index of refraction
atomic frequency: light shift and Lamb shift

Measuring the parity:
Phase shift of the atomic state

p/2
pulse

QZ
=—.T
267

)

—(l¢)+|2)) ®|n)——

2 2°

Atomic coherence is phase shifted proportionally to n

i, iAD ()
(le)+e

g))®|n) . A®n)=g,(n+1/2)

For 4= | =€) +le)) @ln)— e (o) +1(-1) |g}) @l

Even and odd number states are correlated to two orthogonal atomic states.
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Measuring atomic phase shifts
by Ramsey interferometry

p/2 p/2
PU|[S\9 — /g\ulse
Atomic beam (o f o>_
v L] v Atomic state
detector

apply twor /2 resonant pulses AD = gyn
R1 and R2 which acts as —

. R, Q) f (\] R,
beam splitters |, (le)+12)) = 3

(le)+1e)

- &=

lg)—

S

— Vacuum

interferences between two — Fockistatel|n>

undistinguishable quantum paths: T
"Ramsey fringes"

Measuring the parity of the photon
number
p

f

-

P(e)

Fo=p

o

I
%

Coven=11 for state |2n> \

C,q4=-1 for state |2n+1> /

« Sensitivity to fringe contrast:
Assume:
Coen =—Coa =N =1

even

CA@) = ConPren + Cotg B ={ (1) ) =2

even even

Then:
C(O() _ w (0{) Finite fringe contrast only affects the signal to noise

. One still measures W by renormalizing the signal

n 2

13



9/5/12

14



Wigner function of the vacuum
state Il
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Reconstruction of Qubits

* Pure state of a qubit
‘ 1f> = Cos z)/2‘l> + e"sin z)/2‘()> = ‘ ﬁ>

density operator

/):%(um):é(””*”f’,*”‘”

1) exact meanvalues — infinite ensembles

2) “What is the best a posteriori estimation of a quantum state when
a measurement is performed on a finite (arbitrary small) number of
elements of the ensemble?”

S.Massar & S.Popescu: Phys. Rev. Lett. 74, 1259 (1995)
C.W.Helstrom: Quantum Detection and Estimation Theory (Academic, NY, 1976)
A.S.Holevo: Probabilistic and Statistical Aspects of Quantum Theory (North-Holland, Amsterdam, 1982)

Optimal state reconstructions

* Quantum states of light and the Wigner function

* Quantum tomography

* Quantum state reconstructions on various observation levels

» Maximum entropy (MaxEnt) principle

» Vibrational motion of neutral atoms

» Reconstruction of a cavity field via measurement of parity operator
» Max-Ent reconstruction of a state of a qubit
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