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Bell Telephone & FLASH

Detector A
(Sender)
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\

Detector B
(Receiver)

Fig. I. The FLASH detection process. Photons in beam &
(traveling 1o the right) are rendered either circularly unpolarized
(CUP) or plane unpolarized (PUP) by positioning of the quarter
wave plate in beam A (traveling to the left). Each B photon is
amplified by a nonselective laser gain tube and the resulting
isopolarized burst of light is examined for counting asymmetry in
either the CP or PP channel.

Can quantum nonlocality of entangled states be used for
super-luminal communication?

N.Herbert, Found. Phys. 12, 1171 (1982)

Alphabet in Bell Telephone & Flash

* Singlet states

‘U>w B \/]7(‘ U>,| ‘L"‘L>B a ‘Ui>A4 ‘ U>h’)

2

exhibits perfect quantum
correlations for polarization
measurement along orthogonal
but arbitrary axes.

* Alice and Bob have pair before
any communication

Alice might like to send a message
to Bob. She performs a
measurement on her particle in one
of the two bases

0:[) sna <))}

After Alice performs her measurement in
one of the bases, say |T>,|l

Then she can predict with certainty what
Bob’ s result would be if he performs a
measurement in the same basis.

logical zero = basis {’T>’l>}
logical one = basis {’H>’H>}
* Infinite (continuous) alphabet:

{2l

Question: Can we discriminate
(reconstruct) quantum states based on
results of measurements performed on
a single quantum object?
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Optimal reconstructions of qubits

 Construction of optimal (& finite-
dimensional) POVM’s — maximize
N+1 1 N the fidelity F
F=——=-11+

+ average fidelity of estimation

CN+2 2 N +2

* POVM via von Neumann

9 1 | projectors — Naimark theorem
F===-]|1+=
3 2 3 - Optimal decoding of information
 Estimated density operator on » Optimal preparation of quantum
average systems
B = 1 —)s P s oF—1o \:\' - * Recycling of g-information
i 2 N +2

S.Massar and S.Popescu, Phys. Rev. Lett. 74, 1259 (1995)

A.Latorre, P.Pascual, and R.Tarrach, Phys. Rev. Lett. 81, 1351 (1998)

R.Gill and S.Massar, Phys. Rev. A 61, 042312 (2000)

M.Hayashi, Asymptotic Theory of Quantum Statistical Inference (Academic Press, NY, 2005)

Naimark theorem

the optimal POVM can be physically
output realized via a quantum network and
bseq orthogonal ement

e.g. in the standard base

input

- number of auxiliary gbits is such that
the space of all gbits with 2 dimensions

© can date (N+1) “orthog
projectors
U ° - the unitary transformation U reads:
oy R

o T W) HZYR)
0y J ——no] i=12..R -
0 \—— T ,

fi) L i) i=R#l.2"

ancilla (for the meaning of symbols see the text)
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Back to FLASH

« Optimal Quantum Measurement: * Can we do better?

* Cloning quantum states?

— active quantum detectors?

This does not allow for signaling —
from a single shot measurement we

are not able to discriminate between ‘L’>‘0> = — L’> v
bases
{‘T>‘L>} and {‘H>‘H>} j N +1
N +2
Herbert:

“a serious objection to FLASH concerns the noise... of the copying process”

N.Herbert, Found. Phys. 12, 1171 (1982)

No-cloning Theorem

» Wigner 1961: * Unitarity of the cloning
“the probability is zero for existence operation:
of self-reproducing states” <1ZJ| ,¢)> - (<1Z)| 1/1>)2 < S’| S//>

* Wootters & Zurek 1982: ‘

(#le) =0 o (3l =1

“unkonwn pure states cannot be

cloned perfectly”
P 1 Distinguishable states can

 Condition for universal cloning be copied perfectly

lofs)——1e)el4)|s)
[£)]0)]s)——1d)=|9)|s")
E.Wigner, in The Logic of Personal Knowledge (The Free Press, 1961), p.231.

W.K.Wootters and W.H.Zurek, Nature 299, 802 (1982).
H.Yuen, Phys. Lett. A 113, 405 (1986)
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Bounds on cloning due to
no-signaling

o, () = i([ 1 +nm3 ® 1 +1,] @ + 1305 + 1,7 (3 A 5))

1 — 2 cloning
771,772,15, tzy are real parameters » Optimize the fidelity
F=Tip, ()P, @ 1]

. p(rﬁ) — non-negative eigenvalues e P — |+7ﬁ><+77z|,

Ltta(y+n)z0  aSumingy =n, =7
* Optimal values
2
2 2
1—ti\/4t +4txy+<’71_’72) >0 tmy:o’tzl/g,nzg/gqF:%

* Generalization to 1 toN cloning

No-signaling and QM give the same fidelity!

N.Gisin, Phys.Lett. A 143, 1 (1990)
C.Simon, V.Buzek, and N.Gisin, Phys. Rev. Lett. 87, 170405 (2001)

Flipping a bit — NOT gate
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Flipping a Bit — NOT gate

Universal NOT gate: Problem

‘¢L> is antipode of ‘1/1>

= Spin flipping is an inversion of the Poincare sphere

= This inversion preserves angels

= The Wigner theorem - spin flip is either unitary or anti-unitary operation

= Unitary operations are equal to proper rotations of the Poincare sphere

= Anti-unitary operations are orthogonal transformations with det=-1

= Spin flip operation is anti-unitary and is not CP

= In the unitary world the ideal universal NOT gate which would flip a
qubit in an arbitrary (unknown) state does not exist
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Measurement-based vs quantum
scenario

Measurement-based scenario: optimally measure and
estimate the state then on a level of classical information
perform flip and prepare the flipped state of the estimate

Quantum scenario: try to find a unitary operation on the qubit
and ancillas that at the output generates the best possible
approximation of the spin-flipped state. The fidelity of the
operation should be state independent (universality of the U-
NOT)

Measurement-based flipping of
qubit

* Estimated density operator when just a single qubit is
available

P

p+—1

3

A

LW |

est -

* Flipping based on this estimation

1
Al _ LAl
pWIVE(IS = p +

.
3 3

R.Derka, V.Buzek, and A.K.Ekert, Phys. Rev. Lett 80, 1571 (1998)
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Theorem: Optimal universal NOT
gate

Among all completely positive trace preserving maps
. N
T:S(H) - S(H)
The measurement-based U-NOT scenario attains the
highest possible fidelity, namely

F=(N+1)/(N+2).

H.Bechmann-Pasquinucci and N.Gisin, Phys. Rev, A 59, 4238 (1999)
V.Buzek, M.Hillery, and R.F.Werner Phys. Rev. A 60, R2626 (1999)
N.Gisin and S.Popescu Phys. Rev. Lett. 83, 432 (1999)

Approximate U-NOT gate

W.Wootters and W.H.Zurek, Nature 299, 802 (1982)
V.Buzek and M.Hillery, Phys. Rev. A 54, 1844 (1996)
S.L.Braunstein, V.Buzek, M.Hillery, and D.Bruss, Phys. Rev. A 56, 2153 (1997)
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_ +p+ + pt+
H, =ixh a¢b¢l—awlb¢ + h.c.

[¥) =200}, =|10),
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U =exp|— '(.’L‘3 = 5L'2)P1 exp —i.7:1(p2 - p3)]

o) — 208

3 N

N -2
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Model of classical processor

data register

output register

1101110110/ "out

program register

.
— Heat
Y

pout = T[pm]

Quantum processor

data register output data register

/

Py pd
program register,

!

& &

Quantum processor — fixed unitary transformation U,

'H,— data system, S(H,) — data states
H, — program system, S(H,) — program states
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Question

Is it possible to build a universal programmable quantum
gate array which take as input a quantum state specifying
a quantum program and a data register to which the
unitary operation is applied ?

No-go theorem

[, =0lv),

660),

Ey([#) ©100), ) = (U]9)) @ €})

* no universal deterministic quantum array of finite extent can be
realized

 on the other hand — a program register with d dimensions can be
used to implement d unitary operations by performing an
appropriate sequence of controlled unitary operations

M.A.Nielsen & I.L.Chuang, Phys. Rev. Lett 79, 321 (1997)
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C-NOT: probabilistic g-processor

*Vidal & Cirac — probabilistic implementation of

) :i e?/2|0) 4 e71¥/2|1 -
[0) = 75 (¢#[0) ) <> 0>

G.Vidal and J.l.Cirac, Los Alamos arXiv quant-ph/0012067 (2000)
G.Vidal, L.Mesanes, and J.l.Cirac, Los Alamos arXiv quant-ph/0102037 (2001).

C-NOT: probabilistic g-processor

U

. —®

4R | 1>
L/

Correction of the error — new run of the processor with ‘ 2@)
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Description of gq-processors

* definition of U,, via “Kraus operators” 4, = (/ /U 1k)

¢ normalization condition

Ud/) (

W>¢/ ®‘k>,,) = Z(Ak/ ‘W>L/) ®‘l>,,

i —
2 AA"[A/\':/ - 5/;1/;3 14
1

¢ induced quantum operation 2, — p, =, [P(/] = ZAdeA;
1

* general pure program state ‘

2),-Salf),

p, = p, =0, (pl: 2.1‘ (E)/,)l_l‘ (E)

4(8)= , (lu,,

E‘>[, = ; o, Ak[

* can be generalized for mixed program states

Universal probabilistic processor

- Quantum processor Uy,

- Data register r;,, dim H,=D

- Quantum programs U, = program

register r,, dim H,= N = D?
* Nielsen & Chuang:

- Nprograms P N orthogonal states
- Universal quantum processors do not 3

» Buzek-Hillery-Ziman:

- Probabilistic implementation

- {U,} operator basis,

1 +
U=YaU, o :ETrUkU

- progTarr’i state

‘WU>=;ak‘Wk>

Example:
Data register = qudit, program register = 2 qudits

D-1 ;
U, =" = Zexp(— 27ism ]s )l
5=0

N

1

lvi)=

.
=)= 75 S o0 -2 Jols-n)
=0

D5

input registers
output registers
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