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Qubit – encoding orientation 
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Pure state of a spin -1/2 particle 
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Complete state measurement 
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Black-box problem  	


•  Having a black box (with no memory) processing one 
qubit in a time, how can we determine this channel? 

? 
C.W.Holstrom, Quantum detection and estimation theory (Academic Press, New York, 1976) 
A.S.Holevo, Probabilistic and statistical aspects of quantum theory (North Holland, Amsterdam, 1982) 
J.F.Poyatos and J.I.Cirac, PRL 78, 390 (1997) 
 

Open quantum systems 

ĤSE = ĤS ⊗ 1̂E + Ĥint + 1̂S ⊗ ĤE

ρ̂SE (t) = exp[−i(t− t0)ĤSE ]ρ̂SE (t0) exp[i(t− t0)ĤSE ],

ρ̂SE (t0) = ρ̂S (t0)⊗ ρ̂E (t0)
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Reduced dynamics 

ρ̂S (t) := T̂ (t, t0)ρ̂S (t0) = TrE [ρ̂SE (t)]

T̂ (t, t0) is a linear map which transforms the input state ρ̂S (t0) onto the
output state ρ̂S (t).

The question: how we can determine (reconstruct) the master equation
which governs the time evolution of the reduced density operator ρ̂S (t)

d
dt ρ̂(t) = L̂(t, t0)ρ̂(t).

Liouvillian superoperator 

This master equation can be written in the convolutionless form

d

dt
ρ̂(t) = L̂(t, t0)ρ̂(t).

due to the fact that in the finite-dimensional Hilbert spaces matrix elements of

density operators are analytic functions. Consequently, T̂ (t, t0) are non-singular

operators (except may be for a set of isolated values of t) in which case the inverse

operators T̂ (t, t0)
−1

exist and the Liouvillian superoperator can be expressed as

L̂(t, t0) :=
�
d

dt
T̂ (t, t0)

�
T̂ −1

(t, t0).

T̂ (t, t0) is uniquelly specified by ĤSE and by the initial state ρ̂E (t0) of the

environment.
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Reconstruction of the map    ̂T (t, t0)

Let us assume that the system S has been initially prepared in a pure state

|Ψ(t0)� =
N�

i1=0

ci1 |i1�

where |i1� are basis vectors in the (N + 1)-dimensional Hilbert space HS of the

system under consideration.

The environment is initially prepared in a state ρ̂E (t0) =
�

α1α2
dα1α2 |α1�E �α2|,

where |αi�E are basis vectors in the Hilbert space HE of the environment.

Reconstruction of the map    ̂T (t, t0)

The physical process T̂ (tk, t0) is determined by a transformation acting on
basis vectors of the system and the environment

|i1�S |α1�E
T̂ (tk)−→

N�

j1=0

�

β1

E(i1j1)(α1β1)(tk)|j1�S |β1�E .
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The output density operator    ̂ρ(tk)

ρ̂(tk) =
N�

i1,i2=0

ci1(ci2)
∗R̂(i1,i2)(tk),

where (N + 1)2 operators R̂(i1,i2)(tk)

R̂(i1,i2)(tk) =
N�

j1,j2=0

D(i1,i2)(j1,j2)(tk)|j1��j2|,

with

D(i1,i2)(j1,j2)(tk) =
�

α1,α2,γ

dα1α2 × E(i1j1)(α1γ)(tk)E
∗
(i2j2)(α2γ)(tk).

Properties of    

The process T̂ (tk) for a given time tk is completely determined by (N + 1)2

operators R̂(i1,i2)(tk), which in turn are specified by the (N + 1)2 × (N + 1)2

matrix elements D(i1,i2)(j1,j2)(tk).

R̂(i1,i2)(tk) have the properties

TrR̂(i1,i2)(tk) = δi1,i2 ; (R̂(i1,i2)(tk))
† = R̂(i2,i1)(tk),

or, equivalently,

N�

j=0

D(i1,i2)(j,j)(tk) = δi1,i2 ; D∗
(i1,i2)(j1,j2)(tk) = D(i2,i1)(j2,j1)(tk).

R̂(i1,i2)(tk)
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Determination of    ̂R(i1,i2)(tk)

In order to specify the (N + 1)2 operators R̂(i1,i2)(tk) one has to consider

(N+1)2 specific initial conditions |Ψ(k1,k2)�in =
�N

i1=0 c
(k1,k2)
i1

|i1� where k1, k2 =
0, 1, ..., N and to measure the corresponding (N + 1)2 output density operators
ρ̂(k1,k2)(tk) which can be expressed as

ρ̂(k1,k2)(tk) =
N�

i1,i2=0

M(k1,k2)(i1,i2)R̂(i1,i2)(tk),

where
M(k1,k2)(i1,i2) = c(k1,k2)

i1
(c(k1,k2)

i2
)∗.

If the (N + 1)2 initial conditions |Ψ(k1,k2)�in are chosen so, that the matrix
M(k1,k2)(i1,i2) is invertible, then the set of equations can be solved with respect

of the operators R̂(i1,i2)(tk).

Determination of    ̂R(i1,i2)(tk)

To make the reconstruction possible the matrix M has to be invertible.

Obviously, there are many choices of such matrix. For instance M is given by

complex amplitudes c(k1,k2)
i specified as

c(k1,k2)
i =






(δi,k1 + δi,k2)/
√
2 if k1 > k2

δi,k1 if k1 = k2
(δi,k1 + iδi,k2)/

√
2 if k1 < k2

. (1)

The reconstruction process described above gives us a set of operators R̂(i1,i2)(tk)
which describe the transition of the system from the state ρ̂(t0) to the state

ρ̂(tk) at a given time tk. In principle, one can perform a whole sequence of such

reconstructions at different times t1, t2, ....tK so that the reduced dynamics of

the studied system can be reconstructed from the measured data.
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Reconstruction of    ̂L(t)
Now our task is to determine (reconstruct) from a set of measurements of

the output states ρ̂(k1,k2)(t) for given input states ρ̂(k1,k2)(t0), the form of the

Liouvillian superoperator L̂(t).
The operators R̂(i1,i2)(t) are also governed by the same master equation

d

dt
R̂(i1,i2)(t) = L̂(t)R̂(i1,i2)(t),

Alternatively, for matrix elements D(i1,i2)(k1,k2)(t)

d

dt
D(i1,i2)(k1,k2)(t)

N�

j1,j2=0

D(i1,i2)(j1,j2)(t)G(j1,j2)(k1,k2)(t),

Here the matrix G(j1,j2)(k1,k2)(t) is defined as

G(j1,j2)(k1,k2)(t) = �k1|
�
L̂(t)|j1��j2|

�
|k2�,

and it uniquely determines the Liouvillian superoperator L̂(t).

Reconstruction of    ̂L(t)

We already know how to reconstruct matrices D from the measured data for
arbitrary time t (from these data we can also evaluate the corresponding time
derivatives). Providing the matrix D(i1,i2)(j1,j2)(t) is not singular its inverse

D̃(j1,j2)(i1,i2)(t) can be found and then the reconstructed matrix G(j1,j2)(k1,k2)(t)
is given by a simple expression

G(j1,j2)(k1,k2)(t) =
N�

i1,i2=0

D̃(j1,j2)(i1,i2)(t)
d

dt
D(i1,i2)(k1,k2)(t)

from which the superoperator L̂(t) at time t can be determined.

The end    
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Example 1: Decay of 2-leve atom 

Let us consider a two-level system (a two-level atom, a spin-1/2, or a qubit)

with a two-dimensional Hilbert space HS spanned by two vectors |1� and |0�.
In order to specify the Liouvillian superoperator L̂(t) for the two-level atom we

have to know the time evolution of four initial states. Let us assume that from

the measured data it is found that these states evolve as

ρ̂(0,0)(t) =

�
0 0

0 1

�
; ρ̂(1,1)(t) =

�
e−Γt

0

0 1− e−Γt

�
.

ρ̂(0,1)(t) =
1

2

�
e−Γt ie−Γt/2

−ie−Γt/2
2− e−Γt

�
;

ρ̂(1,0)(t) =
1

2

�
e−Γt e−Γt/2

e−Γt/2
2− e−Γt

�
.

Example 1: Decay of 2-leve atom 
Now we can apply our reconstruction scheme and we find for the matrix

G(j1,j2)(k1,k2)(t) the expression

G(j1,j2)(k1,k2)(t) =





−Γ 0 0 Γ
0 −Γ/2 0 0
0 0 −Γ/2 0
0 0 0 0



 .

This matrix corresponds to the Liouvillian which defines the master equation

d

dt
ρ̂ = L̂ρ̂ =

Γ

2
[2σ̂−ρ̂σ̂+ − σ̂+σ̂−ρ̂− ρ̂σ̂+σ̂−] ,

describing the decay of a two-level atom into a zero-temperature reservoir. The
Liouvillian is time independent which reflects the fact that the state of the
reservoir does not change in time under the influence of the system.
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Example 2: Decay of 2-leve atom 
Let us consider a single two-level atom coupled to K modes of the electro-

magnetic field in a one-dimensional cavity of the length L. The spectrum of

modes is discrete with frequencies ωk = kπc/L. The corresponding total Hamil-

tonian in the dipole and rotating-wave approximations reads

Ĥ = ωA σ̂z +

K�

k=1

ωkâ
†
kâk +

K�

k=1

λk(σ̂+âk + σ̂−â
†
k).

The field is assumed to be initially in the vacuum state. By applying our

algorithm we find the master equation for the atom

d

dt
ρ̂ = L̂ρ̂ =

γ(t)

2
[2σ̂−ρ̂σ̂+ − σ̂+σ̂−ρ̂− ρ̂σ̂+σ̂−] ,

except the ”decay” rate Γ → γ(t) is now explicitly time dependent. It can be

expressed in terms of the “measured” probability P (t) = �1|ρ̂A(t)|1� that the

upper atomic level is excited:

γ(t) = −
�
dP (t)

dt

�
P (t)

−1
.

Example 2: Decay of 2-leve atom 

The time evolution of the decay rate γ(t) (thin line) and the population of
the excited atomic level P (t) (thick line). We assume the atom to be in the
center of the 1-D cavity, so it is coupled only to the odd modes (i.e. λ2k = 0).
We assume L = 2π and c = 1 so that ω2k+1 = k+1/2, and λ2k+1 = λ = 0.3. The
effective density of modes which interact with the atom is deff (ω) = L/2cπ = 1.
Therefore the decay rate Γ = 2πλ2deff (ω) � 0.564. We considerK = 400 modes
of the field initially in the vacuum state and the atom (with ωA = 101) in its
upper state |1�.
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General operations (maps, channels)  

•  The density operator 

•  The general operation is an affine transformation of the Bloch sphere 

•  With                               and  

 

! = 1
2
1+ !r .

!
!( ) = 12

1
x
y
z

!

"

#
#
#
#

$

%

&
&
&
&

' !r = x, y, z( )

! = 1 0!
t
!
T

!

"#
$

%&
=

1 0 0 0
x !1 !2 !3

y !1 !2 !3
z ! 1 ! 2 ! 3

!

"

#
#
#
#
#

$

%

&
&
&
&
&

2 2 2 1x y z+ + ! !j x !! j( )+ y ! ! j( )+ z !! j( ) !1

! ' = ! "!" #$ = Al! Al
†

l
%

!r! !"r = T!r +
!
t

Complete Positivity  

•  Every guess must be completely positive – in 
general it is hard to achieve analytically 

•  Check is done by applying an operation in the form  

   on to the maximally entangled state  

! = I !!
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Example: Specific channel 

•  Let us assume a specific transformation – map, channel 
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Complete reconstruction  

•  For a complete estimation one needs four different 
states, which are linearly independent. 

• Limited resources? 

? ? ? 
? 
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Reconstruction of processes  

•  Data from the Wunderlich exp. 

Clickology: Maximum likelihood  	


•  ML works with finite sets of data, not with infinite ensembles 
•  In case of quantum operations, the relevant data are 

–  Input state specification  
–  Measurement direction 
–  Measurement outcome (binary) 

•  We build a functional 

•  The numerical task is to find the    , for which this functional 
reaches the maximum (using the logarithm of functional) 

•  Trace-preservation is obtained automatically from the 
parameterization, CP has to be checked in the algorithm  
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Unital operations	

 
•  Displacement  

•  Affine transformation specified as  

•  Positivity 

•  Complete positivity                                
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Unital CP maps are embeded in the set of all positive unital 
maps (cube). The CP maps form a tetrahedron with four unitary 
transformations in its corners (extremal points) I,x,y,z 
corresponding to the Pauli sigma-matrices. 
 
The unphysical U-NOT operation 
 and its optimal completely positive approximation quantum 
universal NOT gate                                         are shown. 

1 2 3 1! ! != = = "

1 2 3 1/ 3! ! != = = "

M.Ziman & V.Buzek, PRA 72, 022110 (2005). 

! = ! 0 + ! 1 ! !! = !! 0 "!! 1

Non-physical maps: U-NOT gate  
•  Universal NOT gate 

•  Best approximation  

diag (1,-1,-1,-1)! =

diag (1,-1/3,-1/3,-1/3)! =

•  6 input states – eigenstates of   
•  3 measurements  
•  N=100 x 18 clicks 
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Approximation of non-physical maps 
•  Nonlinear polarization 

rotation   
•  1800 input states 
•  3 measurements 
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