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Preface

e Books on Matrix Analysis:

— R. Bhatia, Matrix Analysis, Springer, 1997.
— R.A. Horn and C.R. Johnson, Matrix Analysis, Cambridge, 1985.

—R.A. Horn and C.R. Johnson, Topics in Matrix Analysis, Cambridge,
1991.

— X. Zhan, Matrix Inequalities, Springer, 1999.

e Journals: Linear Algebra and its Applications, and others

e Purpose of Lecture: introduction to those aspects of matrix analysis that
are/may be/have been useful in QIT

e No Proofs



Contents (roughly)

e Classes of matrices

e Operations and functions on matrices
e Matrix Decompositions

e Matrix Norms

e Applications in QIT: Schmidt decomposition, distance measures

e For this Lecture, I've set 10 questions, but don’t do all of them.

e Marks are between square brackets | |. Hard questions receive more marks.
Aim at a total of about 10 marks.



1. The very basics



Matrices

e If you don’t know what a matrix is, there are 3 good movies about them.
e Matrix product is non-commutative: AB # BA

e In QIT, matrices occur whenever systems are finite-dimensional (in one
way or another): density matrices, observables, Hamiltonians, POVMs,
maps, channels.




Basic Matrix Operations

o Inverse: A}, satisfies AA~! = I, need not always exist
e Transpose: A, (A1), ; = A,
e Complex Conjugate: A, A;; = A; ;
e Hermitian Conjugate: A* = AT
— Note: in physics: AT, in engineering: A
— Example: if A = [¢)), then A* = (¢
® (AB)T = BT AT
e AB=AB
e (AB)" = B*A*
e Trace: for square matrices Tr(A) = > . A;;
—Linear: Tr(aA+bB)=aTr A+0Tr B
— Cyclicity property: Tr(AB) = Tr(BA), Tr(ABC) = Tr(BCA),...



Matrix Classes

e Diagonal matrix: square matrix with non-zero elements on diagonal only:
Ai,j = CLZ‘(SZ"]' or A= Diag(al, a9, )

e Identity matrix I: diagonal matrix with all 1’s on the diagonal: I, ; = 9, ;
e Scalar matrix: A = al
e Hermitian matrix: A = A*

e Positive semi-definite (PSD) matrix: a matrix that has square root(s)
A>0«— dB: A= B*B

e Unitary matrix: square matrix U with U*U =1

e Projector: a Hermitian matrix equal to its own square: P = P2,



Characterisations

e Examples of Hermitian matrices: observables, Hamiltonians
e Example of PSD matrices: density matrices; e.g. A = |¢)(y|: B* = [¢))

e Examples of unitary matrices: any evolution operator, Pauli matrices,
CNOT

e A matrix A is Hermitian iff all its expectation values are real:
vip: (PlAlp) € R

e A matrix A is PSD iff all its expectation values are real and non-negative:
Vi (Y] Alg) > 0.

e Exercise 1 [3]: prove this last statement from the definition of PSD.

e A matrix is unitary iff its column vectors form an orthonormal basis

e For square U, U*U =1 implies UU* =1



2. The Density Matrix Formalism



Dealing with Statistical Uncertainty

e State vectors are used mainly in undergraduate QM courses and in quan-
tum field theory.

e In real experiments, we have to deal with many uncertainties and uncon-
trollable factors.

e E.g. preparation of a particle in some state is never perfect. What we get is
) = (cos o, sin )!, with some « close to the desired value, but with errors.

e How can we efficiently deal with those and other errors in QM?
e Naive method: specify distribution of parameters (a) or of state itself.

e That’s both complicated and unnecessary. What we can measure are only
expectation values, like (1)|O]1)).



Dealing with Statistical Uncertainty

e Because of statistical uncertainty on ), expressed by the probability den-

sity p(v)dy, we measure [ dip p(1)(1p|O[)).
e Rewrite this as Tr[( [ dv p(¥)|) (])O].

e We can calculate all expectation values, once we know the matrix

/ iy p() ) (3.

e Hence, this is “the” state! We call it the density matrix (cf. probability
density). Usual symbol p.

e Exercise 2 [2]: Prove that a density matrix is PSD and has trace 1.
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Dealing with Statistical Uncertainty

e A set of state vectors v; with given probabilities p; is called an ensemble.
¢ A density matrix is the barycenter of the ensemble.
e Different ensembles may yield the same density matrix:
{p1=1/2,¢1 =(1,0) , po=1/2,92 = (0,1)}
{p1=1/2,01 = (1,1)/V2 , po=1/2,py = (1,-1)/V2}
both yield the density matrix p = I/2, the maximally mixed state.
e We can never figure out which ensemble a density matrix originated from!

e A state with density matrix of the form p = " = [¢)) (3| is a pure state
and corresponds to a state vector 1.

e Otherwise, we call the state a mixed state (cf. statistical mixing).
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3. Tensor Products, Partial Traces and
Partial Transposes
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Tensor Product of Vectors

e Suppose I have 2 independent particles. Particle 1 is in state ¢, and parti-
cle 2 in state 6.

e The particles taken together are then in the state i, which is the tensor
product of ¢ and 6.

e Notation |¢) = [¢ ® ) = |$)|0).
eE.g. (1,2)® (3,4) = (3,4,6,8).
e Note the order! “The indices of particle 2 change fastest”

v = (91, 91) ® (01,0)) = (r1, Yry, Yy1, 1), with By = ¢ib;.

e To do the same for matrices, it is beneficial to use block matrix notation.
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Block matrices

e A block matrix can be seen as being a matrix whose elements are matrices
themselves (of equal size).

e Example: ( é g )

e Indexing is more complicated. We need row and column indexes to single
out a block, and row and column indexes to single out an element within
that block. Hence the need to use composite indices.

e Let 7, k be (row/col) indexes pointing to a block, and j, [ indexes pointing
within the block. Then (¢, j) denotes a composite row index, and (k,[) a
composite column index.

e The elements of a block matrix can then be denoted by A(m),(k,l), and

A= ZAW ) 10)17) (kS \—ZAZJ k) 12) (B @ [5) (1.

1,7,k,l 1,7kl
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Tensor Product of Matrices

e The tensor product, a.k.a. Kronecker Product, of matrices A and B, A® B,
can be represented by a block matrix with elements

(A® B)ij) k) = AixBjy
e E.g. when Ais 2 x 2

Ao B — (AHB AlgB)

AnB ApnDB
e Trace rule: Tr(A ® B) = Tr(A) Tr(B)
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Partial Trace

e To “ignore” a particle in a group of particles in a given state, “trace out”
that particle.

e The partial trace of the ith factor in a tensor product is obtained by re-
placing the ith factor with its trace:

Tri(A® B) = Tr(A) @ B="Tr(A)B
Trey(A® B) = A® Tr(B) = Tr(B)A

e In block matrix form:

AHB AlgB o
Ang AQQB ) = AUB -+ AQQB

AnB AnB

Tﬁ(A@B) — TI’1<

o All Tr B A12 Tr B

Try(A® B) = TI"Q( — (AQlTrB AQQTTB)
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Partial Trace

e By linearity of the trace, this extends to all block matrices:

TH(é ZB;) =A+D

T AB\ (TrATrB
2\cbp)  \Tvre vD
e Equivalent definition:

Tr(I® X)A)
Tr(X ® I)A)

(X Tt A), VX
(X Tty A), VX

Tr
Tr

e Exercise [1000]: Relate the eigenvalues of A to those of Tr; A and Try A.
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Partial Transpose

e Another “partial” operation on block matrices is the partial transpose.

e Take again a 2-qubit state with density matrix p written as a block matrix
A B
C D)

e The partial transpose w.r.t. the first particle: p'! = ( g g ) :

e The partial transpose w.r.t. the second particle: p"2 = (

e The partial transpose of a state need no longer be a state; it is if p is
separable.
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4. Completely Positive (CP) maps
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Operations on States

e There exist various ways of operating on states:

— Unitary evolution: |¢) — U|))

— Adding particles (in a determined state): |¢) — [¢) ® |0)
— Removing/ignoring particles: [¢) ()| — Try [¢) (Y]

— Measurements: [¢) — (|E;|y)

— Combinations thereof

— Measurement outcomes may even determine the choice of subsequent
operations

e Absolutely astonishing fact about QM #31: all of this can be combined
into one simple formula!
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Operations on States

e Every quantum operation, composed of the above basic operations, can be
written as a completely positive, trace preserving, linear map or CPT map &
acting on the density matrix: p — ®(p)

e Completely positive = positivity preserving when acting on any subset of
the state’s particles: because a state should remain a state.

e Non-example: The matrix transpose is a positive, trace preserving linear
map, but not a completely positive one: when it acts on 1 particle of an
EPR state, one gets a non-positive matrix.
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Characterisation of CP(T) maps

e By dropping the trace-preservation requirement, we get a CP map.

e Any linear map can be represented using its Choi-matrix ®:
— A block matrix with d;, x d;,, blocks of size d,; X d .
— Block i, j of ® is given by ®(|i)(j|)
- ®(p) =32, ; piy®(|i)(§]) = Trs[®.(p" @ T)].

e A map @ is CP if and only if its Choi-matrix ® is PSD [Choi].

e Exercise 3 [8]: Prove this. Hint: operate the map on one particle of the
EPR state o) = 5.0 |i)]).

e Exercise 4 [5]: Find the Choi matrix of matrix transposition (for qubit
states) and use it to show why transposition is not a CP map.
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Characterisation of CP(T) maps

e Since the Choi-matrix is a block matrix, we can define its partial traces:
Tr; = Tr;, and Try = Tr,,,

e Exercise 5 [4]: Show that a CP map is trace preserving if and only
Trp @ = 1.
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5. Matrix Decompositions
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Matrix Functions

e Problem: to calculate von Neumann entropy S(p) = — Tr|plog p|, we need
to calculate functions of matrices.

e Analytic functions can be represented by (formal) power series f(z) =
S g arzt.

e Since we know how to multiply matrices we can calculate >, a; A"

e This (formally) defines a matrix function f(A)
e Example: exp(4) =Y, _, A*/K!

e Series are not the most convenient way to work with matrix functions
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Eigenvalues

e Many of the presented concepts get “easier” descriptions when the matrix
has an eigenvalue decomposition.

e Eigenvalue/eigenvector: Az = Az, det(A — A\I) = 0.

e Stack Y columnwise in matrix S, and ), in diagonal matrix A:
AS = SA

o If S is invertible, we get A = SAS™!

e A matrix is diagonalisable if there exists an invertible S such that S~'AS
is diagonal.

e A matrix is unitarily diagonalisable if there exists a unitary U such that
U tAU = U* AU is diagonal; then A = UAU*.
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Eigenvalues

e Theorem: A matrix A is unitarily diagonalisable (UD) iff the matrix is
normal (AA* = A*A)

e The eigenvalue decomposition (EVD) of a normal matrix A is A = UAU*
e A Hermitian matrix is UD, with real eigenvalues
e A PSD matrix is UD, with non-negative eigenvalues

e A Projector (P = P?) has eigenvalues ...
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Matrix Functions

e Matrix functions of Hermitian (or PSD) matrices: f(A) = U f(A)U*, where
f operates entrywise on the diagonal elements (eigenvalues)

e Example: for PSD A, with A = UAU*, THE square root is

AY? = U Diag(v/ A1, VA, .U

e Matrix absolute value (or modulus): |A| = (A*A)'/?

e Exercise 6 [3]: For Hermitian H, express Tr(H), |H| and Tr |H| in terms
of its EVD. For A > 0, what is |A|?
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Singular values

e Not all square matrices are diagonalisable, and none of the non-square
matrices are.

e All matrices, even the non-square ones, have a singular value decomposi-
tion (SVD), and it is essentially unique: A = UXV*, where U and V' are
unitary and > is “diagonal”.

e One can find U and V s.t. the diagonal elements of ¥ are non-negative
reals and sorted in non-ascending fashion; then the diagonal elements of
Y, 0;(A), are the singular values of A.

e Use a computer with (Matlab, Maple, Mathematica)
e Exercise 7 [3]: show that for A > 0, g;(A) = \;(A).
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Singular values and Rank

e One of the ways to check invertibility of a square matrix is to inspect its
singular values: A is invertible iff all o;(A) > 0, strictly.

e The number of non-zero singular values of A equals the rank of A = the
number of independent column (or row) vectors of A.

e The density matrix of a pure state has rank 1.
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Schmidt decomposition

e Tilde notation: converts a pure bipartite state vector v to a matrix, de-
noted .

eForep =5 ) 4 i1 Zijli)]d), ) is the matrix z; .
e Example: 2-qubit states ¢ = (1, Y9, 13, 1y)

11)|1) = (1,0,0,0) 11)|2) = (0,1,0,0)
2)|1) = (0,0,1,0) 2)|2) = (0,0,0,1)

e Thus ¢ = (;i; zz)
T

e In general, for vectors v and v, u ® v = uv*.

e In bra-ket notation: |u)|v) = |u)(D|.
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Schmidt decomposition

e Schmidt decomposition: one can find orthonormal bases {u;} and {v;} of
the two systems, respectively, and non-negative Schmidt coefficients oy,
such that

Y= oxlu)|or)

e Proof: The Schmidt decomposition of ¢ is the SVD of the matrix 1.

e Write 1) = UXV*, and denote the k-th column vector of U by |uy,), of V by
lv;). Denote the k-th diagonal element of > by oy.

e Because U is unitary, the {|u;)} are orthonormal. Same for V.

32



Schmidt decomposition

e Then
Y= oxlup)(vl,
k

so that

b= oplu) ).
k

e Product state: if ) = ¢ ® 0, then ¢ = ¢07, which has rank 1. Le. only 1
non-zero Schmidt coefficient.

e A pure states ¢ is entangled iff ¢) has rank > 1, i.e. has more than 1
non-zero Schmidt coefficients.
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6. Matrix Norms

34



Matrix Norms

e A matrix norm ||| A||| is a mapping from the space of matrices to R, obey-
ing:

||l = 0 iff A =0

— Homogeneous: |||zA||| = || ||| A]]]

— Triangle inequality: |||A + Bl|| < [[|A]|[ + |[|Bl||
— Submultiplicative: |||AB||| < |||All[|||B]]]

e Of particular interest are the unitarily invariant (UI) matrix norms:
||{UAV]||| = |||Al]||, i.e. they depend only on o(A)
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UI Matrix Norms

e Operator norm: ||A|| = ||A||ec = 01(A), largest singular value
e Trace norm: ||A|ln = ||4]|1 =D, 0:(A) = Tr|A|

e Frobenius or Hilbert-Schmidt norm:
1Al]e = (3, o2 (A)Y2 = (Tr [AP)Y2 = (35,5 | A1)V

1=1""1

e Schatten g-norms: ||A]|, = (3.1, ol(A))/4 = (Tr|AJ9)Y/4

1=1""1
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Matrix norms in QIT

e Matrix norms are important in QIT for many reasons

e A Schatten norm of a state is a measure of its purity: it is 1 for pure
states, and strictly less than 1 for mixed states. Minimal for maximally
mixed state.

e Exercise 8 [2]: calculate the Schatten ¢g-norm of the d-dimensional max-
imally mixed state I;/d.

e The entanglement measure “negativity” is defined as the trace norm of
the partial transpose of a bipartite state: N = ||p!||; = Tr|p'].

e Exercise 9 [3]: Show that /V is equal to 1 minus 2 times the sum of the
negative eigenvalues of p'.

e Matrix norms of p — o can be used as a distance measure between states:
the states are equal iff their difference has zero norm.
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Matrix norms in QIT

e The von Neumann entropy S(p) is closely related to the Schatten ¢ norms.

e Note the following:
d

R
dq:c x?log x
e Thus
d
rlogxr = da ~12"
and

d
S(p)=—Trplogp = —d—q|q:1Trpq

e Note that Tr p? = (||p||,)¢.
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Matrix norms in QIT

e Alternative relation:

="
—zlogx = lim
q—>1q—1
thus
1 —Tr pt
Sip) =1
(p) P —

e One more tool for proving things about entropy
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7. Distance measures between states
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Need for State Distance Measures

e Example 1. Given an initial state p, and a class of maps, find the map ®
such that ¢(p) comes as close to a desired o as possible.

e Example 2. L. Hardy’s “Crazy Qubits”: find the “best” physical (CPT)
approximation of non-physical (non-CP, non-TP, non-linear) maps

e We could ask for the approximating map’s output states to be as close to
the hypothetical map’s output states as possible.

e — Thus the need for distance measures between states.
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Linear Fidelity

e Pure states: Overlap = Linear Fidelity:

Fi(v, ¢) = [(¥]6)* = Te[[9) (¥l |){oll.

This is 1 iff [¢) (1| = |¢)(¢|, and less than 1 otherwise. It is O for orthogo-
nal states.

e For mixed states, the linear fidelity F(p, o) = Tr|po] is not very useful.

e Exercise 10 [2]: why not?
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Uhlmann Fidelity

e For mixed states, we can use the Uhlmann fidelity.

Fy(p,0) = Tr /p'20p!/2.

e Characterisation: (Fy;)* is the linear fidelity between purifications

Fy(p, o) = %X{W@' :

Tra([90) () = p,
Tra(|¢) (@) = o}

e [}, coincides with \/FL when p or o is pure.

e Bures Distance: Dg(p,c) =2+/1 — Fy(p, 0
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Trace Distance

e Trace Distance: T'(p,0) = ||p — ol||1/2. Between O and 1.
e Obeys triangle inequality.
e Easier than Bures distance.

e Statistical interpretation: error probability of optimal POVM for distin-
guishing between p and o is

P, = (1 o T<p7 U))/Q
e Behaves “erratically” under tensor powers. One can find states such that

T(p,0) < T(7,v)
but T(pRp,ocRc) > T(TRT,vR V)
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Relative Entropy

e Relative Entropy: S(pl||o) = Tr p(log p — log o).

e Statistical interpretation: error exponent of optimal asymmetric hypothe-
Sis test.

e Behaves nicely under tensor powers:
S(p™"[|o=") = n S(pllo).
e Relative entropy does not obey triangle inequality.
e Asymmetric in its arguments.
e For pure states, either O (same states) or infinite (different states).
e Quantum Chernoff Distance combines the best of 7" and S. It is the regu-

larisation of 7" w.r.t. taking tensor powers.
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The Quantum Chernoff distance

e Recall: error probability of optimal POVM for distinguishing between p
and o is

P, = (1 o T<p7 0))/2

e Now do the same for n copies of the two states: error probability of the
optimal POVM is

P. = (1= T(p®,0°")) 2.

e This P, goes down exponentially with n at a rate

1
lim —=log(1 — T(p*",c®")).

n—oo N
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The Quantum Chernoff distance

e A closed-form expression of the rate is given by the quantum Chernoff
distance:

—log@, with @ = min Tr[p°c' 7.

0<s<1

e Just like the relative entropy, — log () is multiplicative:

—log Q(p™",0"") = —nlog Q(p, o).

e For pure states, —log () attains all values between 0 and co. For equal
states O, for orthogonal states oo.

e Does not obey triangle inequality.
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