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Preface

• Books on Matrix Analysis:

– R. Bhatia, Matrix Analysis, Springer, 1997.

– R.A. Horn and C.R. Johnson, Matrix Analysis, Cambridge, 1985.

– R.A. Horn and C.R. Johnson, Topics in Matrix Analysis, Cambridge,
1991.

– X. Zhan, Matrix Inequalities, Springer, 1999.

• Journals: Linear Algebra and its Applications, and others

• Purpose of Lecture: introduction to those aspects of matrix analysis that
are/may be/have been useful in QIT

• No Proofs
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Contents (roughly)

• Classes of matrices

• Operations and functions on matrices

•Matrix Decompositions

•Matrix Norms

• Applications in QIT: Schmidt decomposition, distance measures

• For this Lecture, I’ve set 10 questions, but don’t do all of them.

•Marks are between square brackets [ ]. Hard questions receive more marks.
Aim at a total of about 10 marks.
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1. The very basics
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Matrices

• If you don’t know what a matrix is, there are 3 good movies about them.

•Matrix product is non-commutative: AB 6= BA

• In QIT, matrices occur whenever systems are finite-dimensional (in one
way or another): density matrices, observables, Hamiltonians, POVMs,
maps, channels.
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Basic Matrix Operations
• Inverse: A−1, satisfies AA−1 = I; need not always exist
• Transpose: AT , (AT )i,j = Aj,i

• Complex Conjugate: A, Ai,j = Ai,j

• Hermitian Conjugate: A∗ = AT

– Note: in physics: A†, in engineering: AH

– Example: if A = |ψ〉, then A∗ = 〈ψ|
• (AB)T = BTAT

• AB = A B

• (AB)∗ = B∗A∗

• Trace: for square matrices Tr(A) =
∑

i Ai,i

– Linear: Tr(aA + bB) = a Tr A + b Tr B

– Cyclicity property: Tr(AB) = Tr(BA), Tr(ABC) = Tr(BCA),...
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Matrix Classes

• Diagonal matrix: square matrix with non-zero elements on diagonal only:
Ai,j = aiδi,j or A = Diag(a1, a2, ...)

• Identity matrix I: diagonal matrix with all 1’s on the diagonal: Ii,j = δi,j

• Scalar matrix: A = aI

• Hermitian matrix: A = A∗

• Positive semi-definite (PSD) matrix: a matrix that has square root(s)

A ≥ 0 ⇐⇒ ∃B : A = B∗B

• Unitary matrix: square matrix U with U ∗U = I

• Projector: a Hermitian matrix equal to its own square: P = P 2.
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Characterisations

• Examples of Hermitian matrices: observables, Hamiltonians

• Example of PSD matrices: density matrices; e.g. A = |ψ〉〈ψ|: B∗ = |ψ〉
• Examples of unitary matrices: any evolution operator, Pauli matrices,

CNOT

• A matrix A is Hermitian iff all its expectation values are real:
∀ψ : 〈ψ|A|ψ〉 ∈ R

• A matrix A is PSD iff all its expectation values are real and non-negative:
∀ψ : 〈ψ|A|ψ〉 ≥ 0.

• Exercise 1 [3]: prove this last statement from the definition of PSD.

• A matrix is unitary iff its column vectors form an orthonormal basis

• For square U , U ∗U = I implies UU ∗ = I

7



2. The Density Matrix Formalism
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Dealing with Statistical Uncertainty

• State vectors are used mainly in undergraduate QM courses and in quan-
tum field theory.

• In real experiments, we have to deal with many uncertainties and uncon-
trollable factors.

• E.g. preparation of a particle in some state is never perfect. What we get is
ψ = (cos α, sin α)T , with some α close to the desired value, but with errors.

• How can we efficiently deal with those and other errors in QM?

• Näıve method: specify distribution of parameters (α) or of state itself.

• That’s both complicated and unnecessary. What we can measure are only
expectation values, like 〈ψ|Ô|ψ〉.
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Dealing with Statistical Uncertainty

• Because of statistical uncertainty on ψ, expressed by the probability den-
sity p(ψ)dψ, we measure

∫
dψ p(ψ)〈ψ|Ô|ψ〉.

• Rewrite this as Tr[(
∫

dψ p(ψ)|ψ〉〈ψ|)Ô].

•We can calculate all expectation values, once we know the matrix
∫

dψ p(ψ)|ψ〉〈ψ|.

• Hence, this is “the” state! We call it the density matrix (cf. probability
density). Usual symbol ρ.

• Exercise 2 [2]: Prove that a density matrix is PSD and has trace 1.
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Dealing with Statistical Uncertainty

• A set of state vectors ψi with given probabilities pi is called an ensemble.

• A density matrix is the barycenter of the ensemble.

• Different ensembles may yield the same density matrix:

{p1 = 1/2, ψ1 = (1, 0) , p2 = 1/2, ψ2 = (0, 1)}
{p1 = 1/2, ψ1 = (1, 1)/

√
2 , p2 = 1/2, ψ2 = (1,−1)/

√
2}

both yield the density matrix ρ = I/2, the maximally mixed state.

•We can never figure out which ensemble a density matrix originated from!

• A state with density matrix of the form ρ = ψψ∗ = |ψ〉〈ψ| is a pure state
and corresponds to a state vector ψ.

• Otherwise, we call the state a mixed state (cf. statistical mixing).
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3. Tensor Products, Partial Traces and
Partial Transposes
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Tensor Product of Vectors

• Suppose I have 2 independent particles. Particle 1 is in state φ, and parti-
cle 2 in state θ.

• The particles taken together are then in the state ψ, which is the tensor
product of φ and θ.

• Notation |ψ〉 = |φ⊗ θ〉 = |φ〉|θ〉.
• E.g. (1, 2)⊗ (3, 4) = (3, 4, 6, 8).

• Note the order! “The indices of particle 2 change fastest”

ψ = (φ↑, φ↓)⊗ (θ↑, θ↓) = (ψ↑↑, ψ↑↓, ψ↓↑, ψ↓↓), with ψij = φiθj.

• To do the same for matrices, it is beneficial to use block matrix notation.
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Block matrices
• A block matrix can be seen as being a matrix whose elements are matrices

themselves (of equal size).

• Example:
(

A B
C D

)
.

• Indexing is more complicated. We need row and column indexes to single
out a block, and row and column indexes to single out an element within
that block. Hence the need to use composite indices.

• Let i, k be (row/col) indexes pointing to a block, and j, l indexes pointing
within the block. Then (i, j) denotes a composite row index, and (k, l) a
composite column index.

• The elements of a block matrix can then be denoted by A(i,j),(k,l), and

A =
∑

i,j,k,l

A(i,j),(k,l) |i〉|j〉 〈k|〈l| =
∑

i,j,k,l

A(i,j),(k,l) |i〉〈k| ⊗ |j〉〈l|.
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Tensor Product of Matrices

• The tensor product, a.k.a. Kronecker Product, of matrices A and B, A⊗B,
can be represented by a block matrix with elements

(A⊗B)(i,j),(k,l) = Ai,kBj,l

• E.g. when A is 2× 2

A⊗B =

(
A11B A12B
A21B A22B

)

• Trace rule: Tr(A⊗B) = Tr(A) Tr(B)
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Partial Trace

• To “ignore” a particle in a group of particles in a given state, “trace out”
that particle.

• The partial trace of the ith factor in a tensor product is obtained by re-
placing the ith factor with its trace:

Tr1(A⊗B) = Tr(A)⊗B = Tr(A)B

Tr2(A⊗B) = A⊗ Tr(B) = Tr(B)A

• In block matrix form:

Tr1(A⊗B) = Tr1

(
A11B A12B
A21B A22B

)
= A11B + A22B

Tr2(A⊗B) = Tr2

(
A11B A12B
A21B A22B

)
=

(
A11 Tr B A12 Tr B
A21 Tr B A22 Tr B

)
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Partial Trace

• By linearity of the trace, this extends to all block matrices:

Tr1

(
A B
C D

)
= A + D

Tr2

(
A B
C D

)
=

(
Tr A Tr B
Tr C Tr D

)

• Equivalent definition:

Tr((I⊗X)A) = Tr(X Tr1 A),∀X
Tr((X ⊗ I)A) = Tr(X Tr2 A),∀X

• Exercise [1000]: Relate the eigenvalues of A to those of Tr1 A and Tr2 A.
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Partial Transpose

• Another “partial” operation on block matrices is the partial transpose.

• Take again a 2-qubit state with density matrix ρ written as a block matrix(
A B
C D

)
.

• The partial transpose w.r.t. the first particle: ρΓ1 =

(
A C
B D

)
.

• The partial transpose w.r.t. the second particle: ρΓ2 =

(
AT BT

CT DT

)
.

• The partial transpose of a state need no longer be a state; it is if ρ is
separable.
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4. Completely Positive (CP) maps
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Operations on States

• There exist various ways of operating on states:

– Unitary evolution: |ψ〉 → U |ψ〉
– Adding particles (in a determined state): |ψ〉 → |ψ〉 ⊗ |0〉
– Removing/ignoring particles: |ψ〉〈ψ| → Tr1 |ψ〉〈ψ|
– Measurements: |ψ〉 → 〈ψ|Ei|ψ〉
– Combinations thereof

– Measurement outcomes may even determine the choice of subsequent
operations

• Absolutely astonishing fact about QM #31: all of this can be combined
into one simple formula!
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Operations on States

• Every quantum operation, composed of the above basic operations, can be
written as a completely positive, trace preserving, linear map or CPT map Φ

acting on the density matrix: ρ 7→ Φ(ρ)

• Completely positive = positivity preserving when acting on any subset of
the state’s particles: because a state should remain a state.

• Non-example: The matrix transpose is a positive, trace preserving linear
map, but not a completely positive one: when it acts on 1 particle of an
EPR state, one gets a non-positive matrix.
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Characterisation of CP(T) maps

• By dropping the trace-preservation requirement, we get a CP map.

• Any linear map can be represented using its Choi-matrix Φ:

– A block matrix with din × din blocks of size dout × dout

– Block i, j of Φ is given by Φ(|i〉〈j|)
– Φ(ρ) =

∑
i,j ρijΦ(|i〉〈j|) = Tr1[Φ.(ρT ⊗ I)].

• A map Φ is CP if and only if its Choi-matrix Φ is PSD [Choi].

• Exercise 3 [8]: Prove this. Hint: operate the map on one particle of the
EPR state ψ =

∑din
i=1 |i〉|i〉.

• Exercise 4 [5]: Find the Choi matrix of matrix transposition (for qubit
states) and use it to show why transposition is not a CP map.
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Characterisation of CP(T) maps

• Since the Choi-matrix is a block matrix, we can define its partial traces:
Tr1 = Trin and Tr2 = Trout

• Exercise 5 [4]: Show that a CP map is trace preserving if and only
Trout Φ = I.
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5. Matrix Decompositions
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Matrix Functions

• Problem: to calculate von Neumann entropy S(ρ) = −Tr[ρ log ρ], we need
to calculate functions of matrices.

• Analytic functions can be represented by (formal) power series f (z) =∑
k=0 akz

k.

• Since we know how to multiply matrices we can calculate
∑

k=0 akA
k

• This (formally) defines a matrix function f (A)

• Example: exp(A) =
∑

k=0 Ak/k!

• Series are not the most convenient way to work with matrix functions
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Eigenvalues

•Many of the presented concepts get “easier” descriptions when the matrix
has an eigenvalue decomposition.

• Eigenvalue/eigenvector: Ax = λx, det(A− λI) = 0.

• Stack x(i) columnwise in matrix S, and λi in diagonal matrix Λ:
AS = SΛ

• If S is invertible, we get A = SΛS−1

• A matrix is diagonalisable if there exists an invertible S such that S−1AS

is diagonal.

• A matrix is unitarily diagonalisable if there exists a unitary U such that
U−1AU = U ∗AU is diagonal; then A = UΛU ∗.
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Eigenvalues

• Theorem: A matrix A is unitarily diagonalisable (UD) iff the matrix is
normal (AA∗ = A∗A)

• The eigenvalue decomposition (EVD) of a normal matrix A is A = UΛU ∗

• A Hermitian matrix is UD, with real eigenvalues

• A PSD matrix is UD, with non-negative eigenvalues

• A Projector (P = P 2) has eigenvalues ...
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Matrix Functions

•Matrix functions of Hermitian (or PSD) matrices: f (A) = Uf (Λ)U ∗, where
f operates entrywise on the diagonal elements (eigenvalues)

• Example: for PSD A, with A = UΛU ∗, THE square root is

A1/2 = U Diag(
√

λ1,
√

λ2, ...)U
∗

•Matrix absolute value (or modulus): |A| = (A∗A)1/2

• Exercise 6 [3]: For Hermitian H, express Tr(H), |H| and Tr |H| in terms
of its EVD. For A ≥ 0, what is |A|?
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Singular values

• Not all square matrices are diagonalisable, and none of the non-square
matrices are.

• All matrices, even the non-square ones, have a singular value decomposi-
tion (SVD), and it is essentially unique: A = UΣV ∗, where U and V are
unitary and Σ is “diagonal”.

• One can find U and V s.t. the diagonal elements of Σ are non-negative
reals and sorted in non-ascending fashion; then the diagonal elements of
Σ, σi(A), are the singular values of A.

• Use a computer with (Matlab, Maple, Mathematica)

• Exercise 7 [3]: show that for A ≥ 0, σi(A) = λi(A).
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Singular values and Rank

• One of the ways to check invertibility of a square matrix is to inspect its
singular values: A is invertible iff all σi(A) > 0, strictly.

• The number of non-zero singular values of A equals the rank of A = the
number of independent column (or row) vectors of A.

• The density matrix of a pure state has rank 1.
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Schmidt decomposition

• Tilde notation: converts a pure bipartite state vector ψ to a matrix, de-
noted ψ̃.

• For ψ =
∑

i=1..d1,j=1..d2
xi,j|i〉|j〉, ψ̃ is the matrix xi,j.

• Example: 2-qubit states ψ = (ψ1, ψ2, ψ3, ψ4)

|1〉|1〉 = (1, 0, 0, 0) |1〉|2〉 = (0, 1, 0, 0)

|2〉|1〉 = (0, 0, 1, 0) |2〉|2〉 = (0, 0, 0, 1)

• Thus ψ̃ =

(
ψ1 ψ2

ψ3 ψ4

)
.

• In general, for vectors u and v, ũ⊗ v = uvT .

• In bra-ket notation: |̃u〉|v〉 = |u〉〈v|.
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Schmidt decomposition

• Schmidt decomposition: one can find orthonormal bases {uk} and {vk} of
the two systems, respectively, and non-negative Schmidt coefficients σk,
such that

ψ =
∑

k

σk|uk〉|vk〉

• Proof: The Schmidt decomposition of ψ is the SVD of the matrix ψ̃.

•Write ψ̃ = UΣV ∗, and denote the k-th column vector of U by |uk〉, of V by
|vk〉. Denote the k-th diagonal element of Σ by σk.

• Because U is unitary, the {|uk〉} are orthonormal. Same for V .

32



Schmidt decomposition

• Then

ψ̃ =
∑

k

σk|uk〉〈vk|,

so that

ψ =
∑

k

σk|uk〉|vk〉.

• Product state: if ψ = φ ⊗ θ, then ψ̃ = φθT , which has rank 1. I.e. only 1
non-zero Schmidt coefficient.

• A pure states ψ is entangled iff ψ̃ has rank > 1, i.e. has more than 1
non-zero Schmidt coefficients.
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6. Matrix Norms
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Matrix Norms

• A matrix norm |||A||| is a mapping from the space of matrices to R+ obey-
ing:

– |||A||| = 0 iff A = 0

– Homogeneous: |||zA||| = |z| |||A|||
– Triangle inequality: |||A + B||| ≤ |||A||| + |||B|||
– Submultiplicative: |||AB||| ≤ |||A||| |||B|||

• Of particular interest are the unitarily invariant (UI) matrix norms:
|||UAV ||| = |||A|||, i.e. they depend only on σ(A)
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UI Matrix Norms

• Operator norm: ||A|| = ||A||∞ = σ1(A), largest singular value

• Trace norm: ||A||Tr = ||A||1 =
∑n

i=1 σi(A) = Tr |A|
• Frobenius or Hilbert-Schmidt norm:
||A||2 = (

∑n
i=1 σ2

i (A))1/2 = (Tr |A|2)1/2 = (
∑

i,j |Ai,j|2)1/2
• Schatten q-norms: ||A||q = (

∑n
i=1 σq

i (A))1/q = (Tr |A|q)1/q
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Matrix norms in QIT
•Matrix norms are important in QIT for many reasons

• A Schatten norm of a state is a measure of its purity: it is 1 for pure
states, and strictly less than 1 for mixed states. Minimal for maximally
mixed state.

• Exercise 8 [2]: calculate the Schatten q-norm of the d-dimensional max-
imally mixed state Id/d.

• The entanglement measure “negativity” is defined as the trace norm of
the partial transpose of a bipartite state: N = ||ρΓ||1 = Tr |ρΓ|.

• Exercise 9 [3]: Show that N is equal to 1 minus 2 times the sum of the
negative eigenvalues of ρΓ.

•Matrix norms of ρ− σ can be used as a distance measure between states:
the states are equal iff their difference has zero norm.
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Matrix norms in QIT

• The von Neumann entropy S(ρ) is closely related to the Schatten q norms.

• Note the following:
d

dq
xq = xq log x

• Thus

x log x =
d

dq
|q=1x

q

and

S(ρ) = −Tr ρ log ρ = − d

dq
|q=1 Tr ρq

• Note that Tr ρq = (||ρ||q)q.
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Matrix norms in QIT

• Alternative relation:

−x log x = lim
q→1

x− xq

q − 1

thus

S(ρ) = lim
q→1

1− Tr ρq

q − 1

• One more tool for proving things about entropy

39



7. Distance measures between states

40



Need for State Distance Measures

• Example 1. Given an initial state ρ, and a class of maps, find the map Φ

such that Φ(ρ) comes as close to a desired σ as possible.

• Example 2. L. Hardy’s “Crazy Qubits”: find the “best” physical (CPT)
approximation of non-physical (non-CP, non-TP, non-linear) maps

•We could ask for the approximating map’s output states to be as close to
the hypothetical map’s output states as possible.

• → Thus the need for distance measures between states.
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Linear Fidelity

• Pure states: Overlap = Linear Fidelity:

FL(ψ, φ) = |〈ψ|φ〉|2 = Tr[|ψ〉〈ψ| |φ〉〈φ|].
This is 1 iff |ψ〉〈ψ| = |φ〉〈φ|, and less than 1 otherwise. It is 0 for orthogo-
nal states.

• For mixed states, the linear fidelity FL(ρ, σ) = Tr[ρσ] is not very useful.

• Exercise 10 [2]: why not?
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Uhlmann Fidelity

• For mixed states, we can use the Uhlmann fidelity.

FU(ρ, σ) = Tr
√

ρ1/2σρ1/2.

• Characterisation: (FU)2 is the linear fidelity between purifications

FU(ρ, σ) = max
ψ,φ
{|〈ψ|φ〉| :

Tr2(|ψ〉〈ψ|) = ρ,

Tr2(|φ〉〈φ|) = σ}.
• FU coincides with

√
FL when ρ or σ is pure.

• Bures Distance: DB(ρ, σ) = 2
√

1− FU(ρ, σ).
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Trace Distance

• Trace Distance: T (ρ, σ) = ||ρ− σ||1/2. Between 0 and 1.

• Obeys triangle inequality.

• Easier than Bures distance.

• Statistical interpretation: error probability of optimal POVM for distin-
guishing between ρ and σ is

Pe = (1− T (ρ, σ))/2.

• Behaves “erratically” under tensor powers. One can find states such that

T (ρ, σ) < T (τ, υ)

but T (ρ⊗ ρ, σ ⊗ σ) > T (τ ⊗ τ, υ ⊗ υ)
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Relative Entropy

• Relative Entropy: S(ρ||σ) = Tr ρ(log ρ− log σ).

• Statistical interpretation: error exponent of optimal asymmetric hypothe-
sis test.

• Behaves nicely under tensor powers:

S(ρ⊗n||σ⊗n) = nS(ρ||σ).

• Relative entropy does not obey triangle inequality.

• Asymmetric in its arguments.

• For pure states, either 0 (same states) or infinite (different states).

• Quantum Chernoff Distance combines the best of T and S. It is the regu-
larisation of T w.r.t. taking tensor powers.
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The Quantum Chernoff distance

• Recall: error probability of optimal POVM for distinguishing between ρ

and σ is

Pe = (1− T (ρ, σ))/2.

• Now do the same for n copies of the two states: error probability of the
optimal POVM is

Pe = (1− T (ρ⊗n, σ⊗n))/2.

• This Pe goes down exponentially with n at a rate

lim
n→∞

−1

n
log(1− T (ρ⊗n, σ⊗n)).
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The Quantum Chernoff distance

• A closed-form expression of the rate is given by the quantum Chernoff
distance:

− log Q, with Q = min
0≤s≤1

Tr[ρsσ1−s].

• Just like the relative entropy, − log Q is multiplicative:

− log Q(ρ⊗n, σ⊗n) = −n log Q(ρ, σ).

• For pure states, − log Q attains all values between 0 and ∞. For equal
states 0, for orthogonal states ∞.

• Does not obey triangle inequality.
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