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BB84

● Alice sends single photons with 1-
out-of-4 polarizations

● Bob measures in either + or × basis
and gets one of two results (0, 1) in 
either case.

● Basis choices are announced after 
the measurement via authenticated
public classical channel (internet, 
broadcast, …)

● Measurement results for agreeing 
bases are key bits

C. H. Bennett & G. Brassard, Quantum Cryptography: Public-key distribution and coin tossing
in Proceedings of IEEE International Conference on Computer Systems and Signal Processing, IEEE, 175-179 (1984). 
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The role of security proofs

● Security proofs give a lower bound on the achievable secure 
key rate as a function of measurable parameters

● They tell us how much key has to be sacrificed in privacy 
amplification in order to eliminate Eve’s partial knowledge

● Shor & Preskill, PRL 85, 441 (2000): through reduction to 
entanglement purification and quantum error correction the 
secret key length is lower bounded by a factor of

w.r.t the number of sifted bits, with exponentially small 
knowledge of the eavesdropper.

● Therefore if QBER < 11%, the secret key length is finite.
● With imperfect error correction we need to use
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Noisy Keys

● Raw keys are noisy, because of errors in
● Channel
● Equipment (dark counts)
● Eavesdropper

● (Classical) Error correction can eliminate errors 
● Simple example: Take two blocks of k bits, compare parity, if different, 

dicscard 
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Error correction

0 1 1 0 0 0 0 0 0
1 1 0 1 1 1 0 1 0
0 1 1 1 1 1 1 0 0
0 0 1 0 0 1 0 0 0
1 1 1 1 0 1 0 0 1
1 1 0 1 1 0 0 1 1
1 0 0 1 0 1 1 1 1
0 0 0 1 0 1 0 1 1
0 1 0 0 1 0 0 0

Alice

Alice 01100000 11011101 01111110 00100100 11110100 11011001 10010111 00010101
Bob 01000000 11011101 01111110 00100100 11110100 11011011 10010111 00010101

0 1 0 0 0 0 0
1 1 0 1 1 1 0 1 0
0 1 1 1 1 1 1 0 0
0 0 1 0 0 1 0 0 0
1 1 1 1 0 1 0 0 1
1 1 0 1 1 0 1
1 0 0 1 0 1 1 1 1
0 0 0 1 0 1 0 1 1
0

0 0

1 0

11 0 1 0 1 0

Bob

Alice new 10001011 11011110 00110011 11001111 11010110 01010
Bob new 10001011 11011110 00110011 11001111 11010110 01010
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Simplified Cascade Error Correction

● Optimized for computational efficiency (vs. 
information leakage)

● 4 passes
● Use QBER as determined in previous chunk to 

choose block size
● Split key into blocks 

(randomly chosen bit order, different for each pass)
● Apply BINARY to correct one error in each block (for 

odd numbers of errors)
• Calculate parity
• On disagreeing parity divide block in half
• Repeat until error found

● If error is found in later pass, there must have been 
even number of errors in previous pass’ block go 
back and correct using BINARY

● Keep track of every bit sent via the public channel

BER
Simplified 
Cascade

Full 
Cascade

0.01 0.089 0.085

0.025 0.197 0.1925

0.05 0.341 0.335

0.075 0.477 0.465

0.1 0.589 0.577

0.125 0.717 0.697

0.15 0.817 0.805

G. Brassard and L. Salvail, “Secret-Key Reconciliation by Public Discussion,” Advances in 
Cryptology – EUROCRYPT ’93, LNCS 765, 410 (1994).
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Privacy Amplification

● All the bits revealed during error correction must be discarded
● Any information an eavesdropper could have according to the QBER can be 

made exponentially small by hashing
● Determine final key length estimate:

R = N (1– h2(QBER)) – #(bits leaked) – #(security bits)
● Shor-Preskill: R = N – 2H2(QBER) 

Since #(bits leaked) > H2(QBER) 
this is always secure

● Calculate  k = (m * (raw key) + n)  mod p
● m, n are random number generated 

from a shared seed
● p is a shared big prime number

● Use the last R bits of k as the key
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Privacy Amplification
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Classification of QKD Protocols

By source

● Prepare and measure
● Entanglement based

By Modulation

● Discrete
● Continuous
● Distributed phase reference

By implementation

● One-way
● Plug & Play
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Modulation

Discrete = Qudits
● Polarization
● Time-bin
● Spatial Mode

Continuous Variables
● Quadratures of field modes

Distributed Phase Reference
● Differential Phase Shift
● Coherent One-Way
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BB84

● Alice sends single photons with 1-
out-of-4 polarizations

● Bob measures in either + or × basis
and gets one of two results (0, 1) in 
either case.

● Basis choices are announced after 
the measurement via authenticated
public classical channel (internet, 
broadcast, …)

● Measurement results for agreeing 
bases are key bits

C. H. Bennett & G. Brassard, Quantum Cryptography: Public-key distribution and coin tossing
in Proceedings of IEEE International Conference on Computer Systems and Signal Processing, IEEE, 175-179 (1984). 
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Entanglement Based

● Source can be under 
eavesdroppers control

● Immune to sidechannels
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Continuous Variables

● Alice sends coherent states 
with a random modulation in 
a given quadrature

● Bob chooses randomly to 
measure a quadrature using 
homodyne detection

● Alternative: Squeezed 
states
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Continuous Variables
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Distributed Phase Reference
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E. Diamanti et al., Opt. Express 14, 13073-13082 (2006). 

D. Stucki et al., APL 87, 194108 (2005).
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Photon Polarization

● Every mode has two orthogonal polarizations (directions of the electric 
field)

● Arbitrary polarization states are superpositions
● Classically, polarization is described on the Poincaré sphere

18



Gregor Weihs, University of Innsbruck

The Dual Rail Qubit

In theory

In experiment
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The time-bin qubit

For stability one can multiplex 
the two rails onto one.

20



Gregor Weihs, University of Innsbruck

Sources

● Attenuated lasers: 
poissonian statistics

● In order to optimize the secure key rate μ has to be set to a value 
that scales with t, the transmission of the channel
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Single Photon
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Single Photons
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● Alice randomly chooses from a few (e.g. 3) different mean photon 
numbers

24
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Modulation

● Combine multiple lasers and 
pulse them individually
● Beware of side channels!

● Modulate laser
● Polarization
● Phase (commercially up to 40 

GHz)
● Amplitude for decoy
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Some Facts About Detectors

● Detection efficiency = Quantum 
efficiency * Amplification efficiency

● For red / very near infrared light 
about 70%, ~10 /s noise

● Most common:
Single Photon Avalanche Diode 
(SPAD)

● For telecommunication wavelengths 
(1550 nm): InGaAs APDs have <15% 
efficiency, some 10000 /s noise 
counts

● Alternative detectors
● Visible Light Photon Counter
● Superconducting Transition Edge 

Detector
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Performance comparison
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V. Scarani et al., arXiv:0802.4155

Platform Parameter Set #1 Set #2
μ mean intensity (opt.) (opt.)
V visibility: P&M 0.99 0.99
V visibility: EB 0.96 0.99

BB84, tB transmission in Bob’s device 1 1
COW η det. efficiency 0.1 0.2

pd dark counts 10−5 10−6

ε (COW) bit error 0.03 0.01
ζ (EB) coherent 4 photons 0 0 0 0
leak EC code 1.2 1

v= vA + 1 variance (opt.) (opt.)
ε optical noise 0.005 0.001

CV η det. efficiency 0.6 0.85
vel electronic noise 0.01 0
β EC code 0.9 0.9
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Channels

● Guide light in single-
mode optical fibers

Broadcast photons from a 
satellite using telescopes

GAP-Optique, U. 
Geneva

Pfennigbauer et al., JON 4,
549 (2005)
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Optical Fibers

● Fused silica core guides light
● Attenuation by Rayleigh scattering
● Minimum @1550 nm: 0.17 dB/km = 4%/km loss
● Installed fiber typically has 0.3 dB/km
● Polarization

● Birefringence needs to be compensated
● Depolarization due to different group velocities (~√L)

Gisin et al., 
RMP 74, 145 
(2002)
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Free-Space Optical Links

● Send photons through air in “beam”
● Diffraction causes beam to spread (~L2)
● Turbulence causes beam wander

Can be incorporated as additional diffraction
● Scattering causes 

exponential attenuation
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Telescopes
G. Bianco: The Matera Laser Ranging Observatory System

Padova, 21-22 december 2000

The MLRO telescopeThe MLRO telescope

● Diffraction angle ~(wavelength/diameter)
● Need stable pointing
● For satellites: tracking
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Atmosphere
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Satellites

● From 1000 km altitude the horizon 
is 3000 km away

● Atmospheric attenuation becomes 
negligible above 10km

LEO satellites move fast
Can only be “seen” from a ground 
stations for a small fraction of the 
orbit
Diffraction loss becomes very 
severe for geostationary satellites
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Early Experimental QKD

● 1989 Bennett et al., J. Cryptolog. 5, 3 (1992)
30cm faint laser pulses

● 1993 Muller et al., Europhys. Lett. 23, 383 (1993) 
Polarization in fiber

● 1994 Townsend, Electron. Lett. 30, 809 (1994)
10 km fiber, phase

● 1996 Muller et al., Appl. Phys. Lett. 70, 793 (1997)
Plug & play system

● 1999 Jennewein et al., Phys. Rev. Lett. 84, 4729 (2000)
Entanglement based QKD (360m)
1999 Tittel et al. Phys. Rev. Lett. 84, 4737 (2000)
Energy-time entanglement in fiber 
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The plug & play system (67km demo)

● Uses phase encoding
● Eliminates polarization 

correction by Faraday 
mirror

● Need to send “strong” 
pulse from Bob to Alice 
for coding

Stucki, et al., 
NJP 4, 41 
(2002).
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Increasing the distance

● Up to 122 km QBER is under 11% 
for photon flux = 0.1 /pulse

● Up to 50km unconditionally secure

Gobby et al., Appl. Phys. Lett. 84, 3762 
(2004).
Gobby et al., Electron. Lett. 40, 1603 (2005).
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Differential Phase Shift Keying QKD

● Better use of clock period
● Achieved 1 GHz clock rate
● Using up-conversion single photon detectors
● @100 km 166 bits/s secure (?)

Takasue et al., NJP 7, 232 (2005).
Diamanti et al., quant-ph/0608110.
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Polarization in Fiber

● With decoy states achieved 103 km

Peng et al., quant-
ph/0607129 (2006)
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With (Almost) Noise-Free Detectors

● Superconducting 
Transition Edge Sensors
● Virtually zero noise
● Poor timing slow 

clock cycle
● With decoy states 

achieved unconditionally 
secure key over 107 km 

Rosenberg et al., Appl. Phys. Lett. 88, 021108 (2006).
Rosenberg et al., quant-ph/0607186

39



Gregor Weihs, University of Innsbruck

With Single Photons

● Single photons: unconditional security without decoy states
● Waks et al.: InAs quantum dots
● Alleaume et al.: Color centers in diamond

Waks et al., Nature 420,
762 (2002)

Alleaume et al., NJP 6, 92 
(2004)

40



Gregor Weihs, University of Innsbruck

High Data-Rate Free-Space QKD

● 690 kbit/s at 0.15 photons/pulse at Alice

Bienfang et al., Opt. Express 12,
2011 (2004)
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Free-Space Long Distance

● Entanglement-based with source at Alice’s
● 1m receiver telescope
● Typical loss -30 dB
● ~30 raw key bits/s

Ursin et al., quant-
ph/0607182 
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Entanglement based FS QKD

● Dedicated real time entanglement based QKD system
● 630 bits/s final key

Marcikic et al., Appl. Phys. Lett. 89,
101122 (2006)
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The IQC-Perimeter Institute QKD Experiment
http://maps.google.com/maps/ms?msa=0&msid=
103964276287441386699.00000113448f5481181e2

PI

CEIT

IQC
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Views
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Entangled Photon Pairs

● Parametric down-conversion: 
blue photon converts into pair of red photons

● Polarization entangled photon pairs via special geometry
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Entangled Photon Pair Source
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Send / Receive Equipment
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Bob @ Perimeter Institute
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Alignment Spots
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QBER
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Key Rate
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Corrected Key
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● Raw key rate = 565 bits/sec
● Sifted key rate = 284 bits/sec
● Optimum final secret key rate = 124 bits/sec
● Actual final secret key rate = 85 bits/sec  
● QBER = 4.92%
● Total key of 1,612,239 bits > 1.5MB generated
● Visibilities: H/V = 88.6%, +/- = 91.7%
● Residual error rate = 1.92 e-003 errors/bit

Statistics

Alice

H V + -

Bob

H 39,497 1,218,454 393,100 355,074 2,006,125

V 1,300,749 112,793 682,595 854,848 2,950,985

+ 680,032 878,628 51,217 1,262,143 2,872,020

- 548,695 955,146 1,374,648 63,261 2,977,750

2,604,973 3,165,021 2,501,560 2,535,326
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