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Abstract— The intimate connection between the Banach space
wavelet reconstruction method for each unitary representation of
a given group and homogenous space studied in the last work and
quantum entanglement description using group theory consid-
ered. We present, universal description of quantum entanglement
using group theory and non-commutative characteristic functions
for homogenous space and projective representation of group on
Banach spaces for some of well known examples, such as: Moyal
representation for a spin, Dihedral group and permutation group.
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I. INTRODUCTION

Entanglement is one of the most fascinating features of
quantum mechanics. As Einstein, Podolsky and Rosen [1]
pointed out, the quantum states of two physically separated
systems that interacted in the past can defy our intuitions about
the outcome of local measurements. Moreover, it has recently
been recognized that entanglement is a very important resource
in quantum information processing[2]. A bipartite mixed state
is said to be separable [3] (not entangled) if considered as a
convex combination of pure product states.

A separability criterion is based on a simple property that
can be shown to hold for every separable state. If some state
does not satisfy this property, then it must be entangled. But
the converse does not necessarily imply the state to be separa-
ble. One of the first and most widely used related criterion is
the Positive Partial Transpose (PPT) criterion, introduced by
Peres [4]. Furthermore, the necessary and sufficient condition
for separability inH2 ⊗ H2 and H2 ⊗ H3 was shown by
Horodeckis [5], which was based on a previous work by
Woronowicz [6]. However, in higher dimensions, there are
PPT states that are nonetheless entangled, as was first shown
in [7], based on [6]. These states are called bound entangled
states because they have the peculiar property that no entan-
glement can be distilled from them by local operations [8],
[10]. Another approach to distinguish separable states from

entangled states involves the so called entanglement witness
(EW) [9], [10]. Some of entanglement measures and best sepa-
rable state conditions using semidefinite programming method
is given in [12], [13], [14], [15]. However, no investigation of
the separability problem has been carried out there, as the
work of Gu predates the seminal paper of Werner[3]. On the
other side, the method of characteristic functions has already
been successfully applied for studying other then entanglement
genuine quantum features of quantum states in the works
on non-classical states of quantum harmonic oscillator[16].
Korbicz and Lewenstein by choosing a compact group G and
the set of its irreducible, unitary representation as the main
ingredients of the mathematical representation of the state
space, can define characteristic functions which are applied
for testing states’ entanglements. Although they do not present
any new entanglement test, their results offer a new point of
view on the separability problem. Moreover, they were able to
translate the positivity of partial transpose (PPT) criterion[4]
into the group theoretical language[17]. On the other hand
group theoretical approach to quantum entanglement and to-
mography with wavelet transform has been obtained by some
authors [18].

A general framework is already presented for the unification
of the Hilbert space wavelets transformation on the one
hand, and quasi-distributions and tomographic transformation
associated with a given pure quantum states on the other hand
[19]. Here in this manuscript we are trying to establish the
intimate connection between the quantum entanglement using
group theory and non-commutative characteristic functions
for homogenous space and projective representation of group
on Banach spaces for some of well known examples, such
as: Moyal representation for a spin, Dihedral group and
permutation group, all which can be represented by density
matrices. For density matrices, one defines the norm astr()
this implies the absence of a scalar product in the density
matrix space (so it is not a Hilbert space but a Banach space)
[24], [25]. Therefore, it is natural to do quantum tomography
of any density matrix by using the wavelet transform and
its inverse in Banach space connected with the correspond-
ing group representation associated with that density matrix.
This obtained quantum tomography by Banach space wavelet
method for density states is completely consistent with the
quantum tomography obtained by other methods.

The paper is organized as follows:



In section-2 we define wavelet transform based on homoge-
neous space and projective representation spaces on Banach
space. In section-3 a brief recapitulation of group theoretical
approach to entanglement for irreducible representation of any
compact group is studied. In section-4 we study group theo-
retical approach to entanglement associated with the unitary
irreducible representation on homogenous space for Moyal
representation of a spin and projective representation of Dihe-
dral and Permutation group by using the Banach space wavelet
transform method. The paper ends with a brief conclusion.

II. WAVELET TRANSFORM IN BANACH SPACES ON

HOMOGENEOUS SPACE AND BASED ON PROJECTIVE

REPRESENTATION OF GROUP:

Wavelet transform on homogeneous space:
The following is a brief recapitulation of some aspects

of the theory of wavelets on homogeneous space. We only
mention those concepts that will be needed in the sequel, a
more detailed treatment may be found for example in [21],
[20]. Let G be locally compact group with left Haar measure
dµ and H be a closed subgroup of G. Letπ be a continuous
representation of a group andX = G/H homogeneous space.

We could define a representation for homogeneous space
X×X in the spaceL(B) of bounded linear operatorsB → B:

π : X ×X → L(L(B)) : Ô → U(x1)ÔU(x−1
2 ), (1)

where ifx1 is equal tox2, the representation is called adjoint
representation, and, ifx2 is equal to identity operator, the
representation is called left representation of homogeneous
space.

Let L(B) be the space of bounded linear operatorB → B
in Banach space. We will say thatb0 ∈ B is a vacuum vector
if for all h ∈ H1×H2 we haveπ(h)b0 = χ(h)b0 and also the
set of vectorsbx1,x2 = π(x1, x2)b0 forms a family of coherent
states, if there exists a continuous non-zero linear functional
l0 ∈ B∗ ( called test functional ) and a vectorb0 ∈ B ( called
vacuum vector) such that

C(b0, b
′

0) =
∫

X

< π(x−1
1 , x−1

2 )b0, l0 >

< π(x1, x2)b
′

0, l
′

0 > dµ(x1, x2), (2)

is non-zero and finite, which is known as the admissibility
relation.
If the subgroupH is non-trivial, one does not need to
know wavelet transform on the whole group G, but it should
be defined on only the homogeneous spaceG/H, then the
reduced wavelet transformW to a homogeneous space of
function L2 is defined by a representationπ of G × G on
B and a test functionall0 ∈ B∗ such that[21]

W : B → L2(X ×X) : Ô → Ô(x1, x2) = [WÔ](x1, x2)

=< π(x−1
1 , x−1

2 )Ô, l0 >=< Ô, π∗(x1, x2)l0 > ∀x1, x2 ∈ X,
(3)

whereπ∗ is dual ofπ.
Wavelet transform based on projective representation:

Let G be a locally compact group with left Haar measure
dµ and Z(H) be a center of group H. LetU be a continuous
representation of the group G andX = G/Z(H) be a central
extension. In the last subsection we saw thatπ̂ has been lifted
to an ordinary representation ofG(χ).

Let L(B) be the space of bounded linear operatorB → B
in Banach space. We will say thatb0 ∈ B is a vacuum vector
if for all h ∈ Z(H) we haveπ̂(h)b0 = χ(h)b0 and also the
set of vectorsbx = π̂(x)b0 forms a family of coherent states,
if there exists a continuous non-zero linear functionall0 ∈ B∗
( called test functional ) and a vectorb0 ∈ B ( called vacuum
vector) such that

C(b0, b
′

0) =
∫

X

< π̂(x−1)b0, l0 >< π̂(x)b
′

0, l
′

0 > dµ(x),

(4)
is non-zero and finite, which is known as the admissibility
relation.
If the centerZ(H) is non-trivial, one does not need to know
wavelet transform on the whole group G, but it should be
defined on only the central extensionG/Z(H), then the
reduced wavelet transformW to a central extension space
of function L2 is defined by a projective representationπ̂ of
G×G on B and a test functionall0 ∈ B∗ such that[21]

W : B → L2(X) : Ô → Ô(x) = [WÔ](x)

=< π̂(x−1)Ô, l0 >=< Ô, π̂∗(x)l0 > ∀x ∈ X, (5)

whereπ̂∗ is dual of π̂.

III. QUANTUM ENTANGLEMENT VIA GROUPTHEORY

WITH WAVELET TRANSFORM ONBANACH SPACE

Group tomography of a compact group G, with an irre-
ducible unitary representation U acting on separable Hilbert
spaceH, means that, every element ofB(H), the Banach
algebra of bounded linear operators acting onH, can be
constructed by the set{U(g), g ∈ G} according to formula
(6), where the set{U(g), g ∈ G} is known as tomographic
set andΦ(g) = Tr[U†(g)Ô] is sampling set or tomogram set
of a given operatorÔ [33]. WhenH is finite-dimensional,
the hypothesis that{U(g)} is a tomographic set is sufficient
to reconstruct any given operator from the tomographic set
by using (6), but the case ofdim(H) = ∞ needs a further
condition to make sure that every expression converges and
that it can be attributed to a precise mathematical meaning. If
O is a trace-class operator onH and{U(g)} is a tomographic
set and satisfies (4) then we have

Ô =
∫
dµ(g)Tr[U†(g)Ô]U(g). (6)

Now we try to obtain the above explained tomography via
wavelet transforms in Banach space.
In order to do so, we need choose the tomographic set
U(g) as a continuous irreducible representation of the wavelet
transformation and the identity operator as a vacuum vector.
Therefore, the corresponding wavelet transformation takes the
following form:

W : B 7→ F (g) : Ô 7→ φ̂(g) =< Ô, lg >



=< Ô,U(g)l0 >=< ÔU(g)†, l0 >= tr(ÔU(g)†). (7)

Korbicz and Lewenstein proceeded to the reformulation of
the separability problem in terms of the group theoretical
language[17]. For that, let us assume thatρ is separable, i.e.,
there exist a decomposition of typeρ =

∑
i pi|ui〉〈ui| ⊗

|vi〉〈vi|. By definition of characteristic function[17] or sam-
pling functionΦρ(g1, g2) from wavelet transformation in Ba-
nach space with above density matrix for irreducible represen-
tationU(g) := U1(g1)⊗ U2(g2) it obtain that [17]

Φρ(g1, g2) = tr(ρU(g)) =
∑

i

piKi(g1)ηi(g2), (8)

where Ki(g1) =< ui | U(g1)ui > , ηi(g2) =< vi |
U(g2)vi >.

Now we state the following results that are standard and are
derived in reference [17].

Theorem 1. Let G be a compact Kinematical group and
π, τ are irreducible representation. A stateρ is separable iff its
characteristic function can be written in the formΦρ(g1, g2) =∑

i piKi(g1)ηi(g2), whereKi, ηi ∈ P1(G) (whereP1(G) is
the space of all normalized positive definite functions onG
) and the equality holds almost everywhere w.r.t. the Haar
measure dg onG×G.

Theorem 2. Let G be a compact Kinematical group andπ, τ
are irreducible representations atG andρ is an arbitrary state
in Hπ⊗Hτ : The condition (ρ is separable)⇒ φ̃ρ ∈ P(G⊗G)
leads either to PPT criterion forρ when π ∼ π̄ or is empty
otherwise[17].

Whereπ̄(g) := π(g−1) and φ̃(g1, g2) := φ(g−1
1 , g2).

A. Moyal-type representations for a spin

For a spin s, in [22] is defined a ‘Stratonovich-Weyl’
correspondence as a rule which maps each operatorÔ on
the (2s + 1)-dimensional Hilbert spaceHs to a function on
the phase space of the classical spin,S2. A discreteMoyal
formalism is defined as [23].

∆̂n = Ûn∆̂nzÛ
†
n, (9)

whereÛn represents a rotation which maps the vectornz to
n.
By defining the associated kernel as

∆̂n = |s,n〉〈s,n| ≡ |n〉〈n|, (10)

∆̂n =
s∑

m=−s

∆m|m,n〉〈m,n|. (11)

In the wavelet notation, the Banach space is(2s + 1)2-
dimensional and group isSU(2), the subgroup is U(1) and
measure isdµ(n) = 2s+1

4π d(n) and the unitary irreducible
representation of group isUn which is the result of with adjoint
representation on the any operators in Banach space:

π̂(n)ρ̂ = Ûnρ̂Û
†
n. (12)

Then the wavelet transform in this Banach space with the test
functional,

l0(ρ̂) = Tr(ρ̂
∑
m

∆m|m,nz〉〈m,nz|), (13)

is given by:

W ρ̂ = φ(n) =< ˆπ(n)
†
Ô, l0 >

= Tr(Ûn
†
ρ̂Ûn

∑
m

∆m | m,nz >< m,nz |), (14)

then we have:

φ(n) = Tr(ρ̂Ûn

∑
m

∆m | m,nz >< m,nz | Ûn
†
) = Tr(Ô∆̂n).

In the wavelet notation for the two partite spin system, the
irreducible representationSU(2) × SU(2) is Π̂(n, n′) =

ˆΠ(n)⊗ ˆΠ(n′) and the test functional is defined

l0(ρ̂) = Tr(ρ̂
∑
m

∆m|m,nz〉〈m,nz|⊗
∑
m′

∆m′
|m′, n′z〉〈m′, n′z|),

(15)
then the characteristic function is defined as:

φ(n, n′) =< ˆπ(n, n′)
†
Ô, l0 >=

Tr(Ûn
†
⊗ Ûn′

†
ρ̂Ûn ⊗ Ûn′

∑
m

∆m | m,nz >< m,nz |

⊗
∑
m′

∆m′
| m′, n′z >< m′, n′z |), (16)

then we have:

φ(n, n′) = Tr(ρ̂Ûn ⊗ Ûn′

∑
m

∆m | m,nz >< m,nz |

⊗
∑
m′

∆m′
| m′, n′z >< m′, n′z | Ûn

†
⊗ Ûn′

†
) =

Tr(ρ̂∆̂n ⊗ ∆̂n′
). (17)

From theorems 1 and 2,ρ is separable iff characteristic
function written as (8).

As an example we consider3⊗3 representation ofSU(2)⊗
SU(2) group. Three dimensional representation of SO(3)
group as a rotationUn is defined [17] as

U1(g1) =

 λ11 λ12 λ13

λ21 λ22 λ23

λ31 λ32 λ33



U2(g2) =

 λ′11 λ′12 λ′13
λ′21 λ′22 λ′23
λ′31 λ′32 λ′33

 , (18)



whereλij and λ′ij , i, j = 1, 2, 3 are defined by using three
Euler angles. The3 ⊗ 3 un-normalized separable states [10],
[11] is defined as

ρm =
∑

k

|ψkm〉〈ψkm| =
∑

l

|l〉〈l| ⊗ |l +m〉〈l +m|,

ρ′m =
∑

k

|ψmk〉〈ψmk| =
∑
l,l′,k

ωm(l−l′)|l〉〈l′| ⊗ |l+ k〉〈l′ + k|,

ρ′′n =
∑

k

|ψnk,k〉〈ψnk,k| =
∑
l,l′,k

ωnk(l−l′)|l〉〈l′|⊗|l+k〉〈l′+k|,

(19)
wheren = 0, 1, 2 , m = 0, 1, 2. One can show that any
convex sum of these states is separable and lie at the boundary
of the separable region [10]. We can obtain characteristic
function Φ(g1, g2) for any convex sum of above separable
states but we consider a particular simple caseρ0. Then
characteristic functionΦ(g1, g2) for ρ0 is obtained as

φ(g1; g2) = Tr(ρ̂Ûn ⊗ Ûn′

2∑
m=0

∆m | m >< m |

⊗
2∑

m′=0

∆m′
| m′ >< m′ | Û†

n ⊗ Û†
n′). (20)

By some calculation we have

Φ(g1, g2) =
2∑

m=0

∆m(
3∑

i=1

λimλmi)
2∑

m′=0

∆m′
(

3∑
i=1

λim′λm′i)

=
2∑

m=0

∆m
2∑

m′=0

∆m′
= 1. (21)

By definition of Ki(g1) = 〈i|U1(g1)|i〉 =
∑3

j=1 λjiλij = 1
and ηi(g2) = 〈i|U2(g2)|i〉 =

∑3
j=1 λjiλij = 1. Therefore,

characteristic function is rewritten as

Φ(g1, g2) =
3∑

i=1

Ki(g1)ηi(g2) = 1, (22)

which is agreement with Theorem 1 and we show that this
state is separable in the similar way one can show thatρ1 and
ρ2 are separable states.

B. Quantum Entanglement based on projective represen-
tation of permutation group

Let us consider projective representations of the symmetric
(permutation) groups that have long been known to mathe-
maticians, but received little attention from physicists. Such
representations were overlooked in physics much like projec-
tive representations of the rotation groups were overlooked in
the early days of quantum mechanics. One especially useful
presentation of the symmetric groupSn on n elements is given
by

Sn = {t1, ..., tn−1 : t2i = 1, (tjtj+1)3 = 1, tmtl = tltm},
(23)

where1 ≤ i ≤ n− 1, 1 ≤ j ≤ n− 2,m ≤ l − 2. Here ti are
transpositions,

t1 = (12), t2 = (23), ..., tn−1 = (n− 1 n). (24)

Closely related toSn is the groupS̃n,

S̃n = {z, t
′

1;2, ..., t
′

n−1;n | z2 = 1, zt
′

i;i+1 = t
′

i;i+1z,

t
′

1;2

2
= z, (t

′

j;j+1t
′

j+1;j+2)
3 = z,

t′m;m+1t
′
l;l+1 = zt′l;l+1t

′
m;m+1}, (25)

where1 ≤ i ≤ n− 1, 1 ≤ j ≤ n− 2,m ≤ l − 2.
A celebrated theorem of Schur (Schur, 1911 [26]) states the

following:
(i) The groupS̃n has order2(n!).
(ii) The subgroup{1, z} is central, and is contained in the

commutator subgroup of̃Sn, provided n = 4.
(iii) S̃n/{1, z} ' Sn.
(iv) If n < 4, then every projective representation ofSn is

projectively equivalent to a linear representation.
(v) If n ≤ 4, then every projective representation ofSn is

projectively equivalent to a representationπ̂,

ρ(Sn) = {π̂(t1), ..., π̂(tn−1) : π̂(ti)2 = z,

(π̂(tj)π̂(tj+1))3 = z, π̂(tm)π̂(tl) = zπ̂(tl)π̂(tm)}, (26)

where1 ≤ i ≤ n− 1, 1 ≤ j ≤ n− 2,m ≤ l − 2 andz = ±1.
In the casez = +1, π̂ is a linear representation ofSn.
The groupS̃n is called the representation group forSn.
The most elegant way to construct a projective representa-

tion π̂(Sn) of Sn is by using the complex Clifford algebra
Cliff C(V, g) ≡ Cn associated with the real vector spaceV =
nR,

{γi, γj} = 2g(γi, γj) (27)

Here{i}n
i=1 is an orthonormal basis of V with respect to the

symmetric bilinear form

g(γi, γj) = +δij . (28)

Clearly, any subspacēV of V = nR generates a subalgebra
Cliff C(V̄ , ḡ), where ḡ is the restriction of g toV̄ × V̄ . A
particularly interesting case is realized whenV̄ is

V̄ = {
n∑

m=1

αmγm :
n∑

m=1

αm = 0} (29)

of codimension one, with the corresponding subalgebra de-
noted byC̄n−1 [27]. If we consider a special basis{t′m}n−1

m=1 ⊂
V̄ (which is not orthonormal) defined by

t′m;m+1 =
1√
2
(γm + γm+1) m = 1, ...n− 1, (30)

then the group generated by this basis is isomorphic toS̄n.
This can be seen by mappingti to t′i and z to -1, and by
noticing that

1) Form = 1, ..., n− 1:

t′
2
m;m+1 = −1; (31)



2) For n− 2 ≥ j:

(t′j;j+1t
′
j+1;j+2)

3 = −1; (32)

3) For n− 1 ≥ q > m+ 1:

t′m;m+1t
′
q;q+1 = −t′q;q+1t

′
m;m+1, (33)

as can be checked by direct calculation. One choice for the
matrices is provided by the following construction (Brauer and
Weyl, 1935 [28]): γ2m−1 = σ3 ⊗ ...σ3 ⊗ (σ1)⊗ 1...⊗ 1,

γ2m = σ3 ⊗ ...σ3 ⊗ (σ2)⊗ 1...⊗ 1,
m = 1, 2, 3, ...k,

(34)

for n = 2k. Here σ1, σ2 occur in the m-th position,
the product involves M factors, andσ1, σ2, σ3 are the Pauli
matrices. Ifn = 2k + 1, we first add one more matrix,

γ2k+1 = σ3 ⊗ ...⊗ σ3 (k factors). (35)

An irreducible module ofC̄n−1 restricts that representation to
the irreducible representation of̃Sn, since{t′i;i+1}

n−1
i=1 gener-

atesC̄n−1 as an algebra [27]. The simplest (irreducible) non-
trivial projective representations ofSn are already surprisingly
intricate and have dimensions which grow exponentially with
n. They are intimately related to spinor representations of
SO(n)[29].
Now we try to obtain the characteristic function via wavelets
transform in Banach space based on projective representation
of permutation group (spinor representation of permutation
group). In order to do so, we need to choose the tomographic
set{π̂i1,...,im

= γi1
1 γ

i2
2 , γ

i3
3 , ..., γ

im
m ,

i1, i2, ..., im = {0, 1}} as a projective representation of the
wavelet transformation and the identity operator as a vacuum
vector. Therefore, the corresponding wavelet transformation
takes the following form:

W : B 7→ L2(G) : ρ̂ 7→ ρ̂(i1, ..., im) =

< ρ̂, l(i1,...,im) >=< ρ̂, π̂i1,...,im
l0 >=< ρ̂π̂†i1,...,im

, l0 >

= Tr(ρ̂π̂†i1,...,im
). (36)

In the wavelet notation for the two partite permutation group,
for simplicity we reduce our considerations on the irreducible
representationS2 × S2 is π̂(g1, g2) = ˆπi1,i2 ⊗ ˆπj1,j2 , with
πi1,i2 = σi1

1 σ
i2
2 , i1, i2 = {0, 1}, and the characteristic function

is defined as

φ(i1, i2; j1, j2) =< ρ̂, l(i1,i2;j1,j2) >=< ρ̂, π̂i1,i2;j1,j2 l0 >,
(37)

using test functionall0 via trace function the characteristic
function is reduced to

φ(i1, i2; j1, j2) =< ρ̂π̂†i1,i2;j1,j2
, l0 >= Tr(ρ̂π̂†i1,i2;j1,j2

).
(38)

From theorems 1 and 2,ρ is separable iff characteristic
function written as (8). The2 ⊗ 2 Werner states is defined
as

ρf =
1
6
((2−f)I+(2f −1)

∑
i,j

|ij〉〈ji|), −1 ≤ f ≤ 1, (39)

whereI is the identity operator. The positive semidefiniteness
condition for the matrixΦαα′,ββ′ = φ(g−1

α gβ , g
−1
α′ gβ′), where

these matrices are completely determined by their first rows
and the group multiplication table.

Proposition: A function φ ∈ P(G×G) is separable iff its
matrix Φ can be convexly decomposed as follows

Φ =
∑

i

piKi ⊗Ni, (40)

where for eachi, Ki, Ni ≥ 0 and are defined by the group
multiplication table forki, ηi, on the other wordφ is separable
if ΦT ≥ 0 (Φαα′,ββ′ ≥ 0 ⇒ Φβα′,αβ′ ≥ 0). Now by
calculatingΦ matrix for the above Werner state one can show
that ΦT will be positive if 0 ≤ f ≤ 1 i.e., the Werner state is
separable if0 ≤ f ≤ 1.

C. Quantum Entanglement of Dihedral Group Based on Pro-
jective Representation

Here we consider the tomography of dihedral group by
using irreducible projective representation of this group.

The dihedral groupDn of order2n defined by [30], [27]

Dn =< a, b|an = 1, b2 = 1, bab−1 = a−1 > . (41)

Let ε be a primitive nth root of 1 and let

χ : Dn ×Dn → c∗, (42)

be defined by [31]

χ(ai, ajbk) = 1 and χ(aib, ajbk) = εj , (43)

for all i, j ∈ {0, 1, 2, ..., n− 1} andk ∈ {0, 1}.
For n=2m is even, for eachr ∈ {1, ...,m− 1} put

Ar =
(
εr 0
0 ε−r

)
, Am =

(
εm 0
0 εm

)
Br =

(
0 1
1 0

)
, (44)

and for n=2m+1 is odd, for eachr ∈ {1, ...,m} put [32] is

Ar =
(
εr 0
0 ε−r

)
, Br =

(
0 1
1 0

)
, (45)

and letπ̂r : Dn → GL(2, c) be defined by

π̂(i, j) = π̂r(aibj) = Ai
rB

j
r , {i ∈ {0, 1, ..., n−1}, j = {0, 1}}.

(46)
Now we try to obtain the above explained tomography via
wavelets transform in Banach space based on projective
representation. In order to do so, we need to choose the
tomographic set̂π(i, j) as a projective representation of the
wavelet transformation and the identity operator as a vacuum
vector. Therefore, the corresponding wavelet transformation
takes the following form:

W : B 7→ L2(G) : ρ̂ 7→ ρ̂(i, j) =

< ρ̂, l(i,j) >=< ρ̂, π̂(i, j)l0 >=< ρ̂π̂†(i, j), l0 >= Tr(ρ̂π̂†(i, j)).
(47)



In the wavelet notation for the two partite permutation group,
for simplicity we reduce our considerations on the irreducible
representationD2 × D2 is π̂(g1, g2) = ˆπi1,i2 ⊗ ˆπj1,j2 , with
πi1,i2 = Ai1

r B
i2
r , i1, i2 = {0, 1}, and the characteristic func-

tion is defined as

φ(i1, i2; j1, j2) =< ρ̂, l(i1,i2;j1,j2) >=< ρ̂, π̂i1,i2;j1,j2 l0 >,
(48)

using test functionall0 via trace function the characteristic
function is reduced to

φ(i1, i2; j1, j2) =< ρ̂π̂†i1,i2;j1,j2
, l0 >= Tr(ρ̂π̂†i1,i2;j1,j2

).
(49)

Let us consider the2⊗2 Werner states same as the permutation
group

ρf =
1
6
((2−f)I+(2f −1)

∑
i,j

|ij〉〈ji|), −1 ≤ f ≤ 1, (50)

whereI is the identity operator. The positive semidefiniteness
condition for the matrixΦαα′,ββ′ = φ(g−1

α gβ , g
−1
α′ gβ′), where

these matrices are completely determined by their first rows
and the group multiplication table. Now by calculatingΦ
matrix for the above Werner state one can show thatΦT will
be positive if0 ≤ f ≤ 1 i.e., the Werner state is separable if
0 ≤ f ≤ 1.

IV. CONCLUSIONS

The universal description of quantum entanglement using
group theory and non-commutative characteristic functions for
homogenous space and projective representation of group on
Banach spaces for some of well known examples, such as:
Moyal representation for a spin, Dihedral group and permuta-
tion group have been considered. Entanglement consideration
for others homogenous spaces and projective representation of
groups is under investigation.
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