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Introduction

quantum states 2
entanglement *

e Quantum computation and cloning

e No-cloning theorem of {

e Approximate quantum cloners:

- universal cloning (UC) machines ?

:: phase-covariant cloning (PCC) ma-
chines of

—equatorial qubits 2
orbital states 4

- entanglement cloners °

Our aim Is to investigate temperature effects on the perfor-
mance of quantum cloning machines.

Decoherence °: Interaction with thermal environment = ther-
malization: pure states ~~ mixed states:

thermalization channel
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[*QCM” stands for “Quantum Cloning Machine™].

tenv. < Tey, L giss. = min{Tla 13, TO}

We assume that: {
Tc S Tdiss.

e 71 and 75: time-scales with respect to energy and phase re-
laxation processes, respectively.

e 7H: time-scale dictated by all other relaxation sources.
e 7.. time-scale of the cloning process

Summary of the results

In the following sections, we show that:

» when only the blank copy and the ancilla state are affected,
a redefinition of cloning transformations removes thermal ef-
fects.

» this thermalization may reduce performance of a quantum
cloner even below classical cloners.

» there exist some instances in which the quality of cloning for
phase-covariant cloners is less than that of universal cloners.

» an optimal entanglement cloner preserves its higher perfor-
mance (than the other schemes of entanglement broadcast-
INg) even when thermal noise comes into play.

Dissipative hardware

(1) Dissipative (mixed) ancilla

The possibility of optimal cloning with any pure state 2 => op-
timal fidelity with mixed ancilla is achievable.

(2) Dissipative (mixed) ancilla + blank

Attaching some new auxiliary system M — redefinition of
the cloning transformation  => optimal fidelity again

= | optimal cloning with thermally diluted machinery

Duplicating a thermally

diluted qubit

The following matrix transformation can represent optimal uni-
versal and phase-covariant clonings:

(a b > _>(,u2a+u2 2uvb )
b* 1—a ), 2uvb* (1 —a) + v° a(a’).
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Our Hamiltonian model is I = wyo./2. We also define n =

woB/2:

wop>0,T7T = n|: opposed behavior
wp<0,T7T = nT: same behavior

2
Bures fidelity: F(p,o0) = (Tr\/pl/Qapl/Q) = F(|T), o)

F(0,e,n) = p’[l — e+ ele™" cos’ g + €"sin? g)/Z]
+(pv — p?/2)(1 — €)sin 6 + v?,

2 (0<5 = F(n) |
OpF' = s—cost = Ve : § 0=5 = F(n) = constant
2 cosh”n 60>T = F(p) 1

And in high temperature limit (n — 0)

. B
O F :ﬂ(VSIHQQ—l——COS 0) = VO : F(e) |
2

positive
Universal cloning
0. 75 2m/3 0.7 2m/3
0.7 7T/2 10.65 7r/2
0.6
0. 65/ . 0 55 ;
™ ™
0.6 () o/ | 00;12 (b) o/
0 1 2 3 4 5 7 0 1 2 3 4 5 7

e=5/11/ Phase-covariant cloning \622/3

R S I T 3
@ " 0.9 (0) 2
) 0.5 0.8 0.5 |
0.8 1 0.7 |
K/\/G—
0. 749\/\/& 0.6 |
0.5 0. 5 05 ,
0.6 1 0.4 1
aE

0 05 1 1.5 2 25 3 g 0 0.5 1 1.5 2 2.5 3 ¢

At low temperature and wy > 0 (n — o0):

universal: V0 € |0, 7) = F(e) |
phase-covariant: for s = 2.52 and less than r rad = F(¢) |

Important point:

for some (¢, 6, n) we see that FUC¢ > prcc

In the case of universal cloning:

cosh n 1
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otherwise a classical cloner is better than quantum cloner.

n>0& 0>mn/2

Cloning of thermal

entanglement

Clean state: |U ), = a|01)yp — V1 — a?|10)y :  ER &
af <1

Hamiltonian model: H = J(clo) + olo))

Via: local cloning: (i) with two optimal UC machines ’

( (i) with UC machine of 4-level quantum

Non-local cloning: {  states ?

_(l)) by an optimal entanglement cloner

» When ¢ = 0 (no external noise), we could write the state of
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each clone in cases (ii) & (i), and nonlocal copies of case (i) in
the following compact form

ot = 1= (100) (00| + |11)(11])
M 4 120 — 1)]j01)(01] + [F — L(202 — 1)]]10)(10)
—%wl — a2(|01)(10] + [10)(01]),

machine parameter
where

M; = (2/3* , My =3/5, My =6A*+4AC

I /1 1 A 3
A=+ — = —(v13—3 L=—(1+2M 1+4M — 9M?).

» \When temperature comes into play, the above equation takes
the following general form

o = (£ + 15M)(|00)(00] + [11)(11])
M (A€ 4 €8y | 1=M 70 — ) (202 — 1)]]01)(01]
_|_

H[MAZE 4 €Yy L I2M 1 — )(202 — 1)]]10)(10)
—M|[(1 — e)av1 — o + & sinh4](]01)(10] + [10)(01|),

iIn which Z = 2(1 + coshy) and v = 23J.
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Applying positive partial transposition criterion ® results in some
temperature and state-dependent regions over which the out-
put cloned pairs are inseparable. For example, at room temper-
ature, our clones are entangled when (for more details see 1)
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VM1 =€) —1)(M(1—¢€)+1)
AM(1 — ¢€) |

Remarkl.— For some “I” € intermediate (high & low) temper-
atures, 3 intervals of a” (¢) in which the cloned pairs are sep-
arable: M 7 = the length of these intervals |. Recall:
Mzm > Mii > Mi-

Remark2.— For a given o’ (¢) € moderate (two limits of) tem-

peratures, the range of ¢ (042) In which the clones are entangled
T when M T.

Entanglement phase diagrams of input and output states
(achieved from three different schemes of entanglement
cloning/broadcasting), when o = 1/+/2 are
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The regions labeled by 1 (2) indicate (no-) entanglement re-
gions. Here, we also have . = In[(M + 1+ 2V M2+ M) /(3M —
)] & e9 = [(M — 14+ 4MJ)(1 + coshv)]/{2M |1 — sinh~ 4+ 26(1 +

cosh )] }.

The advantage of optimal entanglement cloner M,
—> | over other studied scenarios in the sense of robustness
against thermal perturbations.

Acknowledgment

Center of Excellence in Complex Systems and Condensed
Matter (CeCsCm)

¢
© core KN e

l'S. Baghbanzadeh and A. T. Rezakhani, arXiv:quant-ph/0704.
1177.

2 V. Scarani et al., Rev. Mod. Phys. 77, 1225 (2005).

3 L. P. Lamoureux et al., Phys. Rev. A 69, 040301 (2004).

4 V. Karimipour and A. T. Rezakhani, Phys. Rev. A 66, 052111
(2002).

> M. Merkli et al., Phys. Rev. Lett. 98, 130401 (2007).

O A. Roy et al., Phys. Lett. A 286, 1 (2001).

"\ Buzek et al., Phys. Rev. A 55, 3327 (1997).

5 A. Peres, Phys. Rev. Lett. 77, 1413 (1996).



