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‘Massive’ CV degrees of freedom

: : ® oO0V0D0©
Bec.eps NaNol.eps OptlcaILattlce.ep< )

Controllable continuous variable degrees of freedom are ubiquitous

Our pick are the “transverse” (or “radial”’) degrees of freedom of
trapped ions (zhu, Monroe, Duan, PRL '06; C. F. Roos et al., arXiv:0705.0788)

* courtesy of R. Blatt
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One ion:

2
p 1
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@ How does one implement “linear optical” operations on trapped
lons?
@ The idea: control the trapping frequency

One ion:
2
p 1
Hy = o + imw(Q):CQ

»

p

1
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1 2
wo = wy = Hy = Swo(P+5X%) =
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Linear phononics: the lonely ion

@ How does one implement “linear optical” operations on trapped
lons?
@ The idea: control the trapping frequency

One ion:
2
p 1
Hy = o + 5mw8x2

1
X = /mwoxr P =p/y/mwy= Hy= §WO(P2+X2) /Q/

1 2
wo — w1 = Hg — §w0(P2+w—;X2) &
Wo

@ Any linear optical operation on a single particle can be
Implemented by controlling w
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Linear phononics: the more the merrier

@ Any ‘linear optical’ operation can be implemented if individual

control of the radial trapping frequencies is achieved
(Serafozzi, Retzker, Plenio, arXiv:0708.0851)

@ At resonance: Coulomb interaction is on

\\—/1
%’/ W
, , m, ,
@ All the results about Gaussian states can be carried over to ion
traps (harmonic approximation)

@ Possibility to go beyond Gaussian when anharmonicities kick in
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@ Achieving local control of the frequencies could be challenging
experimentally

@ From now on, only global control is assumed: all the trapping
frequencies are the same at all times (but can be changed all
together)
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w; = 100 MHz and evolving with frequency w; = 2 MHz,
T ~ 21°C'. (LogNeg between ion 1 and 3)
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Entanglement generation

@ Two ions: starting from the ground state for trapping frequency
w; = 100 MHz and evolving with frequency w; = 2MHz, T' ~ 21°C.

Logarithmic negativity (ebits)

L = yN =0 |
""" yN =20 Hz
= = yN =200 Hz
y N = 2000 Hz
0 | | | | | | | | |
0 2 4 6 8 10 12 14 16 18 20

Time (us)

@ If swapped to light: entanglement generator for quantum optics
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Nonlocality test

@ Measurements can also be implemented: parity measurable in
single runs

=- the violation of Bell inequalities can be tested with Gaussian
states

@ Violation of ‘Bell-Klyshko’ inequality by displaced parity (Banaszek
and Wodkiewicz, PRA '98), for 3 ions:

effect of thermal noise:
T ~ 21°C, YN ~ 200Hz
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Summing up:

@ Transverse CV degrees of freedoms of trapped ions allow for:

2 remarkable entanglement generation capability
a reliable performances under currently achievable heating rates

@ measurements of phonon numbers and parity (suitable to test
Bell inequalities’ violation)

@ anharmonic Hamiltonians

— Promising both for quantum information processing and as probes of
fundamental physics
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