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OUTLINE

(generic physics talk of the 2nd type)

Something we were trying to do
Postselective generation of N-photon entangled states
Something we didn't anticipate [complicated plots]

Subtleties of measuring multi-photon states
Pretty pictures in case I've already lost you

Triphoton tomography on the Poincar é sphere

A completely different topic just to keep you
on your toes (or because I'm indecisive)

Pulse echoesin an optical lattice

Towar ds guasmomentum-independent coupling
Summary



Building up entanglement photon by photon
by using post-selective nonlinearity



Highly number-entangled states
(“z00=” experiment).

M.W. Mitchell et al., Nature 429, 161 (2004)

States such as |n,0> + |0,n> (" noon" states) have been proposed for
high-resolution interferometry —related to " spin-squeezed" states.

| mportant factorisation:

T“J’ + b-rj = (a + b ) a —|—€2”“b ) (a-T +e_2m/3b-r)

@@ @@T

A" noon state v

A really odd beast: one 0° photon,

one 120° photon, and one 240° photon...
but of course, you can't tell them apart,
let alone combine them into one mode!

Theory: H. Lee et al., Phys. Rev. A 65, 030101 (2002); J. Fiurasek, Phys. Rev. A 65, 053818 (2002)



Making 3 photons
jump through hoops

/

How to combine three non-orthogonal photonsinto one spatial mode?

" mode-mashing"

Yes, it'sthat easy! If you seethree photons
out one port, then they all went out that port.

IEE) Post-selective nonlinearity



Making 3 photons
in the first place - &

Okay, we don't even have single-photon sources’.

But we can produce pairs of photonsin down-conversion, and
very weak coherent statesfrom alaser, such that if we detect
three photons, we can be pretty surewe got only one from the
laser and only two from the down-conversion...

ea |3> + O(a3) + O(g?)
7 laser - 0> +a 1> + O(@?) + termswith <3 photons

0> + g |2> + O(€?) j>

*But we'reworking on it (collab. with Rich Mirin’s quantum-dot group at NIST;
also next-gener ation experiment using triggered down-conver sion)



The basic optical scheme
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Complete characterisation
when you have incomplete information



Fundamentally Indistinguishable
VS.
Experimentally Indistinguishable

But what if when we combine our photons,
thereissomeresidual distinguishing infor mation:
some (fs) time difference, some small spectral
difference, some chirp, ...?

Thiswill clearly degrade the state — but how do
we characterizethisif all we can measureis
polarisation?




Quantum State Tomography

Distinguishable Photon

Indistinguishable :
Hilbert Space

Photon Hilbert Space ? {HH e VV>}
{|2H’0V>’ 1H91V>9 OH92V>} - L VA M YA i M A
{lam) |5V +|vH) |7V )}

Yu. I. Bogdanov, et al
Phys. Rev. Lett. 93, 230503 (2004)

If we're not surewhether or not the particles are distinguishable,
do wework in 3-dimensional or 4-dimensional Hilbert space?

If the latter, can we make all the necessary measur ements, given
that wedon’t know how to tell the particlesapart ?



The Partial Density Matrix

Theanswer: thereareonly 10 linearly independent parameter s which
areinvariant under per mutations of the particles. One example:

(( PHH,HH P v +VvH, HH Pw , HH ) Inaccessible \
ﬁ HHHVVH PRV HVH  Pw pvayn | 010rmation

Pn w P v +vH w Pww /
\ Inaccessible (Puv-vh 1y -vH ) /

information

The sections of the density matrix labelled “inaccessible” correspond to
information about the ordering of photons with respect to inaccessible
degrees of freedom.

For n photons, the # of parameters scalesas n?, rather than 4"
Note: for 3 photons, there are 4 extra parameters—one more
than just the 3 pairwise HOM visbilities.



Experimental Results

R.B.A. Adamson, L.K. Shalm, M.W. Mitchell, AMS, PRL 98, 043601 (2007)

No Distinguishing Info Distinguishing Info

When distinguishing
information isintroduced the
HV-VH component increases
without affecting the statein
the symmetric space

Distinguishable photons 4=
L =

. S L
Mixtureof & &

AR [US5-450and 145
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Hot off the presses (well, actually, not on them yet):

Density matrix of the triphoton

Real Part Imaginary Part

(80% of population in symmetric subspace)

Extension to n-particle systems: R.B.A. Adamson, P.S. Turner, M.W. Mitchell, AMS, quant-ph/0612081



Words of Wisdom from
Alice (almost) and Bob

Copyright 2003 by Randy Glasbergen.
www.glasbergen.com

Bob Boyd

Elsa Garmire

“We don’t need to worry about information security
or message encryption. Most of our communications
are impossible to understand in the first place.”



A better description than
density matrices?



Wigner distributions
on the Poincaré sphere ?

(Consider a purely symmetric state: N photons act like a single spin-N/2)

Any pure state of a spin-1/2 (or a photon) can be represented as a point
on the surface of the sphere—it isparametrized by a single amplitude and
asinglerelative phase.

Thisisthe same asthe description of a classical spin, or the polarisation
(Stokes parameters) of a classical light field.

Of course, only one basisyields a definite result, so a better description
would be some “uncertainty blob” about that classical point... for spin-1/2,
thisuncertainty coversa hemisphere, whilefor higher spin it snrinks.




Wigner distributions
on the Poincaré sphere

[Following recipe of Dowling, Agarwal, & Schleich, PRA 49, 4101 (1993).]
{and cf. R.L. Stratonovich, JETP 31, 1012 (1956), |'m told}

Can such quasi-probability distributions over the “ classical”
polarisation states provide more helpful descriptions of the
“state of thetriphoton” than density matrices?

“Coherent state” = N identically polarized photons

“ Spin-squeezed state” trades off

uncertainty in H/V projection for

mor e precision in phase angle.
Please to note: there is nothing inside the sphere!

Pure & mixed states are simply different distributions on the surface,
as with W(x,p).



Beyond 1 or 2 photons...

A 1-photon pure state may be re&resented by a point on the surface
of the Poincare sphere, because there are only 2 real parameters.

squeezed state 3-noon 15-noon
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2 photons: 3 photons:

4 param’s: 6 parameters:
Euler angles Euler angles N
+ squeezing (eccentricity) + squeezing (eccentricity) el pdk dseny
+ orientation + orientation

+ more complicated stuff



Making more triphoton states...

BBO Doubling
Crystal

o—i

810nm 100 fs

v

BBO Crystal
Type Il SPDC
Collapsed Cone
Geometry

E.9, % HV (H+V)

Periscope

State Preparation

Variable
Attenuator

Variable
Partial
Polarizer

=(R+iL) (L +IR) (R+IL+L+IR)
OR**L2(R+L) = R3+R? +RL2+1L3

In HV basis, H?V + HV? Iooks“ number-squeezed”; in RL basis, phase-squeezed.



The Triphoton on the rack
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Another perspective on the problem
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Quantum CAT scans



1OVl apily & LUOIIU UL 1L L/atuuied

[Myrkog et al., PRA 72, 013615 (05)
Kanem et al., J. Opt. B7, S705 (05)]
Rb atom trapped in one of the quantum levels
of a periodic potential formed by standing
light field (30GHz detuning, c. 20 Er in depth)

Goals:
How to fully characterize time-evolution due to lattice?

How to correct for “errors” (preserve coherence,...)?
How to convince the NSA that this is important for building quantum computers?



The workhorse: measuring state
populations

Adiabatically lower the depth of the wells in the presence of gravity.
Highest states become classically unbound and are lost. Measure
ground state occupation.

Two Methods : - Ramp down and hold. Observe population
as a function of depth.

OR - Ramp down very slowly and observe different
states leave at distinct times.

Initial Lattice

After adiabatic decreas:




Time-resolved quantum states




Some fun results

Negative Wigner function for inverted
population (70% of atoms in vibrationally
excited state of lattice well)

QuickTime™ and a
Photo - JPEG decompressor
are needed to see this picture.

Kanem et al., J. Opt. B7, S705 (05)
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Fractional wavepacket revivals in a
delta-kicked rotor experiment
(fractional quantum resonances)
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Kanem et al., PRL 98, 083004 (07)



Recapturing atoms after setting
them into oscillation...

\




...0r failing to recapture them
if you're too impatient

VY




Oscillations in lattice wells

(Direct probe of centre-of-mass oscillationsin 1um wells;
can be thought of as Ramsey fringes or Raman pump-probe exp’t.)
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Towards bang-bang error-correction:
pulse echo indicates T2 = 1 ms...

comparing oscillations for shift-backs
applied after time t
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coherence introduced by echo pulsesthemselves
(sincethey are not perfect Tepulses)



Improved echo pulses
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Going off the shallow end

=== Single-step
. = Square
= Gaussian
o0 - ""*'-‘...“_;'_"_';'_"_‘;'_‘;'_"_"_‘;'_"_‘;'_; ST e——— The optimal coupling into |1>
RESRUOS SRR U iS I/e l-n a harmonic oscillator,
s 207 40 60 80 100

In our vertical configuration, we can’t
go that far — have reached about 35%

(square pulse).

The future:
adiabatic rapid passage
AM + FM (sideband engineering?)
optimal control (GRAPE, etc)
horizontal lattice

1 3 & 7 8 M 13 16 17 18



Why does our echo decay?

01

echo amplitude

Except for one minor disturbing feature:
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These data were taken without the 3D lattice, and we
don’t have the slightest idea what that plateau means. (Work
with Daniel James to relate it to autocorrelation properties of
our noise, but so far no understanding of why it’s as it is.)



The moral of the story

yu e Tme e,
are needed to see this PI

Multi-photon entangled states may be built “from the ground
up” — no need for high-frequency parent photons.

A modified sort of tomography is possible on “practically
indistinguishable” particles; there remain interesting questions
about the characterisation of the distinguishability of >2 particles.

A more anschaulich description of multi-photon states may be had
on the Poincaré sphere.

There are interesting issues involved in controlling the quantum
states of atoms in lattices, broadened by quasimomentum (inter-well
tunneling) and by spatial inhomogeneities.

Pulse echoes should allow us to study (and control?) spatial
coherence in the optical lattice. So far, we don’t really understand
what’s going on.
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