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What is Q Simulation?

Employing a computational machine to mimic cer-
tain physical Q systems thereby answering relevant
C—intractable questions accurately and efficiently.

@ Accuracy: bounded error €.

e Efficiency: cost (e.g., time and space) of simulation scales

‘reasonably’ (polynomially) with the problem size.
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An aim of Q sim: simulating Schrodinger’s Equation

@ Schrodinger’'s equation:

. d "
3£ 10(0) = A ().

Unitary dynamics (h = 1):
A=At = [0(t) = Tep {1 J§ dufi(u) } [0(0)).

Time-independent: [¢)(t)) = exp {—iI-AIt} |1(0))

@ Different solutions with different complexity:

solve |1(t)) over some time domain;

e determine the spectrum of I:/;

e find eigenvectors of A, e.g. the ground state;

o estimate the mean of an observable (1(t)|O]t)(t)).

@ Some quantities could be tractable whereas others not so.
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Some C methods for simulating Schrodinger's Equation

Diagonalize H; then algebraic.

Integrate:
o Runge-Kutta;
e Magnus expansions = Baker-Campbell-Hausdorff method;
e Product formulae:
o Forest-Ruth = symplectic integration;
@ Trotter-Suzuki;

Quantum Monte Carlo simulations:

e Stochastic Green functions;

e Variational, diffusion or path-integral Monte-Carlo methods.

@ Density matrix renormalization group.

Wiebe Berry Hgyer BCS J. Phys. A 43 065203 (2010).

Barry C. Sanders Algorithmic Quantum Simulation



Introduction Q simulation circuitry Many-body simulation Tin

Feynman: Simulating Physics with Computers

85. Can Q systems be probabilistically simulated by a ¢ computer?

Can a Q system be probabilistically simulated by a ¢ (probabilistic,
I'd assume) universal computer? In other words, a computer which
will give the same probabilities as the Q system does. If you take
the computer to be the ¢ kind I've described so far, (not the Q
kind described in the last section) and there're no changes in any
laws, and there's no hocus-pocus, the answer is certainly, No! This
is called the hidden-variable problem: it is impossible to represent

the results of @ mechanics with a C universal device.

Feynman Int. J. Th. Phys. 21 (1982) pp. 467-488.
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Decision problems & complexity (Aaronson’s schematic)

PSPACE

@ How hard to solve Yes/No problem. |
e Employ algorithm (input, output,
procedure using instruction set).

@ Instance size: n bits for input. \

e Complexity: resource scaling (T & BQP

S) vs n.

e PSPACE C EXP. \

e PP: Y = output Y w/pr>1/2; BPP
N = output Y w/pr<1/2. \

e BPP: Y = output Y w/pr> 2/3;
N = output Y w/pr< 1/3.
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Feynman exegesis

@ Heisenberg picture (matrices) = q problems C EXP.
e Feynman path integral = q problems C PP.}

@ ‘give the same probabilities” = q algorithm efficiently
answers decision problems concerning expectation values
(1|Oy) with bounded error.

@ ‘“classical kind ...the answer is certainly, No!" = some of
these problems ¢ BPP.?

o P=BPP generally believed.

o Implication BPPCBQP would be significant if proved.

o Feynman says "No!" because of “the hidden-variable problem:
it is impossible to represent the results of quantum mechanics
with a classical universal device". Correct?

@ Aside: post-selected quantum computing is PostBQP=PP.
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Approximate simulation of (known) H-generated evolution

Simulating within tolerance e.

@ Treat case of time-independent I-AI(”);

Resultant evolution over time t: U = exp {—iI-AI(”)t};

Evolution: [1(t)) = exp {—iI:It} |1(0));
Simulated state |¢(t)) has error: || [¢(t)) — |(2)) ||;

Input: € = upper bound to allowed worst-case error.

Raeisi Wiebe BCS New J. Phys. 14 103017 (2012).
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Decomposing an n-qubit k-local H()

Write the Hamiltonian as a sum of simpler Hamiltonians

@ Express evolution as sequence of evolutions generated by
simpler Hamiltonians;

o Let [A]J(.”) = ®gzléj(.g) act on k € polylog(n) qubits;
@ Each éj(-g) drawn from
0 1 (0 -1 1 0
(o= (1 o)v=i(5 9)2=( %)}
& is non-1 for < k instances in tensor product;

o k-local A(": Zjnflpdy(") fA)J(.").

Raeisi Wiebe BCS New J. Phys. 14 103017 (1982).
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Quantum circuit component for Pauli evolution

Unitary evolution generated by b;

_H ® ® H_
_TG_H PY ’_H_TQ_
Db R.(20) D

exp{—ipX@ Yl Z}
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Sequence of l-Al—generated evolutions

Generating and multiplying evolution operators.

e Partition time interval At = t/r, namely (t1,...,tm);
o U(At) = exp {—iaijJ(-;)tM} - exp {—iajlhj(.ln)tl}.

General case: time-ordered exponential

Texp {=i [ T8 du 7, ()} ~ TToLy exp (=i, () Aty ).

Trotter product formula

>
>
>
>
: |
\

et(0+) s lim o <ei“’/"eith'/”) . Error € is important.

A\

Raeisi Wiebe BCS New J. Phys. 14 103017 (1982).
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Minimizing time cost using Suzuki's iterative algorithm

Suzuki's generalization of the Trotter formula

m 1
52()\) :HeHj)\/Z H eHj/)\/Q’
=il =
Sok(N) = [Sak—2(PkA)]® Sak—2 (1 — 4pk) A) [Sak—2(pxN)]?,

for px = (4 — 41/(2"*1))_1. Each iteration k has 5x as many
terms as for iteration k — 1.

| \

Suzuki proves for small \:

Hexp {z;’;l F/jA} _ 52;(_1()\)H € 0 (JAZ+1).

A,

Suzuki Phys. Lett. A 146 319 (1990),
Suzuki J. Math. Phys. 32 400 (1991).
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Hamiltonian in a black-box

Previously designed algorithm exploits knowledge of A,
Black-box setting: algorithm without knowledge of A,
A is queried during algorithm;

A s exponentially large in n;

Require simplifying promises for A to reduce cost;
Objective is to construct an efficient algorithm for any

Hamiltonian subject to reasonable promises.

® 6 6 6 o o

Lloyd's 1996 formalization of efficient @ computing

Assumed tensor-product structure and used

exp —ité/f/j <Hexp{—| ,}) +Z[/—7 A ]—+e

J>J

to prove polyn time T and space S costs.
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Simulating evolution for one-sparse A

Simulating evolution for diagonal A with d(a) = (a|H|a) € {0, 1}

la,0) — |a,d(a)) — exp{—itd(a)}|a, d(a)) — exp{—itd(a)}|a,0).
Circuit for one-sparse Hamiltonian evolution is a minor
modification of diagonal-H(") circuit.

Childs Cleve Deotto Farhi Gutmann Spielman STOC’03 146 59-68.

|a) I [ e ]a)
|0) —— expl 1) 10)
0) expl~2i1)] 0)
d . d
10) exp(~2i 1) 10)
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Simulating evolution for one-sparse H

General evolution as sequence of one-sparse Hamiltonian evolutions

ApprOX|mater & efficiently decompose the overall evolution
U=~ HV 1 U, each generated by one-sparse H,.

L LY L

o oy I[1] o) T[T

19 10), 0, L

w1 oo .
0) 0) 10) oo
0) 0) 0)

I IEn T reEn T e
e U ) R
‘7//>=EC1‘1> U=UJNH.UJ'2UJ'|
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Q state generation [Aharonov & Ta-Shma (AT) 2003]

Motivated by claims of adiabatic Q computing solving
NP-Hard problems (still relevant today?).

Consider which Q states can be efficiently generated.

°
@ Oracle setting: efficiently queries elements of H.

@ No assumption of tensor-product structure (c.f. Lloyd).
°

Demonstrate equivalence between QSG and statistical zero
knowledge (SZK) problems.
e ZK proof: prove knowledge of secret without revealing secret.
e SZK problems: discrete log, quadratic residuosity, . ...
e Specifically show SZK problems reducible to QSG problems.
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Considerations for efficient quantum simulation

@ Problem size: Number n of qubits in the system.

@ Accuracy: The answer is no worse than e (appropriate metric).
o Efficient: Solve with resource consumption € O (polyg).

@ Generality: Solves problems for a broad class of systems.

Sparse Hamiltonian Lemma (Aharonov & Ta-Shma STOC 2003)

If A acting on n qubits is d-sparse s.t. d € O(polyn) & the list of
nonzero entries in each row is efficiently computable, then H is
simulatable if |H|| < polyn.

Childs’s rules for simulatability
S°; Hi with each H; acting on O(1) qubits or

°
@ is a /—1x commutator of two simulatable I:I;s or
°
°

convertible to simulatable A by efficient unitary conjugation or

is sparse and efficiently computable

Barry C. Sanders Algorithmic Quantum Simulation
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Aharonov & Ta-Shma Circuit (Wiebe's picture)
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Simulation cost is slightly superlinear in time ¢'+°()

Theorem [Berry, Ahokas, Cleve, Sanders 2007 (BACS)]

m52K (mqr) /2K

2[(2k + 1)1e]V/2k

M <

o’

1 mTt
ke 5 flogs (7).

M < 2m’Texp {2 logs (T)} R % logs /3 (%) (1)
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Black-box Q simulation must be superlinear in time

Theorem (No Quantum Speedup)

For all positive integers N 3 a row-computable two-sparse A s.t.
simulating H-generated evolution for (scaled) time 7 = 7N/2
within precision 1/4 requires > 7/27 queries to H.

[15)

[14)

[13)

I Loy [0.0) o)
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Hamiltonians as weighted graphs (Cleve's picture)

For column x, only rows y; .4 hold nonzero matrix elements.
The graph weight «; is (x|Aly:).

As A=At o o is the weight for column y; and row x.
Hermitian H can be represented by a degree d graph.

Goal: decompose A graph into disjoint union of d = 1 graphs.

Barry C. Sanders Algorithmic Quantum Simulation
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Colouring the graph for A with d? labels (Cleve's picture)

Barry C. Sanders Algorithmic Quantum Simulation
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Problem: long monochromatic paths (Cleve's picture)

Barry C. Sanders Algorithmic Quantum Simulation



Introduction Q simulation circuitry Many-body simulation Tin

Colouring by Cole-Vishkin coin tossing [Cleve picture]

X<y<z<w

S,

(a,b, |x
@
(ab, |y
G
(ab, |z
®
(a, w
d 2" n
colours bits

k‘

<)

<

@)

zY

®

w'

log(n)+1
bits

“Deterministic coin-
tossing” [Cole & Vishkin '86]

y' € (i,y), where i=min{j:y;=z;}
010
Example: y=01100101
z=01001101

Then y'=(010,1)

Note: still a valid coloring!
xX'=y' &y'=z7' & '=w
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Colouring by Cole-Vishkin coin tossing [Cleve picture]

Breaking up the paths I

i\ & L oo &

(a,b, |x x' X" X"
© _—~© _—~o _— @
(a,b, |y > |y’ >y e P
©_~o _~o 7 ¢
(”yb, z > zr zn . z”l
©_—~© ~© 7 ©
(a,b, |w w' w'' w'"’
d>2" n log(n)+1 log(log(n)+1)*+1 6 clements
colors bits bits bits

Just 5 iterations for 7 < 10"
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Time and space costs for simulating I-AI—generated evolution

Who Year | T S

Lloyd | 1996 | O(t?) O(n)

AT* | 2003 | O <n9d4Lj O(n)

Childs® | 2003 | O <n2d4+°<1>% 0 (n)

BACS® | 2007 | O <Iog* nd4+°(1)%> O(nlog*n)

ck” |2010] 0 <[d3 + d?log"n] fljjgjk) O (nd + nlog*n)
BC® | 2010 | O (||Allmaxd %) .
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Simulating many-body systems

Abrams & Lloyd PRL 1996

But the problem of simulation — that is, the problem of modeling
the full time evolution of an arbitrary Q system — is less
technologically demanding. While thousands of qubits and billions
of Q logic operations are needed to solve ¢ difficult factoring
problems [16], it would be possible to use a Q computer with only
a few tens of qubits and a few thousand operations to perform
simulations that would be C intractable [17].

N
Hubbard = — t Z (Q-TUQU + LA‘J-TJ(-A‘,'U) + UZ hip Ay,

U N
Hgose-Hubbard = — t; (Q-t,éj + 6}&') +5 z; (A — 1) — ,uz; fi.
1J 1= 1=
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Examples: models for simulation

/:Ilsing = JZ(,” Zi ® ZJ + BZ;XI-
Hxy = Jx Z<i:f> Xi ® XJ + -/y Z(i,j) Y ® YJ
HHeisenberg = Jx Z(i,j) Xi ® )<j + Jy Z(i,j) Yi ® YJ

H honeycomb =

—I D ik Xi O X = Iy > ik Yi® Y — L2 3 ik £ ® Zj

Barry C. Sanders Algorithmic Quantum Simulation
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Time-dependent Hamiltonian evolution

Problem:
For A =Y, H; with each Hamiltonian A : R — CNV*N
P-differentiable, construct

t+At ~
U(t,t+ AT) = Texp{—i/ duH(u)}
t

as a product of N exponentials exp {—iﬂjp(tp)Atp} within
tolerance € of U(t,t + At), and find an upper bound for N.

Barry C. Sanders Algorithmic Quantum Simulation
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Conditions for H(t) to be efficiently Q-simulatable

Theorem: Wiebe, Berry, Hgyer, Sanders 2010

Let A(t) = >, Hi(t) with each F;(t) 2k-differentiable on
[, o + AN]. Furthermore let timescale A satisfy

N 1/(q+1)
A= sup max H@i/—lj(t)H
AE[p,put+AN] q=0,...,2k, j=1,....m

9 /5\
< — =] ANAX
‘=10 (3)
and max,~, [|U(x, y)|| <1, then a decomposition U(u + A, p)

can be constructed s.t. || — U|| < € and s.t. the number of
operator exponentials in U satisfies

k 1/2k
M < [3m/\A)\k (235> (AA)\> —‘
€

Barry C. Sanders Algorithmic Quantum Simulation
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Q linear equation solver [Harrow Hassidim, Lloyd 2009]

Typical problem statement

Given matrix A and vector b, find x such that Ax = b; or given
matrix A, vector b, and matrix M, find a good approximation
of x"Mx such that x such that Ax = b.

@ Replace b by |b) = lezl bi|i) in computational basis.

@ Then |x) = h1|b), but inverting f is hard.

@ h has eigenvalues \; and eigenvectors |uj) for j =1,..., N.
o Express |b) = YL Bjlu)).

o Idea: |x) = h~1|b) ~ Zszl '%|uj>

o Kitaev phase-estimation approach: Z,N:1 Bilup)|Aj)-
o Construct (non-unitary) linear map |);) — )\Jf1|)\j>.
o Uncompute |)j) to obtain approximate |x).

Barry C. Sanders Algorithmic Quantum Simulation
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Summary

Devised and costed efficient, accurate algorithms for Q
simulation for H held by an oracle.

For oracle setting, an efficient query technique is developed to
construct the QQ simulation as a concatenation of Q) circuits
for one-sparse H simulation.

Run-time for Q algorithm is reduced by exploiting
higher-order Suzuki method.

Applications to many-body q simulation.

Q algorithms have been developed for time-dependent H,
which is relevant to adiabatic (Q computing, controlled
systems and Q phase transitions.

Q could be used as a linear equation solver.

Barry C. Sanders Algorithmic Quantum Simulation
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