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Kindergarten Quantum Mechanics
— beyond the Hilbert space formalism —



Quantum informatics context of this work

“What 1s the true origin of quantum algorithmic speed-up?”

“How do quantum and classical information interact?”

“What are the limits of quantum computation?”

What is a convincing model thereof?”



““What are the foundational structures of QIC?”
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Our approach: rebuild QM from scratch!
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Kinds/types of systems:
A,B,C, ..

e ¢.g. electron, atom, n qubits, classical data, ...

Operations/experiments on systems:

Al 4. A% B B " O .

e c.g. preparation, acting force field, measurement, ...

Sequential composition of operations:
A0 = A2 AMA

Multiplicity of systems/operations:
A®B ACl¥.BeD
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+ “obvious” rules governing o-® interaction

= tensor category

There are graphical calculi comprising these!

graphical language for ®-categories:
® ~ horizontal o ~ wvertical

provable from categorical axioms

<
derivable in graphical language
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f:A—-B +— fT:B—>A




QUANTUM STRUCTURE

Abramsky-Coecke (2004) IEEE-LiCS

Kelly-Laplaza (1980) Coherence for compact closed categories.
Selinger (2007) {-Compact categories and CPMs.



Empirical fact: entangled states exist in nature



Empirical fact: entangled states exist in nature

Quantum structure :=

Bell-states exist + their behaviour



System with quantum structure

A A
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System with quantum structure
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Graphical representation captures their relations
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In Hilb: f* ~ transposed & f. ~ conjugated
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“Decorated” normalization
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“Decorated” normalization

Proj ector

Proj ector




Bipartite projector




Bipartite ket & bra




Bipartite state

= Jamiolkowski isomorphism
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= Quantum teleportation
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Classical data flow?

ALICE

BOB




CLASSICAL STRUCTURE

Coecke-Pavlovic (2006) quant-ph/0608035v1

Carboni-Walters (1986) Cartesian bicategories 1.
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quantum data cannot be
cloned nor deleted

FEATURE:

classical data CAN be
cloned and deleted

Classical data comes with cloning and deleting:




System with classical structure

| A_4a ]




System with classical structure

“Frobenius”
(Carboni-Walters 1987 Cartesian bicategories 1)

“normalisation”
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Classical structure = quantum structure

A | L

| T T =T



In Hilb the Bell-state decomposes as:

Ny o L= |id)

H®H




In Hilb the Bell-state decomposes as:

Ny o L= |id)

H®H

This “‘refinement” specifies a base!
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X X
S 4
X X




Notational convention:




Normalisation theorem: A ‘‘connected’ network build
from 6, &7, ¢, ¢’ admits a ‘spider-like’ normal form:

X X X E B B EEREEEDN X

X X X =ere X

Kock, J. (2003) Frobenius algebras and 2D TQFTs.
Coecke-Paquette (2006) POVMs & Naimark’s thm without sums.



Normalisation theorem: A ‘‘connected’ network build
from 6, &7, ¢, ¢’ admits a ‘spider-like’ normal form:

X X X E B B EEREEEDN X

X X X EEEE X

proof ~ “fusion” of dots = graphical rewrite system

Kock, J. (2003) Frobenius algebras and 2D TQFTs.
Coecke-Paquette (2006) POVMs & Naimark’s thm without sums.
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All five axioms follow from spider-normal-form.
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QUANTUM-CLASSICAL FLOW



Quantum measurement:
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Quantum measurement:
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Quantum measurement:

M- A—-X®A

=- von Neumann projection postulate.



Quantum measurement:

M- A—-X®A

4 M xea

M 1 x @M

X®A XoX®A

01 4



Quantum measurement:
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Quantum measurement:
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Quantum measurement:

M- A—-X®A

= “indexed” self-adjointness.



Thm. Self-adjoint Eilenberg-Moore coalgebras for
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are exactly dim-outcome quantum measurements.



Thm. Self-adjoint Eilenberg-Moore coalgebras for
H ® — : FdHilb — FdHilb

are exactly dim-outcome quantum measurements.

Coalg-square =

idempotence P? =P,
mutual orthogonality PioPjz =0
Coalg-triangle =
Completeness of spectrum > . Pi=1y
Self-adjointness =
Orthogonality of projectors PZ = P,
PROJECTOR

SPECTRUM









What do these mean?
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Minimal requirements for reasonable notion of measurement







What do these mean?
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Asserts no-faster-than-light communication
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Teleportation:

___________




Bipartite quantum measurement:
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Bipartite quantum measurement:
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Bipartite quantum measurement:

-




Teleportation enabling measurement:

A A AA X X
X
st = and — O
£ 4 0
A A
A A AA X X
A A A
A A

and
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Teleportation enabling measurement:
A A AA X X

W st =) || and =0

A A

AA X X

A A
abstracts dim(X) > (dim(A))* and Tr(U,0U)) = 0,

A A A
A A
X A I
A X AX A X A X

abstracts unitarity of {U,},i.e. Ul o U,= U, o Ul =






Teleportation:

Bob



Intended behavior:

Alice A

A Bob






Dense coding:

X Alice X




Intended behavior:

X Alice X

X Bob






Other things we can do:

e proof correctness, generalize and find required struc-
tural resources of measurement based schemes’s.

e CPMs, POVMs and Naimark’s extension theorem

e resource inequalities e.g. coherent communication

Ross Duncan’s talk:!
e computing with basic quantum gates
e prove universality of one-way computing

e compute the quantum Fourier transform

EXPOSES THE COMPUTATIONAL POWER OF MULTIPLE CLASSI-
CAL CONTEXTS ie. WE CAN USE CLASSICAL STRUCTURE NOT
ONLY FOR CONTROL BUT ALSO FOR “RAW” QUANTUM CALCULUS



Classical species:

Classical map

/

Relation (d-laz, e-lax)

/

Stochastic map (
Partial map (9, e-lax)

S

Total map (9, €) Bistochastic map (e, €')

/

Permutation (0, €, (5T eT

/\



Classical maps are broadcast-able maps




