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Quantum informatics context of this work

“What is the true origin of quantum algorithmic speed-up?”

“How do quantum and classical information interact?”

“What are the limits of quantum computation?”

What is a convincing model thereof?”



“What are the foundational structures of QIC?”
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Our approach: rebuild QM from scratch!
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Multiplicity of systems/operations:

A⊗B A⊗ C f⊗g
-B ⊗D
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+ “obvious” rules governing ◦-⊗ interaction

= tensor category

There are graphical calculi comprising these!

graphical language for ⊗-categories:
⊗ ∼ horizontal ◦ ∼ vertical

provable from categorical axioms
⇐⇒

derivable in graphical language
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f : A→ B ←→ f† : B → A

ff †



QUANTUM STRUCTURE
Abramsky-Coecke (2004) IEEE-LiCS

Kelly-Laplaza (1980) Coherence for compact closed categories.
Selinger (2007) †-Compact categories and CPMs.
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Quantum structure :=
Bell-states exist + their behaviour



System with quantum structure

A A

=

A

A

A

A



System with quantum structure

A pair
(A , η : I→ A⊗ A)

such that:

A I⊗ A'oo (A⊗ A)⊗ Aη† ⊗ 1Aoo

A

1A

OO

' //A⊗ I 1A ⊗ η
//A⊗ (A⊗ A)

'

OO
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Graphical representation captures their relations
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In Hilb: f∗ ∼ transposed & f∗ ∼ conjugated
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“Decorated” normalization

=Projector Projector

ProjectorProjector



Bipartite projector



Bipartite ket & bra



Bipartite state

⇒ Jamiolkowski isomorphism
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Classical data flow?
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f †

⇒ Quantum teleportation
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CLASSICAL STRUCTURE
Coecke-Pavlovic (2006) quant-ph/0608035v1

Carboni-Walters (1986) Cartesian bicategories I.
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FEATURE:
classical data CAN be

cloned and deleted

Classical data comes with cloning and deleting:
X X

X X
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System with classical structure

=

=
“Frobenius”

(Carboni-Walters 1987 Cartesian bicategories I)

“normalisation”
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Classical structure⇒ quantum structure

= =
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This “refinement” specifies a base!
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“What’s inside the box?”

X X

X X



Notational convention:

....
....

....

....



Normalisation theorem: A “connected” network build
from δ, δ†, ε, ε† admits a ‘spider-like’ normal form:

X X

X X XX
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“fusion” of dots⇒ graphical rewrite system

Kock, J. (2003) Frobenius algebras and 2D TQFTs.
Coecke-Paquette (2006) POVMs & Naimark’s thm without sums.



Normalisation theorem: A “connected” network build
from δ, δ†, ε, ε† admits a ‘spider-like’ normal form:

X X

X X XX

X X.........

....
proof ∼ “fusion” of dots⇒ graphical rewrite system

Kock, J. (2003) Frobenius algebras and 2D TQFTs.
Coecke-Paquette (2006) POVMs & Naimark’s thm without sums.



System with classical structure
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=

=
Carboni-Walters 1987 Cartesian bicategories I

“unitarity”
All five axioms follow from spider-normal-form.
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QUANTUM-CLASSICAL FLOW
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Quantum measurement:

M : A→ X ⊗ A

=
⇒ von Neumann projection postulate.



Quantum measurement:

M : A→ X ⊗ A

A
M

-X ⊗ A

X ⊗ A

M

?

δ⊗1A
-X ⊗X ⊗ A

1X⊗M

?



Quantum measurement:

M : A→ X ⊗ A
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Quantum measurement:

A
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-



Quantum measurement:

M : A→ X ⊗ A

=
⇒ “indexed” self-adjointness.
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Thm. Self-adjoint Eilenberg-Moore coalgebras for

H⊗− : FdHilb→ FdHilb

are exactly dimH-outcome quantum measurements.

Coalg-square⇒
idempotence P2

i = Pi
mutual orthogonality Pi ◦ Pj 6=i = 0

Coalg-triangle⇒
Completeness of spectrum

∑
i Pi = 1H

Self-adjointness⇒
Orthogonality of projectors P†i = Pi

PROJECTOR
SPECTRUM
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= =

=

Minimal requirements for reasonable notion of measurement
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What do these mean?

= =

=

Asserts no-faster-than-light communication
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Teleportation enabling measurement:
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Dense coding:
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Intended behavior:
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Proof:
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=
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Other things we can do:

• proof correctness, generalize and find required struc-
tural resources of measurement based schemes’s.

• CPMs, POVMs and Naimark’s extension theorem

• resource inequalities e.g. coherent communication

Ross Duncan’s talk:1

• computing with basic quantum gates

• prove universality of one-way computing

• compute the quantum Fourier transform

1EXPOSES THE COMPUTATIONAL POWER OF MULTIPLE CLASSI-
CAL CONTEXTS i.e. WE CAN USE CLASSICAL STRUCTURE NOT
ONLY FOR CONTROL BUT ALSO FOR “RAW” QUANTUM CALCULUS



Classical species:

Classical map
���

��

Z
Z

Z
Z

Z
Z

Z
ZZ

Relation (δ-lax, ε-lax)

Stochastic map (ε)
�

���
���

��

H
HHH

HHH
HH

Partial map (δ, ε-lax)

H
HHH

H

Total map (δ, ε) Bistochastic map (ε, ε†)

HHH
HHH

HHH

���
���

���

Permutation (δ, ε, δ†, ε†)



Classical maps are broadcast-able maps

=f f=ρ ρ

= environment


