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Overview

* Pefinition of information gain

* Pefinition of disturbance

* Balance of information

* Tradeotf for general measurements
* (Single-outcome analysis)

* (Relation with previous proposals:
Gronewold-Lindblad-0zawa, Maccone)
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The measurement on Q determines an ensemble decomposition
on R: with probablll’ry p(m) := Tr[p®¥ P¥] we observe on R the
conditional state p¥ := Tro[U79 (17 @ PY)].

Our definition of information gain then equals the Holevo
quantity of the induced ensemble on K.

The (quantum) information gain is defined to be

L(p2,P9) - Zp oE 10"
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Why such a choice?

It is a natural choice for many reasons. ln particular:
* it depends only on the input state and the POVM
* it is by construction positive definite
* it is a natural upper bound to the classical information gain,
defined as the (classical) mutval information 1(X : X)

between the measurement outcomes X’ and the alphabet X
which is eventually encoded in the input state as

p% =) 3

re X




Why such a choice?

It is a natural choice for many reasons. ln particular:
* it depends only on the input state and the POVM
* it is by construction positive definite
* it is a natural upper bound to the classical information gain,
defined as the (classical) mutval information 1(X : X)

between the measurement outcomes X’ and the alphabet X
which is eventually encoded in the input state as

p% =) 3




How to treat disturbance




How to treat disturbance

In order to analyze the disturbance, the description of the
measurement by means of the POVM only is no more sufficient.
We have to introduce a state reduction recipe, which takes into
account the whole statistical description of a quantum
measurement, that is, its outcome probability distribution
(POVM) as well as its dynawics (state reduction).
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Quantuw instruments

The formalism of quantum instruments is the most general
sefting to describe the full statistics of a quantum measurement.
An instrument 7 9 is defined as follows:

* a set of maps {Em fmex in one-to-one
correspondence with the measurement
outcowes is given

* the probability of obtaining the m-th
outcome is p(m) := Tr[Em (0%)]

* the a posteriori” state, given the m-th
outeome, is p% = &, (p%)/p(m)

m
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Given the input state and the instrument, we define the
disturbance as the condi’rional coherent information loss

6(p%,.79) ; Zp X9 (V)

where 2B (g48) .= §(cP) — §(54P)
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Why such a choice?

Because it is widely accepted that coherent information
quantifies how well a channel preserves coherence. So, in a
measurement process it is natural to consider the same quantity,
conditioned on the outcomes.

ThQOI’er (gehel’aliza‘l’iOM Of [ Schumacher and Westmoreland, QIC (2002)]

a“d [Barnum, Nielsen, and Schumacher, PRA (1998)])

[A there exist channels {R,.},.c» such that
F(p?,Y Ry o Em) = 1—1/25(p2,.79)

[A given a set of channels {Rn, }mex it holds that

5(p?, 79 <h (1 —F(p?,) Rmo 5m)>
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where [TEQF) .= (17 g
and correspondingly pE @ = Trp [URQE]
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Rewriting disturbance

In other words, the disturbance equals the total correlations
between the reference and the apparatus:

5(pQ,fQ) iEE IR/;E’X(TR/E/X)

where TEF'X .= Tr,, [TRQEX]
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A( Q) fQ) —IR E|X(TREX)

= _p(m)D(p % llpsm © o)

namely, it represents the average amount of correlations
between the reference and the internal degrees of freedom of the
apparatus.

Usually, apparatus internal degrees of freedowm are out of our
control, and the information gain is strictly less than the
disturbance introduced.
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