

Gaussian Bosonic Channels: conjectures, proofs, and bounds

Vittorio Giovannetti

NEST, Scuola Normale Superiore and Istituto Nanoscienze-CNR

A. S. Holevo (Steklov, Moskov) R. Garcia-Patron (University Libre Bruxelles) N. J. Cerf (University Libre Bruxelles)

S. LLoyd (MIT, Boston)

A. Mari (SNS, Pisa) G. De Palma (SNS, Pisa)

condensed matterand quantumin formation

"Pares cum paribus facillime congregantur"

Cicero, De Senectute

"CERTAIN FUNCTIONALS* EVALUATED AT THE OUTPUT OF A BOSONIC GAUSSIAN CHANNEL (BGC) ARE OPTIMIZED (SAY MINIMIZED) BY GAUSSIAN INPUT STATES"

 $\min_{\rho} \mathcal{F}(\Phi(\rho)) = \min_{\rho_G} \mathcal{F}(\Phi(\rho_G))$

*VON NEUMANN ENTROPY RENYI ENTROPIES CONCAVE FUNCTIONALS HOLEVO INFORMATION

Outlook

I. Sending classical messages over a quantum channel

2. Bosonic Gaussian Channels (BGCs)

3. "The Conjectures"

4. Solutions

5. Conclusions and Perspectives

I.Sending classical messages over a quantum channel

$$C = \max_{achievable} R = \lim_{\epsilon \to 0} \limsup_{N \to \infty} \left\{ \frac{\log_2 M}{N} \mid \exists \mathbf{C}_{M,N} \text{ such that } P_{err}(\mathbf{C}) < \epsilon \right\}$$

$$\mathbf{Shannon NOISY CHANNEL CODING THEOREM}$$

$$C = \max_{p(x)} H(X : Y) \text{ single letter formula ... no regularization needed over N no regularization needed over N no regularization needed over N
$$H(X : Y) = H(X) + H(Y) - H(X,Y) \text{ MUTUAL INFORMATION of X,Y}$$

$$H(X) = -\sum_{x} p(x) \log_2 p(x)$$$$

Sending classical messages on a Quantum Channel

As in the classical theory we can define the CAPACITY of the Channels as:

$$C = \max_{achievable} R = \lim_{\epsilon \to 0} \sup_{N \to \infty} \left\{ \frac{\log_2 M}{N} \mid \exists \mathbf{C}_{M,N} \text{ such that } P_{err}(\mathbf{C}) < \epsilon \right\}$$

$$SEPARABLE ENCODING \qquad ENTANGLED ENCODING$$

$$\boxed{0000}$$

$$C_1(\Phi)$$

$$C(\Phi)$$

$$C(\Phi)$$

Holevo-Schumacher-Westmoreland (HSW)

MAXIMIZED OVER ALL POSSIBLE N-dim ENSEMBLES

CHANNEL CODING THEOREM (II)

if we allows for ANY ENCODING including those which produce ENTANGLED CODEWORDS, then

$$C(\Phi) = \lim_{N \to \infty} \frac{C_1(\Phi^{\otimes N})}{N} \underbrace{}_{\text{over channel uses}}$$

$$C_1(\Phi^{\otimes N}) = \max_{\text{ens}} C_{\chi}(\Phi^{\otimes N}(\text{ens})) = \text{Holevo capacity of the channel} \quad \Phi^{\otimes N}$$

 $C(\Phi) \ge C_1(\Phi)$

ADDITIVITY ISSUE:

C is no longer a single expression formula (we have to take the limit over arbitrarily ADDITIVITY ADDITIVITY Problem Holevo INFO large N).

 $C(\Phi) \ge C_1(\Phi)$

ADDITIVITY ISSUE:

C is no longer a single expression formula (we have to take the limit over arbitrarily ADDITIVIT of Problem NFO Holevo INFO large N).

$$C(\Phi) = C_1(\Phi)$$

SHOR EQUIVALENCE THEOREM (2004):

(i) additivity of the minimum entropy output of a quantum channel

(ii) additivity of entanglement of formation

(iii) strong super-additivity of the entanglement of formation

 $C(\Phi) \ge C_1(\Phi)$

ADDITIVITY ISSUE:

C is no longer a single expression formula (we have to take the limit over arbitrarily ADDITINITY of Problem INFO Holevo INFO large N).

SHOR EQUIVALENCE THEOREM (2004):

(i) additivity of the minimum entropy output of a quantum channel

(ii) additivity of entanglement of formation

(iii) strong super-additivity of the entanglement of formation

Hastings, Nature Physics 5, 255 (2008)

$$C(\Phi) = \lim_{N \to \infty} \frac{C_1(\Phi^{\otimes N})}{N}$$

still, for some special channels it may be the case that the additivity holds ...

2. Bosonic Gaussian Channels (BGCs)

Bosonic Gaussian Channels (BGCs)

Amplifier channel single mode channel (s=1)

$$\chi'(z) = \chi(\sqrt{\kappa}z) \ e^{-(\kappa-1)(N+1/2)|z|^2}$$

$$\tilde{\mathcal{A}}^{N}_{\kappa}(\rho) = \operatorname{Tr}_{S}[U(\rho \otimes \sigma_{E})U^{\dagger}]$$

weak complementary of an amplifier channel

$$\chi'(z) = \chi(-\sqrt{\kappa - 1}z^*) \ e^{-\kappa(N + 1/2)|z|^2}$$

THIS IS AN ENTANGLEMENT BREAKING CHANNEL: we can always represent it as a measure and re-prepare channel

3. "The Conjectures"

"The Conjectures"

Gaussian Additivity Conjecture

"The output Holevo information is additive (i.e. no regularization over is required)"

Optimal Gaussian ensemble Conjecture

"The maximization of C can be performed over the set of Gaussian ensembles"

Holevo, Werner PRA 63, 1997

PROVED FOR N=0 (purely lossy channel) VG et al. PRL 2004

 $g(x) = (x+1)\log_2(x+1) - x\log_2 x$

Minimum Output Entropy Conjecture VG et al. PRA 2004

"The Von Neumann Entropy at the output of the channel is minimized by coherent input states (say the vacuum)"

Optimal Gaussian ensemble Conjecture

"The maximization of C can be performed over the set of Gaussian ensembles"

Gaussian Additivity Conjecture

"The output Holevo information is additive (i.e. no regularization over is required)"

Holevo, Werner PRA 63, 1997

CLASSICAL CAPACITY

Solution

Giovannetti, Holevo, Garcia-Patron arXiv: 1312.2251 COMM. MATH. PHYS.

The solution in 5 (simple) STEPS

 $\Phi[|\Psi\rangle\langle\Psi|] = (\mathcal{A}^0_{\kappa} \circ \mathcal{E}^0_{\eta})[|\Psi\rangle\langle\Psi|]$

SINCE VACUUM GOES TO THE VACUUM UNDER PURELY LOSSY CHANNEL, PROVING MOE FOR THE AMPLIFIER $\mathcal{E}^0_{\eta}[|\emptyset\rangle\langle\emptyset|] = |\emptyset\rangle\langle\emptyset|$

 $|\Psi\rangle \xrightarrow{\kappa} \mathcal{A}^{0}_{\kappa}[|\Psi\rangle\langle\Psi|]$ $\tilde{\mathcal{A}}^{0}_{\kappa}[|\Psi\rangle\langle\Psi|]$

THIS IS A PROPER STINESPRING REPRESENTATION FOR THE CHANNEL: there for pure inputs we have

STEP II

 $S(\tilde{\mathcal{A}}^{0}_{\kappa}[|\Psi\rangle\langle\Psi|]) = S(\mathcal{A}^{0}_{\kappa}[|\Psi\rangle\langle\Psi|])$

STEP III

... BUT now we can use once more the LOSSY+minimal NOISE AMPLIFIER decomposition to express

 $\tilde{\mathcal{A}}^{0}_{\kappa}[|\Psi\rangle\langle\Psi|] = T \circ \mathcal{A}^{0}_{\kappa} \circ \mathcal{E}^{0}_{\eta'}[|\Psi\rangle\langle\Psi|]$

PHASE CONJUGATION IT DOESN'T CHANGE THE SPECTRUM ... hence the entropy: WE CAN NEGLET IT!

STEP III

... BUT now we can use once more the LOSSY+minimal NOISE AMPLIFIER decomposition to express

 $\tilde{\mathcal{A}}^{0}_{\kappa}[|\Psi\rangle\langle\Psi|] = T \circ \mathcal{A}^{0}_{\kappa} \circ \mathcal{E}^{0}_{\eta'}[|\Psi\rangle\langle\Psi|]$

 $S(\tilde{\mathcal{A}}^{0}_{\kappa}[|\Psi\rangle\langle\Psi|]) = S(\mathcal{A}^{0}_{\kappa}[|\Psi\rangle\langle\Psi|])$

PHASE CONJUGATION IT DOESN'T CHANGE THE SPECTRUM ... hence the entropy: WE CAN NEGLET IT! LUCKY STRIKE

SAME GAIN PARAMETER!!

BINGO!!!!

Solution
Solution
Step IV

$$\begin{aligned}
\mathcal{E}^{0}_{\eta'}(|\Psi\rangle\langle\Psi|) &= \sum_{j} p_{j}|\Psi_{j}\rangle\langle\Psi_{j}| \\
\mathcal{E}^{0}_{\eta'}(|\Psi\rangle\langle\Psi|) &= S(\mathcal{A}^{0}_{\kappa}\circ\mathcal{E}^{0}_{\eta'}[|\Psi\rangle\langle\Psi|]) \\
&= S(\mathcal{A}^{0}_{\kappa}(\sum_{j} p_{j}|\Psi_{j}\rangle\langle\Psi_{j}|) \geq \sum_{j} p_{j}S(\mathcal{A}^{0}_{\kappa}[|\Psi_{j}\rangle\langle\Psi_{j}|]) \\
&= S(\mathcal{A}^{0}_{\kappa}(\sum_{j} p_{j}|\Psi_{j}\rangle\langle\Psi_{j}|) \geq \sum_{j} p_{j}S(\mathcal{A}^{0}_{\kappa}[|\Psi_{j}\rangle\langle\Psi_{j}|])
\end{aligned}$$

Solution

Giovannetti, Holevo, Garcia-Patron arXiv:1312.2251

Step V ITERATE THE ARGUMENT q times

$$S(\mathcal{A}^{0}_{\kappa}[|\Psi\rangle\langle\Psi|]) \geq \sum_{j} p_{j}S(\mathcal{A}^{0}_{\kappa}[|\Psi_{j}\rangle\langle\Psi_{j}|])$$
$$\sum_{i} p_{j}|\Psi_{j}\rangle\langle\Psi_{j}| = [\mathcal{E}^{0}_{\eta'}]^{q}(|\Psi\rangle\langle\Psi|)$$

$$\lim_{q \to \infty} [\mathcal{E}^0_{\eta'}]^q [|\Psi\rangle \langle \Psi|] = |\emptyset\rangle \langle \emptyset|$$

THE PURELY LOSSY CHANNEL IS MIXING: ITERATING IT MANY TIMES IT BRINGS ALL INPUT STATES TO THE VACUUM

 $S(\mathcal{A}^0_{\kappa}[|\Psi\rangle\langle\Psi|]) \ge S(\mathcal{A}^0_{\kappa}[|\emptyset\rangle\langle\emptyset|])^*$

* needs to enforce continuity condition (use the mean energy constraint)

MAJORIZATION

Solution

a consequence: generalization of the Lieb, Solovej inequality

 $\int f(p_{\rho}(z)) \frac{d^{2s}z}{\pi^s} \ge \int f(p_{|\alpha\rangle\langle\alpha|}(z)) \frac{d^{2s}z}{\pi^s}$

 $p_{\rho}(z) = \operatorname{Tr}[\rho D(z)\rho_0 D^{\dagger}(z)]$ f(x) concave PHASE INVARIANT

GAUSSIAN STATE

TAKING $ho_0 = | \emptyset \rangle \langle \emptyset |$ This is The HUSIMI DISTRIBUTION

Lieb and Solovej (2012) Lieb (1978)

$$EoF(\rho(k,N)) \leq EoF(\rho(0,N)) = g(k-1) \quad \begin{array}{l} \text{Giedke, Wolf, Kruger,} \\ \text{Werner, Cirac PRL 2003} \end{array}$$

$$EoF(\rho(k,N)) = \inf_{p_j,|\psi_j\rangle} \sum_j p_j S(\mathcal{A}_k(|\psi_j\rangle\langle\psi_j|)) \ge S(\mathcal{A}_k(|0\rangle\langle0|)) = EoF(\rho(0,N))$$

Matsumoto, Shimono, Winter, CMP 2004

Solution

Conclusions and Perspectives

A BUNCH OF CONJECTURES ON CV SYSTEMS HAVE BEEN RECENTLY SOLVED.

THE STRONGEST OF THEM IS THE MAJORIZATION CONJECTURE, e.g.

- STRONG CONVERSE FOR GAUSSIAN CHANNELS BARDHAN, GARCIA-PATRON, WILDE, WINTER arXiv:1401.4161
- CLASSICAL CAPACITY OF MEMORY GAUSSIAN BOSONIC CHANNELS DEPALMA, MARI, GIOVANNETTI arXiv:1404.1767

OPEN QUESTIONS:

i. STILL ON THE CHASE for the ENTROPY PHOTON NUMBER INEQUALITY CONJECTURE

ii. CONTINUITY

iii. CAPACITY FORMULAS FOR NON PHASE-INVARIANT CHANNELS

A solution of the Gaussian optimizer conjecture

V. Giovannetti, A. S. Holevo, R. Garcia-Patron arXiv:1312.2251 to appear in Comm Math Phys

Quantum state majorization at the output of bosonic Gaussian channels

Andrea Mari, Vittorio Giovannetti, Alexander S. Holevo arXiv:1312.3545 Nature Communication

Majorization and additivity for multimode bosonic Gaussian channels

Vittorio Giovannetti, Alexander S. Holevo, Andrea Mari arXiv:1405.4066

Ultimate communication capacity of quantum optical channels by solving the Gaussian minimum-entropy conjecture

V. Giovannetti, R. Garcia-Patron, N. J. Cerf, A. S. Holevo arXiv:1312.6225 to appear in Nature Photonics

Entropy Power Inequality for Bosonic Quantum Systems

<u>Giacomo De Palma</u>, <u>Andrea Mari</u>, <u>Vittorio Giovannetti</u> <u>arXiv:1402.0404</u> to appear in Nature Photonics

The multi-mode quantum Entropy Power Inequality Giacomo De Palma, Andrea Mari, Seth Lloyd, Vittorio Giovannetti arXiv:1408.0404

II. Solutions

repeat the same procedure for arbitrary (strictly) concave functionals of the output states of the channel ...

STEPS I, II, III, IV as before

$$\mathcal{F}(\mathcal{A}^{0}_{\kappa}[|\Psi\rangle\langle\Psi|]) = \mathcal{F}(\mathcal{A}^{0}_{\kappa}\circ\mathcal{E}^{0}_{\eta'}[|\Psi\rangle\langle\Psi|]) \geq \sum_{j} p_{j}\mathcal{F}(\mathcal{A}^{0}_{\kappa}[|\Psi_{j}\rangle\langle\Psi_{j}|])$$

IF $|\Psi\rangle$ minimize the functional so also $\mathcal{E}_{\eta'}^{0}(|\Psi\rangle\langle\Psi|) = \sum_{j} p_{j}|\Psi_{j}\rangle\langle\Psi_{j}|$ must do the same. But \mathcal{F} is strictly concave, hence $\mathcal{E}_{\eta'}^{0}[|\Psi\rangle\langle\Psi|]$ must be pure.

THE ONLY STATES WHICH REMAIN PURE UNDER A LOSSY MAP ARE THE COHERENT STATES

Aharanov et al. (1966) Asboth et al. (2005) Jiang et al. (2013)