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Quantum Dots



  

Semiconductors
Periodic structure Energy bands



  

Quantum dots – artificial atoms

Size 
1-20 nm

Colloidal QDs Epitaxial QDs



  

Molecular Beam Epitaxy growth (MBE)



  



  

Wetting layer
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InAs quantum dots 
embedded in GaAs matrix

1µm x 1µm  AFM

Individual quantum dots

• Dot size: 10-20 nm

• Emission: 900-950 nm 

• Density gradient 



  

Quantum Dots in Cavities



  

Spontaneous emission

For a single mode the rms electric-field amplitude is                                .

Coupling to this mode is characterized by the Rabi frequency                            .
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Spontaneous emission

For a single mode the rms electric-field amplitude is                                .
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The probability of photon emission per unit time (Einstein A coefficient) is given by
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Spontaneous emission

For a single mode the rms electric-field amplitude is                                .
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The probability of photon emission per unit time (Einstein A coefficient) is given by
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The probability to find the system at time t in state e (system prepared in e at t=0)  is
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In an optical cavity (quality factor                       ) the mode density and mode 

volume are drastically changed.        

e

f

V
Evac ε

ω
2

=


vacDE

=Ω

ω=− fe EE

( )
3

2 02
0

ωρ
π Ω=Γ ( ) 322

0 cV πωωρ =

( ) t
e etP 0Γ−=

cQ ωω ∆=

Off resonance: inhibition of SE
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Optical microcavities
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20 µm

Oxide apertured micropillars

N. G. Stoltz, et al., 
Appl. Phys. Lett. 87, 
031105 (2005)

M. Pelton et al., 
PRL 2002

1 µm
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10 µm

45 times enhancement of single 
photon stream emitted by a single QD 

Enhanced light extraction



  

Two types of results
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Slow decay

Type 1 Type 2
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Add single electron                         
Trion state, always bright                 
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Back 
Contact

Top 
Contact

Back 
Gate
N-doped

Top 
Gate
N-doped

Single Photon Source with integrated gates 
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A neutral and a charged QD
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fs probe cw probe
2.8/19 MHz 3.2/21 MHz

fs probe cw probe
3.6/24 MHz 12/80 MHz

Slow decay

due to dark 
state X

15% detection 
efficiency

>35% collection 
efficiency
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Mode splitting
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Very small mode volume: 
strong coupling between EM field and embedded structures



  

2D photonic crystal membrane cavities



  

Inhibition of single QD emission

10x inhibition of SE

Single QD lifetimes
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Photonic crystal cavity design I

“Random QD positioning”
Poor QD properties at interface

Square lattice (S1)
Mode localized at 

semiconductor/air interface

Q~5000Q~5000



  

Field stays away 
from interface

Photonic crystal cavity design II

Mode volume V ~ 0.68(λ/n)3

Effective index neff ~ 2.9
Q-factor (in theory) > 200000

Size and position 
optimized for high Q 

and high neff

Measured Q ~ 18000 

GaAs ! !

SideSide
ViewView

TopTop
ViewView



  

Low density of QDs

Only 1-3 QDs are 
within the mode !

Mode volume
from FDTD

QDs are spectrally 
distributed over 50-100 nm

QD density 
5-50 µm-2 
from AFM

Chance of ~ 1% for both 
spatial and spectral coupling

No pronounced 
coupling is expected

Sharp exciton resonance
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Nondegenerate lasing mode

Lasing!?!?

ββ~1 expected~1 expected

Single mode lasing spectra

No QDs – no mode decoration
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Lasing threshold behavior

Linewidth narrowingVanishing-threshold

~ 102 -103 times 
lower than 
previous 
reports

Conventional
cw-threshold:

~100 nW

Absorbed power:
~4 nW



  

• charged states X+, X0, X- 

• bi- and multi Xs

• Extended state

Single QDs are broadband emitters 
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• acoustic phonon coupling

QD interaction with 
surrounding matrix provides 
indirect but robust coupling



  

Single QDs are broadband emitters 
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