

FACULTY OF SCIENCE Institute of Theoretical Physics

Probing the quantumness of states and channels with truncated moment sequences

DANIEL BRAUN

IICQI 2020 12.11.2020

Motivation

		Search										
Tratuic International weekly journal of science												
Home	News & Comment	Research	Careers & Jobs	Current Issue	Archive	Audio & Video	For Aut	nors				
Archive	Volume 541	Issue 7638	News Artic	le								
								E-alert	RSS	Facebook	Twitter	

< 🔒

NATURE | NEWS

D-Wave upgrade: How scientists are using the world's most controversial quantum computer

Scepticism surrounds the ultimate potential of D-wave machines, but researchers are already finding uses for them.

Elizabeth Gibney

24 January 2017

What matters in science — and why — free in your inbox every weekday.

Quantum – or not ?

- How to define "quantumness"?
 - Quantum interference/superpositions of "classical" states
 - Quantum noise
 - Entanglement
- How to detect "quantumness" efficiently?

• Of states and channels...

I. Introduction

Entanglement problem

• Definition: state ρ A|B separable:

$$\rho = \sum_{i} p_{i} \rho_{i}^{(A)} \otimes \rho_{i}^{(B)}$$
$$p_{i} \ge 0, \sum_{i} p_{i} = 1$$

If not, ρ A|B "entangled"

Given ρ , decide whether ρ is entangled or separable.

- Easy if ρ is pure: von Neumann entropy of reduced state >0 $\Leftrightarrow \rho$ entangled
- ρ mixed: necessary and sufficient criteria for separability
 - PPT (positive partial transpose); in general: positive but not completely positive maps [Peres '96, Horodeckis '96]
 - Entanglement witnesses (Positive operators on separable states)
 - Hierachy of semi-definite programs based on symmetric, flat PPT extensions [Doherty, Parillo, Spedallieri PRL, PRA 2002-2005]
 - NP hard in general [Gurvits 2003]

- Qudit: q-system with d-dimensional Hilbert space
- spin-j state = symmetric state of N=2j qubits, with d=2j+1=N+1
- Representable with **Bloch-tensor**!

Single qubit – spin-1/2

Bloch picture:

$$\rho = \frac{1}{2}(\mathbf{1}_2 + \mathbf{n} \cdot \boldsymbol{\sigma}) = \frac{1}{2}X_{\mu}S_{\mu} \qquad \mu \in \{0, 1, 2, 3\}$$

 $S_i = \sigma_i$ Pauli matrices $oldsymbol{n} \in \mathbb{R}^3$ Bloch vector

$$X_{\mu} = (1, \boldsymbol{n})$$

Basis of pure symmetric states spanned by "Dicke states"

$$\begin{split} |D_N^{(k)}\rangle &= \mathcal{N} \sum_{\pi} |\underbrace{0 \dots 0}_{N-k} \underbrace{1 \dots 1}_k\rangle, \quad k = 0, \dots, N, & & & & & \\ & \rightarrow \mathsf{N+1} \text{ dim subspace} \qquad \mathbb{C}^{N+1} \subseteq \mathbb{C}^{(2^N)} \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & &$$

• Projector onto symmetric states:

$$P_S = \sum_{k=0}^N |D_N^{(k)}\rangle \langle D_N^{(k)}|$$

• Mixed state "basis": Weinberg matrices (tight frame) S. Weinberg, PR 1964

$$S_{\mu_1\dots\mu_N} = P_S\left(\sigma_{\mu_1}\otimes\sigma_{\mu_2}\dots\otimes\sigma_{\mu_N}\right)P_S^{\dagger} \in \mathcal{M}_{N+1}(\mathbb{C}), \quad 0 \le \mu_i \le 3,$$

O. Giraud, DB, D. Baguette, T. Bastin, and J. Martin, PRL 2015

$$\rho = \frac{1}{2^{N}} X_{\mu_{1}\mu_{2}...\mu_{N}} S_{\mu_{1}\mu_{2}...\mu_{N}}$$

$$\underset{tight frame property}{tight frame property}$$

$$X_{\mu_{1}\mu_{2}...\mu_{N}} = \operatorname{tr}(\rho S_{\mu_{1}\mu_{2}...\mu_{N}})$$
Bloch tensor: real symmetric tensor of rank *N*, dimension 4

• Reduced density matrix of *N-k* qubits

$$\mathrm{tr}_k \rho \to X_{\mu_1 \dots \mu_{N-k} 0 \dots 0}$$

$$\mathrm{tr}\rho = 1 \to X_{0\dots 0} = 1$$

- Transforms by rotation (per index) under SU(2) trafos
- Unique decomposition if imposing "relativistic tracelessness"

$$g_{\mu_1\mu_2}X_{\mu_1\mu_2\dots\mu_N} = 0, \ g = \text{diag}(-, +, +, +)$$

 $= |\theta, \phi\rangle$

Pure separable symmetric state $\Rightarrow \rho$ fully separable (any bipartition)

- SU(2) "spin coherent state" of a spin-j with j=N/2
- minimal quantum fluctuations
- "most classical" pure spin-j state for a physical spin!

$$X_{\mu_1\dots\mu_N} = n_{\mu_1}n_{\mu_2}\dots n_{\mu_N}$$

O.Giraud, P.A. Braun, DB, PRA 2010

Symmetric separable state of N qubits = ,classical'' spin-state of spin j=N/2

- Classical mixture of "most classical" pure spin-j states

$$X_{\mu_1\dots\mu_N} = \sum_i p_i n_{\mu_1}^{(i)} n_{\mu_2}^{(i)} \dots n_{\mu_N}^{(i)} \quad \Leftrightarrow \text{ separability}$$

- Convex set
- Quantumness

$$Q(\rho) \equiv \min_{\rho_c \in \mathcal{C}} ||\rho - \rho_c||$$

O.Giraud, P.A. Braun, DB, NJP 2010

II. Truncated moment sequences

Truncated moment problem

Given:

N.I. Akhiezer, The Classical Moment Problem, (1965); J. Nie, Found. Comput. Math. (2014)

• a truncated moment sequence (tms) of degree $d, y = (y_{\alpha})_{|\alpha| \leq d}$,

 $\alpha = (\alpha_1, \dots, \alpha_n), \ \alpha_i \in \mathbb{N}_0, \ |\alpha| = \sum_i \alpha_i, \ y_\alpha \in \mathbb{R}$

• a semi-algebraic set $K = \{ \mathbf{x} \in \mathbb{R}^n | g_1(\mathbf{x}) \ge 0, \cdots, g_m(\mathbf{x}) \ge 0 \},\$

 $g_i(\mathbf{x})$ multivariate polynomials in the variables x_1, \ldots, x_n

Does there exist a positive measure $d\mu$ on K such that $\forall y_{\alpha}$ with $|\alpha| \leq d$

$$y_{\alpha} = \int_{K} x^{\alpha} d\mu(\mathbf{x}),$$

$$\mathbf{x} = (x_1, \dots, x_n) \in \mathbb{R}^n, \ x^{\alpha} = x_1^{\alpha_1} x_2^{\alpha_2} \dots x_n^{\alpha_n}?$$

If so, $d\mu(\mathbf{x}) = \sum_{j=1}^{r} w_j \delta\left(\mathbf{x} - \mathbf{y}^{(j)}\right)$ with some finite r and $w_j > 0$,

a "finite atomic representing measure".

UNIVERSITAT TUBINGEN TMS versus entanglement problem

 ρ symmetric separable state of N qubits $\iff \exists p_j \ge 0, n^{(i)}$ such that

$$X_{\mu_1\mu_2...\mu_N} = \sum_j p_j n_{\mu_1}^{(j)} \cdots n_{\mu_N}^{(j)},$$

 $n_0^{(j)} = 1$ and each Bloch vector $\mathbf{n}^{(j)}$ normalized to 1.

$$\iff y_{\alpha} = X_{\mu_1 \mu_2 \dots \mu_N} = \int_K x_{\mu_1} x_{\mu_2} \cdots x_{\mu_N} d\mu(\mathbf{x}) = \int_K x^{\alpha} d\mu(\mathbf{x}),$$

with $K = \{ \mathbf{x} \in \mathbb{R}^3 : x_1^2 + x_2^2 + x_3^2 = 1 \}$ the unit sphere,

 $x_0 = 1$, and $d\mu$ a positive measure on K.

Notation: $\alpha = (\alpha_1, \alpha_2, \alpha_3), \ \alpha_i \in \mathbb{N}_0$ $x_{\mu_1} x_{\mu_2} \cdots x_{\mu_N} = x^{\alpha}$ $y_{\alpha} = X_{\mu_1 \mu_2 \dots \mu_N}$ e.g. for $N = 6, \ y_{(2,1,0)} = X_{000112}$

• Moment matrix of order k:

$$M_k(y)_{\alpha\beta} = y_{\alpha+\beta}, \qquad |\alpha|, |\beta| \leqslant k$$

- for the tms to have a solution, M_k must be positive semi-definite

$$(M_{2j})_{\alpha\beta} = X_{\underbrace{\mu_1 \dots \mu_j}_{\rightarrow \alpha}} \underbrace{\nu_1 \dots \nu_j}_{\rightarrow \beta}$$
$$\rho^{T_A} \text{ and } M_{2j} \text{ are similiar, i.e.}$$
$$\exists R \text{ unitary and } \lambda > 0 \mid R^{\dagger} \rho^{T_A} R = \lambda T$$

⇒recover immediately PPT criterion!

• Shifted tms:

g a polynomial of degree deg(g) ≥ 1 : $g(\boldsymbol{x}) = \sum_{\gamma} g_{\gamma} x^{\gamma}$

$$\underline{(g \star y)_{\alpha}} = \sum_{|\gamma| \leqslant deg(g)} \underline{g_{\gamma}y_{\alpha+\gamma}}, \quad |\alpha| \leqslant d - \deg(g)$$

• Localizing matrix of order *k*:

$$d_g = \lceil deg(g)/2 \rceil$$

$$M_{k-d_g}(g \star y)_{\alpha\beta} = (g \star y)_{\alpha+\beta} = \sum_{|\gamma| \leqslant deg(g)} g_{\gamma} y_{\alpha+\beta+\gamma}, \quad |\alpha|, |\beta| \leqslant k - d_g$$

- with g > 0, also the localizing matrices must be positive

• Localizing matrix of order k:

$$M_{k-d_g}(g \star y)_{\alpha\beta} = (g \star y)_{\alpha+\beta} = \sum_{|\gamma| \leqslant deg(g)} g_{\gamma} y_{\alpha+\beta+\gamma}, \quad |\alpha|, |\beta| \leqslant k - d_g$$

- with g > 0, also the localizing matrices must be positive

• Extension of a tms:

a tms z of degree 2k > d, such that $z_{\alpha} = y_{\alpha} \forall |\alpha| \leq d$

• Localizing matrix of order *k*:

$$M_{k-d_g}(g \star y)_{\alpha\beta} = (g \star y)_{\alpha+\beta} = \sum_{|\gamma| \leqslant deg(g)} g_{\gamma} y_{\alpha+\beta+\gamma}, \quad |\alpha|, |\beta| \leqslant k - d_g$$

- with g > 0, also the localizing matrices must be positive

• Extension of a tms:

a tms z of degree 2k > d, such that $z_{\alpha} = y_{\alpha} \forall |\alpha| \leq d$

• Flat extension:

rank
$$M_k(z) = \operatorname{rank} M_{k-d_0}(z)$$

 $d_0 = \max_{1 \le i \le m} \{1, \lceil \deg(g_i)/2 \rceil\}$
here: $m = 2, g_1 = x_1^2 + x_2^2 + x_3^2 - 1, g_2 = -g_1, d_0 = 1$

Theorem: [Existence of solution of tms problem] Curto and Fialkow (2005)
A tms (y_α)_{|α|≤d} admits a representing measure supported by K iff there exists a flat extension (z_β)_{|β|≤2k} with 2k > d such that M_k(z) ≥ 0, M_{k-d_{gi}}(g_i ★ z) ≥ 0 for i = 1,...,m.

- Theorem: [Existence of solution of tms problem] Curto and Fialkow (2005) A tms $(y_{\alpha})_{|\alpha| \leq d}$ admits a representing measure supported by Kiff there exists a flat extension $(z_{\beta})_{|\beta| \leq 2k}$ with 2k > d such that $M_k(z) \geq 0, M_{k-d_{g_i}}(g_i \star z) \geq 0$ for $i = 1, \ldots, m$.
- Theorem: [Separability of a general symmetric multi-partite state]
 A state ρ is separable iff X_{µ1µ2...µd} are mapped to a tms (y_α)_{α∈A} such that there exists a flat extension (z_β)_{|β|≤2k} with 2k > d,
 M_k(z) ≥ 0, and M_{k-d_{gi}}(g_i ★ z) ≥ 0 for i = 1,...,m.

Bohnet-Waldraff, DB, Giraud, PRA 2017

- Theorem: [Existence of solution of tms problem] Curto and Fialkow (2005) A tms $(y_{\alpha})_{|\alpha| \leq d}$ admits a representing measure supported by Kiff there exists a flat extension $(z_{\beta})_{|\beta| \leq 2k}$ with 2k > d such that $M_k(z) \geq 0, M_{k-d_{g_i}}(g_i \star z) \geq 0$ for $i = 1, \ldots, m$. J. Nie, Found. Comput. Math. '14
- Theorem: [Separability of a general symmetric multi-partite state] A state ρ is separable iff $X_{\mu_1\mu_2...\mu_d}$ are mapped to a tms $(y_{\alpha})_{\alpha\in\mathcal{A}}$ such that there exists a flat extension $(z_{\beta})_{|\beta|\leq 2k}$ with 2k > d, $M_k(z) \ge 0$, and $M_{k-d_{g_i}}(g_i \star z) \ge 0$ for $i = 1, \ldots, m$.

Bohnet-Waldraff, DB, Giraud, PRA 2017

EBERHARD KARLS UNIVERSITÄT TÜBINGEN

Numerical solution by semi-definite program

Helton & Nie, Found. Comput. Math. (2012)

$$\min_{z} \sum_{\alpha, |\alpha| \leqslant k_0} R_{\alpha} z_{\alpha} \quad \text{such that} \tag{1}$$

$$M_k(z) \ge 0 \tag{2}$$

$$M_{k-d_i}(g_i \star z) \ge 0 \quad \text{for } i = 1, \dots, m$$
 (3)

$$z_{\alpha} = y_{\alpha} \text{ for } |\alpha| \leqslant d. \tag{4}$$

 $R(\mathbf{x}) = \sum_{\alpha} R_{\alpha} x^{\alpha}$ taken as a random sum-of-squares polynomial of degree $2k_0$. Kept the same when extension order increased. $k_0 = \lfloor d/2 \rfloor + 1$

Numerical solution by semi-definite program

• Typical runtimes in seconds on a desktop computer:

States $\setminus N$	2	3	4	5	6	7	8	9	10	11	12
$ ho_{ent}$	0.2	0.2	0.4	0.6	1.0	2.1	5.2	11.6	26.8	54.6	170.5
$ ho_{sep}$	0.7	0.4	0.6	1.0	2.0	4.2	10.2	20.8	66.9	94.5	716.3

- 100 random *N*-qubit symmetric states
- First row: random states drawn from the Haar measure (usually entangled, and typically detected by the condition $M_k(y) \neq 0$
- Second row: random separable states from randomly mixing random pure separable states
- For symmetric states, significantly outperforms current state of the art QETLAB toolbox

III. Fast entanglement detection

- Measurement (expectation value of observable) defines hyperplane
- Smallest set of measurements to guarantee intersection of hyperplanes in E?
- Most efficient sequence of measurements?
- AK-TMS approach ideally suited!

- Symmetric states of 2 qubits
- Allow Pauli measurements

$$\mathcal{M} = \{1, x, y, z, xx, xy, xz, yy, yz, zz\}$$

- Symmetric states of 2 qubits
- Allow Pauli measurements

$$\mathcal{M} = \{x, y, z, xx, xy, xz, yy, yz\}$$

- Freedom of choice of coordinate axes (irrelevant for statistics)
- Subsets of *k* elements that are nonequivalent under permutation of axes:

<i>k</i> = 1	
1	x
2	xx
3	xy

<i>k</i> = 2	
1	$\{x, y\}$
2	$\{x, xx\}$
3	$\{x, xy\}$
4	$\{x, yy\}$
5	$\{x, yz\}$
6	$\{xx, xy\}$
7	$\{xx, yy\}$
8	$\{xx, yz\}$
9	$ \{xy, xz\}$

k =3...

Probability to detect entanglement

- 50000 randomly drawn states (Hilbert Schmidt ensemble), removed separable ones
- Probability to detect entanglement with sets of measurements:

EBERHARD KARLS

FRC TÜBINGEN

N. Milazzo, DB, O. Giraud, PRA 2019

- Detect entanglement as quickly as possible
- Optimal sequence (path γ) of measurements?
 => From sets to tupels. E.g. k=2:

$$\mathcal{M} = \{x, xx\} \to (x, xx), (xx, x)$$

- Always start with xx: success with *p*=0.18 after first measurement.
- Probability to stop after exactly *k* measurements:

$$r^{(k)}(\gamma) = p^{(k)}(\gamma) - p^{(k-1)}(\gamma)$$

with

EBERHARD KARLS

JRIN(FI

$$p^{(k)}(\gamma) \equiv p(E, \{M_1, \dots, M_k\})$$

Probability to detect entanglement with the *k* measurements of path γ

• Average (over states) path length:

$$d(\gamma) = \sum_{k=1}^{8} kr^{(k)}(\gamma)$$

• Extremal paths:

$$\gamma_{\text{best}} = rgmin_{\gamma \in S} d(\gamma) \simeq 3.07$$

$$\gamma_{\text{worst}} = \underset{\gamma \in S}{\arg \max} d(\gamma) \simeq 5.61$$

Distribution of average path lengths over set *S* of all 3228 inequivalent paths

$\gamma_{ m best}$ = (xx,yy,xz,yz,xy,x,y,z)

Measure in this order and need, on the average, only 3.07 measurements to certify entanglement. Very incomplete information on state!

N. Milazzo, DB, O. Giraud, PRA 2019

- Cardinality of sets of measurements grows rapidly with spin-j
- Focus on "diagonal" observables: e.g. xx, xxyy, xxxxzz etc.
- State separable, integer j => these must be all positive
- Very efficient on average:

EBERHARD KARLS

BINGEN

New type of sets of entanglement witnesses:

$$\binom{j+3}{3}$$
 many observables

E.g. j=6 => less than a fraction 10^{-6} of entangled states not detected as entangled.

 $\mathcal{M} = \{x_1, y_1, z_1, x_2, x_1x_2, y_1x_2, z_1x_2, y_2, x_1y_2, y_1y_2, z_1y_2, z_2, x_1z_2, y_1z_2, z_1z_2\}$

• Number m_k of inequivalent measurement sets and size of moment matrices grow quickly

k	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
m_k	3	10	30	69	132	205	254	254	205	132	69	30	10	3	1

- Calculated probabilities of sets with k<6
 - No state detected with only one measurement
 - Biggest fraction of states detected by

$$\{x_1 x_2, y_1 y_2\} \rightarrow p^{(2)} \simeq 1\%$$

$$\{x_1 x_2, y_1 y_2, z_1 z_2\} \rightarrow p^{(3)} \simeq 10\%$$

$$\{x_1 x_2, x_1 y_2, y_1 x_2, z_1 z_2\} \rightarrow p^{(4)} \simeq 12\%$$

$$\{x_1 x_2, x_1 y_2, y_1 x_2, y_1 y_2, z_1 z_2\} \rightarrow p^{(5)} \simeq 23\%$$

IV. Separability of quantum channels

Quantum Channels

$$\Phi: \mathcal{L}(H) \to \mathcal{L}(H)$$
$$\rho' = \Phi(\rho)$$

Choi matrix

$$C_{\Phi} = \sum_{i,j} \Phi(|i\rangle \langle j|) \otimes |i\rangle \langle j|$$

- Linear operator on $H \otimes H'$, H'(=H) = ancilla
- $C_{\Phi} \ge 0 \Leftrightarrow \Phi$ completely positive
- C_{Φ}/N = state on $H \otimes H'$

Separability of channels

 $H = H_A \otimes H_B \Rightarrow \Phi$ linear operator on $\mathcal{H} \equiv H_A \otimes H_B \otimes H_{A'} \otimes H_{B'}$

For any positive operator, M is called separable iff $M = \sum_{k} P_k \otimes Q_k, P_k, Q_k \ge 0$

- Separable channel $\Phi_{sep} \Leftrightarrow E_l = A_l \otimes B_l$ - Factorizing Kraus operators - Maps separable states to separable states - Choi matrix separable across (A-A') – (B-B') cut J.I.Cirac et al, PRL 2001
- Entanglement breaking channel M. Horodecki, P. Shor, M.B. Ruskai, $\Phi_{EB} \Leftrightarrow (\Phi \otimes 1)\rho$ separable across H - H' cut $\forall \rho \in \mathcal{L}(\mathcal{H})$
 - Choi matrix separable across (A-B) (A'-B') cut
 - Defined even for a single system A

Separability of channels

Semialgebraic set

Basis of hermitian, orthogonal operators

For EB Similarly for SEP

Positivity

=> inequalities on the coefficients of the characteristic polynomials by Decartes' sign rule

=> polynomial inequalities in c_{λ} and d_{λ} .

EB for channels

$$C_{\Phi} = \sum_{\lambda,\lambda'} X_{\lambda\lambda'} S_{\lambda}^{AB} \otimes S_{\lambda'}^{A'B'} \qquad \text{Case of EB channels}$$

$$\Rightarrow X_{\lambda\lambda'} = \sum_{k} c_{\lambda}^{(k)} d_{\lambda'}^{(k)} = \int d\mu(x) x_{\lambda} x_{\lambda'} \Rightarrow \text{a tms } (y_{\alpha})_{\alpha \leq 2}$$

Theorem:

The channel Φ is EB iff \exists a flat extension $(y_{\beta})_{\beta \leq 2(t+d_0)}$ of $(y_{\beta})_{\beta \leq 2t}$ $(t \geq 1)$, with $M_t(y) \geq 0$ and $M_t(g_j \star y) \geq 0$ for j = 1, ..., m, where the g_j are polynomials of variables c_{λ} and $d_{\lambda'}$ defined by the conditions $\sum_{\lambda} c_{\lambda} S_{\lambda}^{AB} \geq 0$, $\sum_{\lambda'} d_{\lambda'} S_{\lambda'}^{A'B'} \geq 0$, and $d_0 = \max_{1 \leq j \leq m} \{1, \lceil \deg(g_j)/2 \rceil\}$.

Similarly for SEP.

- 2 qubit channel
- 15 parameters x_{μ} for each subsystem ((A-B) and (A'-B') for EB)
- $\binom{30+2t}{2t}$ free variables in moment matrix of order-t extension
- Semialgebraic set defined by polynomials of degree 4, hence $d_0=2$
- Smallest moment matrix containing all moments given by quantum channel is M₁, smallest extension is M₃ with size $\binom{33}{3} = 5456$, containing $\binom{36}{6} > 10^6$ free variables

=> restrict to less general channels

$$\rho = \frac{1}{3} (1 + \sum_{i=1}^{8} \zeta_i \lambda_i)$$
 Gell-Mann matrices

- Family of damping channels
- Affine trafo of (generalized) Bloch vector $\zeta \quad \Phi_D: \zeta \to \zeta' = \Lambda \zeta$

 $\Lambda = \operatorname{diag}(0,0,x,0,0,0,0,y^2)$

- If negativity $N(\rho) = \frac{1}{2}(\|\rho^{T_H}\|_1 1) > 0$, channel is not separable
- PPT entangled Choi states may exist for $N(\rho) = 0$

Qutrit channel

N. Milazzo, DB, O. Giraud, PRA 2020 (to appear); arXiv:2006.15003 [quant-ph]

Summary

tms

tms algorithm completely solves serapability problem for states and channels

[Doherty, Parillo, Spedallieri PRL 2002] Generalizes and extends previous results by Doherty et al.

- unified mathematicle framework
- accomodates missing data, different dimensions, symmetries,...

• Numerical solution by SDP, but limited to relatively small system sizes

Most importantly...

- Work with
 - Nadia Milazzo (PhD work)
 - Fabian Bohnet-Waldraff (PhD work)
 - Olivier Giraud, LPTMS & CNRS Paris-Saclay
 - Thierry Bastin
 - John Martin
 - Dorian Baguette
- Université de Liège
- Support: Deutsch-Französische Hochschule (UFA), grant CT-45-14-II/2015

Université franco-allemande Deutsch-Französische Hochschule

PhD position

available in

q-metrologie

O. Giraud, DB, D. Baguette, T. Bastin, and J. Martin, PRL 2015 F. Bohnet-Waldraff, DB, Giraud, PRA 2016, 2017 N. Milazzo, DB, O. Giraud, PRA 2019 N. Milazzo, DB, O. Giraud, PRA 2020 (to appear)

• Overcomplete set of matrices: Expand (square of) Lorentz boost operator in powers of **q** and identify terms $q_{\mu 1}q_{\mu 2}...q_{\mu N}$ S. Weinberg, PR 1964

$$\Pi^{(j)}(q) \equiv (q_0^2 - |\mathbf{q}|^2)^j e^{-2\eta_q \,\hat{\mathbf{q}} \cdot \mathbf{J}}$$
$$\Pi^{(j)}(q) = (-1)^{2j} q_{\mu_1} q_{\mu_2} \dots q_{\mu_{2j}} S_{\mu_1 \mu_2 \dots \mu_{2j}}$$

• E.g. spin-1/2 (N=1): $\Pi^{(1/2)}(q) = -q_0 - 2\mathbf{q} \cdot \mathbf{J}$ So $S_0 = \sigma_0$ and $S_a = 2J_a = \sigma_a$

$$\rho = \frac{1}{2} x_{\mu_1} S_{\mu_1}$$
Bloch sphere picture!

• Spin-1 (*N*=2): $\Pi^{(1)}(q) = (q_0^2 - \mathbf{q}^2) + 2\mathbf{q} \cdot \mathbf{J} (\mathbf{q} \cdot \mathbf{J} + q_0) = q_{\mu_1} q_{\mu_2} S_{\mu_1 \mu_2}.$ $S_{00} = J_0, \ S_{a0} = J_a \text{ and } S_{ab} = J_a J_b + J_b J_a - \delta_{ab} J_0$ $\rho = \frac{1}{4} x_{\mu_1 \mu_2} S_{\mu_1 \mu_2}.$

Properties of Weinberg matrices

• 4^N Hermitian matrices (overcomplete set!)

EBERHARD KARLS

BINGEN

• Traceless in the relativistic sense $g_{\mu_1\mu_2}S_{\mu_1\mu_2\dots\mu_{2j}} = 0$, $g \equiv \text{diag}(-,+,+,+)$

Theorem: The Weinberg matrices $S_{\mu 1\mu 2...\mu N}$ are given by the projection of tensor products of Pauli matrices into the subspace \mathcal{H}_S of states that are invariant under permutation of particles.

$$\langle D_N^{(k)} | S_{\mu_1 \mu_2 \dots \mu_N} | D_N^{(\ell)}
angle = \langle D_N^{(k)} | \boldsymbol{\sigma}_{\mu_1} \otimes \boldsymbol{\sigma}_{\mu_2} \otimes \dots \otimes \boldsymbol{\sigma}_{\mu_N} | D_N^{(\ell)}
angle$$

$$D_N^{(k)}\rangle = \mathcal{N}\sum_{\pi} |\underbrace{0\ldots 0}_{N-k}\underbrace{1\ldots 1}_k\rangle, \quad k = 0,\ldots, N$$

Symmetric Dicke states of *N* two level systems with *k* excitations

Proof: use SU(2) disentangling theorem and SU(2) coherent state representation Corrollary 1: The Weinberg matrices form a $2^{N} - \frac{\text{tight frame}}{1}$. Corrollary 2:

$$\rho = \frac{1}{2^N} x_{\mu_1 \mu_2 \dots \mu_N} S_{\mu_1 \mu_2 \dots \mu_N}$$

$$\mu_N = \operatorname{tr}(\rho S_{\mu_1 \mu_2 \dots \mu_N})$$

Bloch **tensor** picture for a spin-j, j=N/2

O. Giraud, DB, D. Baguette, T. Bastin, and J. Martin, PRL 2015

A family of vectors $|\phi_i\rangle$, $i \in \{1, \ldots, M\}$, is called a frame for a Hilbert space \mathcal{H} with bounds $A, B \in]0, \infty[$, if

$$A||\psi||^2 \leqslant \sum_{i=1}^M |\langle \psi | \phi_i \rangle|^2 \leqslant B||\psi||^2, \quad \forall \ |\psi\rangle \in \mathcal{H}.$$

If A = B, then the frame is called an A-tight frame.

• Rotation under SU(2) transformation:

$$x_{\mu_1\dots\mu_N} \to R_{\mu_1\nu_1}\dots R_{\mu_N\nu_N} x_{\nu_1\dots\nu_N}$$

generalizes rotation of Bloch vector: $x_a \rightarrow R_{ab} x_b$

• Coordinates of SU(2) coherent state pointing in direction **n**:

 $x_{\mu_1\mu_2\ldots\mu_N} = n_{\mu_1}n_{\mu_2}\ldots n_{\mu_N}$

• Spin-k reduced density matrix for symmetric state of a multi-qubit system:

$$x_{\mu_1...\mu_{2k}} = x_{\mu_1...\mu_{2k}0...0}$$

• Scalar product

$$\operatorname{tr}(\rho \rho') = \frac{1}{2^N} x_{\mu_1 \mu_2 \dots \mu_N} x'_{\mu_1 \mu_2 \dots \mu_N},$$

- Quantumness of energy transfer in photosynthesis in *Chlorobaculum tepidem*
- 7-state system
- Which two states to choose as |j,-j>, |j,j> (i.e. "most classical states")?
- => Pointer states of energy-current!

Tensor rep and positive partial transpose

• T matrix: $T_{\mu,\nu} = X_{\mu_1...\mu_j\nu_1...\nu_j}$

- T matrix: $T_{\boldsymbol{\mu},\boldsymbol{\nu}} = X_{\mu_1\dots\mu_j\nu_1\dots\nu_j}$
- Theorem: ρ^{T_A} and T are similar, i.e.

 $\exists R \text{ unitary and } \lambda > 0 \mid R^{\dagger} \rho^{T_A} R = \lambda T$

Bohnet-Waldraff, DB, O.Giraud, PRA '16

- $T_{\boldsymbol{\mu},\boldsymbol{\nu}} = X_{\mu_1\dots\mu_j\nu_1\dots\nu_j}$ • T matrix:
- ρ^{T_A} and T are similar, i.e. • Theorem:
 - $\exists R \text{ unitary and } \lambda > 0 \mid R^{\dagger} \rho^{T_A} R = \lambda T$

Bohnet-Waldraff, DB, O.Giraud, PRA '16

• Constructive proof: 1 Cohoront state (P)ron

- 1. Coherent state (P-)rep
$$\rho = \int d\alpha P(\alpha) |\alpha\rangle \langle \alpha | d\alpha$$

- 2. Explicit *R*: $R_{i,\mu} = \frac{1}{2^{j/2}} \prod_{k=1}^{j} \sigma_{i_k,i_{k+j}}^{\mu_k} \stackrel{i = (i_1 i_2 \dots i_N) \text{ and } \mu = (\mu_1 \mu_2 \dots \mu_j)}{0 \le \mu_k \le 3 \text{ and } 0 \le i_k \le 1}$

- T matrix: $T_{oldsymbol{\mu},oldsymbol{
 u}} = X_{\mu_1\dots\mu_j
 u_1\dots
 u_j}$
- Theorem: ρ^{T_A} and T are similar, i.e.
 - $\exists R \text{ unitary and } \lambda > 0 \mid R^{\dagger} \rho^{T_A} R = \lambda T$

Bohnet-Waldraff, DB, O.Giraud, PRA '16

- Constructive proof: - 1. Coherent state (P-)rep $\rho = \int d\alpha P(\alpha) |\alpha\rangle \langle \alpha | d\alpha$ - 2. Explicit *R*: $R_{i,\mu} = \frac{1}{2^{j/2}} \prod_{k=1}^{j} \sigma_{i_k,i_{k+j}}^{\mu_k} \stackrel{i = (i_1 i_2 \dots i_N) \text{ and } \mu = (\mu_1 \mu_2 \dots \mu_j)}{0 \le \mu_k \le 3 \text{ and } 0 \le i_k \le 1}$
- Corollary $\rho^{T_A} \ge 0 \iff T \ge 0$

- Simplification: remove redundant lines and columns from T; positivity unchanged; sufficient condition for separability directly from (N+1)x(N+1) real Hermitian matrix T
- Unifies several previous criteria

EBERHARD KARLS

- N=2 $(X_{\mu,\nu})_{0 \le \mu,\nu \le 3} \ge 0$

O. Giraud, P. Braun, DB PRA '08

- Hierarchy of PPT criteria from correlation matrices of reduced ρ :

$$\begin{split} C_{\mu_r,\nu_r}^{(r)} &= X_{\mu_r\nu_r \mathbf{0}_{N-2r}} - X_{\mu_r \mathbf{0}_{N-r}} X_{\nu_r \mathbf{0}_{N-r}} \\ \rho_r^{T_A} &\ge 0 \iff C^{(r)} \ge 0 \qquad \begin{array}{c} \text{Devi, Prabhu, Rajagopal PRL'07} \\ \text{Toth \& Gühne, PRL '09} \\ \end{array} \\ C^{(r)} &\to \text{Schur complement of } T^{(r)} \end{split}$$

• R_{iμ} generalizes "magic basis" known for N=2 Hill & Wootters, PRL '97

Tensor rep and positive partial transpose

• PPT criterion

$$\rho \text{ separable } \implies \rho^{T^A} = \sum_i p_i \underbrace{\rho_A^{(i)^T}}_{\geq 0} \otimes \rho_B^{(i)} \geq 0$$

$$\Rightarrow \rho^{T_A} \not\geq 0 \implies \rho \text{ entangled}$$

$$\iff 2 \times 2, \ 2 \times 3$$

Peres PRL'96; M,P,R Horodecki '96

higher dim: "bound entanglement"
P. Horodecki '97; Amselem, Bourennane '09