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What we are going to speak about?

◗
 Optimal measurements

 Ultimate bounds to precision



Quantum estimation, sensing and metrology

Motivations (fundamental and applicative)+  
basic ideas about estimation

Classical estimation theory

Quantum estimation theory and the Cramer-Rao 
bound to precision in quantum metrology

Examples of applications

Quantum sensing and metrology for more than 
one parameter and beyond the Cramer-Rao bound



Measurement and estimation

(tum.de)



Measurement and estimation

Do we measure physical quantities?



Measurement and estimation

Or perhaps we are mostly estimating them?



Measurement and estimation



Quantum Probing

◗
⇢(⌧,�)⇢0 �

⌧



Estimation Theory 
 (forget the quantum for a while)



Measurement and estimation

direct measurements 
indirect measurements 

◗s X

influence on a different quantity

choice of the measurement

choice of the estimator

p(x|�)



Measurement and estimation

global estimation theory 
(when you have no a priori information) 
look for a measurement which is optimal in average 
(over the possible values of the parameter)

local estimation theory 
(when you have some a priori information) 
look for a measurement which is optimal for a  
specific value of the parameter (—> ultimate bounds)



local estimation theory: Cramer - Rao bound

variance of unbiased estimators

M -> number of measurements

F -> Fisher Information



local estimation theory: Cramer - Rao bound



Optimal estimation scheme(classical)

Optimal measurement  -> maximum Fisher 
(no recipes on how to find it)

Optimal estimator -> saturation of CR inequality 
(e.g. Bayesian or MaxLik asymptotically)

◗s X



Quantum  

Estimation Theory



Quantum estimation

●

●

No correspondence principle

No uncertainty relations

The "resources" involved in quantum-enahnced technology 
are entanglement, nonlocality, entropy, interferometric 
phase-shift, etc.. In general they are not observable quantities 
in strict sense (do not correspond to a selfadjoint operator)

●

●

What about time and temperature in quantum mechanics?



Quantum estimation

Quantum 
estimation 

theory

The "resources" involved in quantum-enahnced technology 
are entanglement, nonlocality, entropy, interferometric 
phase-shift, etc.. In general they are not observable quantities 
in strict sense (do not correspond to a selfadjoint operator)

●

●

What about time and temperature in quantum mechanics?



Quantum estimation

◗
 Optimal measurements

 Ultimate bounds to precision



Quantum estimation

◗

Probability density



Let’s go quantum (local)(1)

probability density

 symm. log. derivative (SLD)                                      

Fisher Information

selfadjoint, zero mean

◗



Let’s go quantum (local) (2)

Fisher vs Quantum Fisher●

Helstrom 1976 
Braunstein & Caves 1994

ultimate bound on precision
●

parameter  
independent POVM



Optimal estimation scheme (quantum, local)

Optimal measurement  -> Fisher = quantum Fisher 

Optimal estimator -> saturation of CR inequality 
(classical postprocessing, e.g. Bayesian or MaxLix)

◗
It is projective! The spectral measure of the SLD



General formulas (basis indepedent)

Symmetric logarithmic derivative

Quantum Fisher Information●

●

Lyapunov equation
◗



General formulas

Family of quantum states

Symmetric logarithmic derivative

Quantum Fisher Information●

●

● ◗



General formulas

Family of quantum states

Symmetric logarithmic derivative

Quantum Fisher Information●

●

● ◗

H(�) = 8 lim
✏!0

1� F (%�, %�+✏)

✏2



Examples



Other applications (madamina il catalogo e’ questo)

Quantum Interferometry   
Estimation of Gaussian states and operations  
Coupling constants (e.g. nonlinear interactions) 

Wave function of finite-dimensional systems  
Estimation of entanglement (and discord) 
Estimation in quantum critical systems 
Assessing quantum probes for complex systems 
Assessing quantum resources in metrology 
Assessing local vs global measurements 
Assessing criticality as a resource in metrology 
Probing quantum phase transitions 
Probing Hamiltonian terms 
New physics at gravity/QM interface 
… 

●

●

●

●

●

●

●

●

●

●

●

●

●

●



Estimation of entanglement  (@INRIM)

%✏ = p| �ih �| + (1 � p)D�

| �i = cos�|HHi + sin�|V V i
D� = cos

2 �|HHihHH| + sin

2 �|V V ihV V |

✏ = p sin 2�

optimal estimation by visibility measurements

Fisher information is 
monotone with entanglement  

Estimation of entanglement is 
inherently inefficient



by the variance of the estimator:

̂∫ ⎜ ⎟= ⎛⎝ ⎞⎠ −V d p γ γ γy y y[ ( ) ] .γ 2

(2)

The smaller is Vγ , the more precise is the estimation strategy. The
precision of any unbiased estimator (i.e. an estimator such that →γ γ
for ≫N 1), is bounded by the so-called Cramèr-Rao (CR) inequality
[25]:
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where Fγ is the Fisher information (FI) of Y, which is given by∫ ⎜ ⎟= ⎛⎝ ⎞⎠ ∂F dy p y γ p y γ[ log ( )] .γ γ 2

(4)

The Fisher information thus quantifies the information on γ that can be
extracted by performing measurements of the observable Y on the state
ϱγ . The best measurement, i.e. the one that allows the most precise
estimate of γ , is the measurement that maximizes the FI, where the
maximization is performed over all the possible quantum measure-
ments.

The maximum is achieved for any observable having the same
spectral measure of the so-called symmetric logarithmic derivativeLγ , i.e.
the selfadjoint operator satisfying the equation:∂ = +L L2 ϱ ϱ ϱ .γ γ γ γ γ γ (5)

The corresponding FI is usually referred to as the quantum Fisher in-
formation (QFI) and may be expressed as =H LTr[ϱ ]γ γ γ

2 . Since ⩽F Hγ γ ,
the ultimate bound to precision in estimating γ by performing quantum
measurements on ϱγ is given by the quantum CR bound:

⩾V
NH

1 .γ
γ (6)

In the following two Subsections, we consider two representative
examples of parameter estimation through a generic spin of length S.
This can in principle coincide with the spin of a single molecular na-
nomagnet, or with the collective spin of an ensemble of molecules. We
start by considering the case of a spin that is prepared in an eigenstate
of the spin projection along a given axis and that is probed in order to
estimate the orientation of such axis. We then consider the case of a
spin coupled to a magnetic field and in thermal equilibrium with a bath,
which is used as a quantum thermometer.

2.1. Orientation of the quantization axis

We consider the case where the spin is initialized in an eigenstate
M θ of the spin projection ̂= = +S θS θSn S· cos sinθ θ z x corresponding
to the eigenvalue M. The goal is to estimate the value of the angle θ,
which defines the quantization axis, by probing the state M θ through
the measurement of an observable Y. In order for such estimate to be
precise, two conditions need to be met: i( ) the state M θ should depend
strongly on the parameter θ (i.e. +M θ δθ is supposed to differ as much as
possible from M θ); ii( ) the observable Y should capture such depen-
dence, through the dependence on θ of its statistics or expectation
value.

We start by considering the case of an ensemble measurement,
where the measurement outcome is deterministic and coincides with
the expectation value of the observable Y. In particular, if Y corre-
sponds to the spin projection Sz, the precision in the parameter esti-
mation can be identified with

⎜ ⎟⎛⎝ ⎞⎠ = ∂ = + −P M S
S

S
M

S S M
,

Var ( )
2

( 1)
,

θ
z

θ z θ

θ z

2 2

2
(7)

being =S M θcosz θ and = + −S S S M θVar ( ) [ ( 1) ]sinθ z
1
2

2 2 . We note
that P is independent on θ, and thus on the particular spin projection (in
the xz plane) that is chosen as an observable. This results from the fact
that the angular dependence of the numerator coincides with that of the
denominator. For example, for small values of θ, the expectation value
Sz θ depends weakly on θ, but also the fluctuations in the value of Sz
are small; for ≃θ π/2, instead, both terms are large. From the above
equation it also follows that the highest precision is achieved with the
states that display the largest spin projection ( = =M SS ), whereas
the state = =M S 0 is of no use for the parameter estimation (being=P 0). This result is in agreement with intuition: the longer the vector
S , the better one can detect small variations in its orientation.

If one considers projective measurements, the relevant figures of
merit are represented by the quantum and the classical Fisher in-
formation. The quantum Fisher information =H H M( )θ θ allows one
to establish to which extent the above condition i( ) is met for a given
parameter-dependent state. In fact, according to the quantum Cramer-
Rao inequality, Hθ gives the highest precision that can be achieved in
the estimate of θ by performing a single measurement on the spin. In
the present case, one can show that〉 = 〈 〉 − 〈 〉 = + −H M K K K M S S M( ) 4[ | | ] 2[ ( 1) ],θ θ θ θ θ 2 2 (8)

where ≡ ∂K Mθ θ θ. Therefore, rather counterintuitively and unlike
what is found for the case of ensemble measurements, the dependence
of the state M θ on the angle is minimal ( =H S2θ ) for =M S, and
maximal ( = +H S S2 ( 1)θ , assuming an integer S) for =M 0, which
corresponds to a vanishing expectation value of all components of the
spin operator ( =S 0). It’s also worth stressing that the scaling of the
precision with the spin length is linear in the former case and quadratic
in the latter one. This suggests that the projective measurement allows
one to exploit the quantum features of the spin states in order to out-
perform the precision that can be achieved with the semiclassical (spin
coherent) states = ±M S. It’s also worth noting that, if one has N copies
of the spin state M θ and can thus repeat the measurement N times,
both the classical and the quantum Fisher information (and thus the

Fig. 1. Paradigmatic configurations for quantum sensing. In the upper panel,
we consider a scheme where a quantum system is prepared in a given initial
state ϱ0, and then interacts with an external system or field under investigation
(red area), which is characterized by the unknown parameter γ . After the in-
teraction, which imprints information about γ into the state of the quantum
probe, this is subject to a measurement, in order to extract such information.
The lower panel describes a situation where the quantum probe is embedded in
a larger structure, and its state contains information on some internal parameter
of interest.

F. Troiani, et al.

Quantum probes for complex systems

Quantum thermometry 
Spectral characterisation 
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Quantum probes for universal gravity corrections  

The existence of a minimum length and generalized uncertainty 
principle (GUP), influence all quantum Hamiltonians  

Universality of Quantum Gravity Corrections
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We show that the existence of a minimum measurable length and the related generalized uncertainty

principle (GUP), predicted by theories of quantum gravity, influence all quantum Hamiltonians. Thus,

they predict quantum gravity corrections to various quantum phenomena. We compute such corrections to

the Lamb shift, the Landau levels, and the tunneling current in a scanning tunneling microscope. We show

that these corrections can be interpreted in two ways: (a) either that they are exceedingly small, beyond the

reach of current experiments, or (b) that they predict upper bounds on the quantum gravity parameter in

the GUP, compatible with experiments at the electroweak scale. Thus, more accurate measurements in the

future should either be able to test these predictions, or further tighten the above bounds and predict an

intermediate length scale between the electroweak and the Planck scale.

DOI: 10.1103/PhysRevLett.101.221301 PACS numbers: 04.60.Bc, 04.80.Cc

We know that gravity is universal. Anything which has
energy creates gravity and is affected by it, although the
smallness of Newton’s constant G often means that the
associated effects are too weak to be measurable. In this
Letter, we show that certain effects of quantum gravity are
also universal, and can influence almost any system with a
well-defined Hamiltonian. The resultant effects are generi-
cally quite small, being proportional to the square of the
Planck length ‘2Pl ¼ G@=c3. However, with current and
future experiments, bounds may be set on certain parame-
ters relevant to quantum gravity, and improved accuracies
could even make them measurable.

An important prediction of various theories of quantum
gravity (such as string theory) and black hole physics is the
existence of a minimum measurable length. The prediction
is largely model independent, and can be understood as
follows: the Heisenberg uncertainty principle (HUP),
!x" @=!p, breaks down for energies close to the
Planck scale, when the corresponding Schwarzschild ra-
dius is comparable to the Compton wavelength (both being
approximately equal to the Planck length). Higher energies
result in a further increase of the Schwarzschild radius,
resulting in !x # ‘2Pl!p=@. The above observation, along
with a combination of thought experiments and rigorous
derivations suggest that the generalized uncertainty prin-
ciple (GUP) holds at all scales, and is represented by [1]

!xi!pi $ @
2½1þ !ðð!pÞ2 þ hpi2Þ þ 2!ð!p2

i þ hpii2Þ);
i ¼ 1; 2; 3; (1)

where p2 ¼ P3
j¼1 pjpj, ! ¼ !0=ðMPlcÞ2 ¼ ‘2Pl=2@2,

MPl ¼ Planck mass, and MPlc
2 ¼ Planck energy # 1:2*

1019 GeV. Implications of the GUP in various fields, in-
cluding high energy physics, cosmology and black holes,

have been studied. Here, we examine its potential experi-
mental signatures in some familiar quantum systems. It is
normally assumed that the dimensionless parameter !0 is
of the order of unity. However, as we shall see in this
article, this choice renders quantum gravity effects too
small to be measurable. On the other hand, if one does
not impose the above condition a priori, current experi-
ments predict large upper bounds on it, which are compat-
ible with current observations, and may signal the
existence of a new length scale. Note that such an inter-
mediate length scale, ‘inter +

ffiffiffiffiffiffi
!0

p
‘Pl cannot exceed the

electroweak length scale "1017‘Pl (as otherwise it would
have been observed). This implies !0 , 1034. [The factor
of 2 in the last term in Eq. (1) follows from Eq. (2) below.]
It was shown in [2], that inequality (1) is equivalent to

the following modified Heisenberg algebra:

½xi; pj) ¼ i@ð"ij þ !"ijp
2 þ 2!pipjÞ: (2)

This form ensures, via the Jacobi identity, that ½xi; xj) ¼
0 ¼ ½pi; pj) [3]. Next, defining

xi ¼ x0i; pi ¼ p0ið1þ !p2
0Þ; (3)

where p2
0 ¼

P3
j¼1 p0jp0j and x0i, p0j satisfying the canoni-

cal commutation relations ½x0i; p0j) ¼ i@"ij, it is easy to
show that Eq. (2) is satisfied to order ! (henceforth we
neglect terms of order !2 and higher). Here, p0i can be
interpreted as the momentum at low energies (having the
standard representation in position space, i.e., p0i ¼
-i@d=dxi), and pi as that at higher energies.
Using (3), any Hamiltonian of the form

H ¼ p2

2m
þ Vð ~rÞ ½~r ¼ ðx1; x3; x3Þ) (4)
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can be written as [4]

H ¼ H0 þH1 þOð!2Þ; (5)

where

H0 ¼
p2
0

2m
þ Vð ~rÞ and H1 ¼

!

m
p4
0: (6)

Thus, we see that any system with a well-defined quantum
(or even classical) Hamiltonian H0, is perturbed by H1,
defined above, near the Planck scale. In other words,
quantum gravity effects are in some sense universal. It
remains to compute the corrections to various phenomena
due to the Hamiltonian H1. In this article, we study its
effects on three such well-understood quantum phe-
nomena: the Lamb shift, the Landau levels, and the scan-
ning tunneling microscope (STM).

I. The Lamb shift.—For the hydrogen atom, Vð~rÞ ¼
%k=r (k ¼ e2=4"#0 ¼ $@c, e ¼ electronic charge). To
first order, the perturbing Hamiltonian H1, shifts the
wave functions to [5]

jc nlmi1 ¼ jc nlmiþ
X

fn0l0m0g!fnlmg

en0l0m0jnlm
En % En0

jn0l0m0i (7)

where n, l,m have their usual significance, and en0l0m0jnlm &
hn0l0m0jH1jnlmi. Using p2

0 ¼ 2m½H0 þ k=r( [4]

H1 ¼ ð4!mÞ
!
H2

0 þ k
"
1

r
H0 þH0

1

r

#
þ

"
k

r

#
2
$
: (8)

Thus,

en0l0m0jnlm
4!m

¼ ðEnÞ2%nn0 þ kðEn þ En0Þhn0l0m0j 1
r
jnlmi

þ k2hn0l0m0j 1
r2

jnlmi:

It follows from the orthogonality of spherical harmonics
that the above are nonvanishing if and only if l0 ¼ l and
m0 ¼ m. Thus, the first order shift in the ground state wave-
function is given by (in the position representation)

!c 100ð ~rÞ & c 100ð1Þð~rÞ % c 100ð ~rÞ ¼
e200j100
E1 % E2

c 200ð ~rÞ

¼ 928
ffiffiffi
2

p
!mE0

81
c 200ð ~rÞ: (9)

Next, consider the Lamb shift for the nth level of the
hydrogen atom [6]

!En ¼ 4$2

3m2

"
ln
1

$

#
jc nlmð0Þj2: (10)

Varying c nlmð0Þ, the additional contribution due to GUP in
proportion to its original value is given by

!EnðGUPÞ
!En

¼ 2
!jc nlmð0Þj
c nlmð0Þ

: (11)

Thus, for the ground state, using c 100ð0Þ ¼ a%3=2
0 "%1=2

and c 200ð0Þ ¼ a%3=2
0 ð8"Þ%1=2, where a0 is the Bohr radius,

we get

!E0ðGUPÞ
!E0

¼ 2
!jc 100ð0Þj
c 100ð0Þ

¼ 928!mE0

81

) 10!0
m

MPl

E0

MPlc
2 ) 0:47* 10%48!0: (12)

The above result may be interpreted in two ways. First, if
one assumes !0 + 1, then it predicts a nonzero, but vir-
tually unmeasurable effect of quantum gravity–GUP. On
the other hand, if such an assumption is not made, the
current accuracy of precision measurement of Lamb shift
of about 1 part in 1012 [4,7], sets the following upper bound
on !0

!0 < 1036: (13)

This bound is weaker than that set by the electroweak
scale, but not incompatible with it. Moreover, with more
accurate measurements in the future, this bound is ex-
pected to get reduced by several orders of magnitude, in
which case, it could signal a new and intermediate length
scale between the electroweak and the Planck scale.
II. The Landau levels.—Next consider a particle of mass

m and charge e in a constant magnetic field ~B ¼ Bẑ,

described by the vector potential ~A ¼ Bxŷ and the
Hamiltonian

H0 ¼
1

2m
ð ~p0 % e ~AÞ2 (14)

¼ p2
0x

2m
þ

p2
0y

2m
% eB

m
xp0y þ

e2B2

2m
x2: (15)

Since p0y commutes with H, replacing it with its eigen-
value @k, we get

H0 ¼
p2
0x

2m
þ 1

2
m!2

c

"
x% @k

m!c

#
2
; (16)

where !c ¼ eB=m is the cyclotron frequency. This is
nothing but the Hamiltonian of a harmonic oscillator in x
direction, with its equilibrium position given by x0 &@k=m!c. Consequently, the eigenfunctions and eigenval-
ues are given by

c k;nðx; yÞ ¼ eiky&nðx% x0Þ; (17)

En ¼ @!c

"
nþ 1

2

#
; n 2 N; (18)

where &n are the harmonic oscillator wave functions.
Following the procedure outlined in the introduction, the

GUP-corrected Hamiltonian assumes the form

H ¼ 1

2m
ð ~p0 % e ~AÞ2 þ !

m
ð ~p0 % e ~AÞ4 (19)

PRL 101, 221301 (2008) P HY S I CA L R EV I EW LE T T E R S
week ending

28 NOVEMBER 2008

221301-2

can be written as [4]

H ¼ H0 þH1 þOð!2Þ; (5)

where

H0 ¼
p2
0
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þ Vð ~rÞ and H1 ¼
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m
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0: (6)

Thus, we see that any system with a well-defined quantum
(or even classical) Hamiltonian H0, is perturbed by H1,
defined above, near the Planck scale. In other words,
quantum gravity effects are in some sense universal. It
remains to compute the corrections to various phenomena
due to the Hamiltonian H1. In this article, we study its
effects on three such well-understood quantum phe-
nomena: the Lamb shift, the Landau levels, and the scan-
ning tunneling microscope (STM).

I. The Lamb shift.—For the hydrogen atom, Vð~rÞ ¼
%k=r (k ¼ e2=4"#0 ¼ $@c, e ¼ electronic charge). To
first order, the perturbing Hamiltonian H1, shifts the
wave functions to [5]

jc nlmi1 ¼ jc nlmiþ
X
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en0l0m0jnlm
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jn0l0m0i (7)

where n, l,m have their usual significance, and en0l0m0jnlm &
hn0l0m0jH1jnlmi. Using p2

0 ¼ 2m½H0 þ k=r( [4]
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It follows from the orthogonality of spherical harmonics
that the above are nonvanishing if and only if l0 ¼ l and
m0 ¼ m. Thus, the first order shift in the ground state wave-
function is given by (in the position representation)

!c 100ð ~rÞ & c 100ð1Þð~rÞ % c 100ð ~rÞ ¼
e200j100
E1 % E2

c 200ð ~rÞ

¼ 928
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Next, consider the Lamb shift for the nth level of the
hydrogen atom [6]

!En ¼ 4$2
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Varying c nlmð0Þ, the additional contribution due to GUP in
proportion to its original value is given by
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Thus, for the ground state, using c 100ð0Þ ¼ a%3=2
0 "%1=2

and c 200ð0Þ ¼ a%3=2
0 ð8"Þ%1=2, where a0 is the Bohr radius,

we get
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¼ 928!mE0
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The above result may be interpreted in two ways. First, if
one assumes !0 + 1, then it predicts a nonzero, but vir-
tually unmeasurable effect of quantum gravity–GUP. On
the other hand, if such an assumption is not made, the
current accuracy of precision measurement of Lamb shift
of about 1 part in 1012 [4,7], sets the following upper bound
on !0

!0 < 1036: (13)

This bound is weaker than that set by the electroweak
scale, but not incompatible with it. Moreover, with more
accurate measurements in the future, this bound is ex-
pected to get reduced by several orders of magnitude, in
which case, it could signal a new and intermediate length
scale between the electroweak and the Planck scale.
II. The Landau levels.—Next consider a particle of mass

m and charge e in a constant magnetic field ~B ¼ Bẑ,

described by the vector potential ~A ¼ Bxŷ and the
Hamiltonian

H0 ¼
1

2m
ð ~p0 % e ~AÞ2 (14)

¼ p2
0x

2m
þ

p2
0y

2m
% eB

m
xp0y þ

e2B2

2m
x2: (15)

Since p0y commutes with H, replacing it with its eigen-
value @k, we get

H0 ¼
p2
0x

2m
þ 1

2
m!2

c

"
x% @k

m!c

#
2
; (16)

where !c ¼ eB=m is the cyclotron frequency. This is
nothing but the Hamiltonian of a harmonic oscillator in x
direction, with its equilibrium position given by x0 &@k=m!c. Consequently, the eigenfunctions and eigenval-
ues are given by

c k;nðx; yÞ ¼ eiky&nðx% x0Þ; (17)

En ¼ @!c

"
nþ 1

2

#
; n 2 N; (18)

where &n are the harmonic oscillator wave functions.
Following the procedure outlined in the introduction, the

GUP-corrected Hamiltonian assumes the form

H ¼ 1

2m
ð ~p0 % e ~AÞ2 þ !

m
ð ~p0 % e ~AÞ4 (19)
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can be written as [4]

H ¼ H0 þH1 þOð!2Þ; (5)

where

H0 ¼
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0

2m
þ Vð ~rÞ and H1 ¼
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m
p4
0: (6)

Thus, we see that any system with a well-defined quantum
(or even classical) Hamiltonian H0, is perturbed by H1,
defined above, near the Planck scale. In other words,
quantum gravity effects are in some sense universal. It
remains to compute the corrections to various phenomena
due to the Hamiltonian H1. In this article, we study its
effects on three such well-understood quantum phe-
nomena: the Lamb shift, the Landau levels, and the scan-
ning tunneling microscope (STM).

I. The Lamb shift.—For the hydrogen atom, Vð~rÞ ¼
%k=r (k ¼ e2=4"#0 ¼ $@c, e ¼ electronic charge). To
first order, the perturbing Hamiltonian H1, shifts the
wave functions to [5]

jc nlmi1 ¼ jc nlmiþ
X

fn0l0m0g!fnlmg

en0l0m0jnlm
En % En0

jn0l0m0i (7)

where n, l,m have their usual significance, and en0l0m0jnlm &
hn0l0m0jH1jnlmi. Using p2

0 ¼ 2m½H0 þ k=r( [4]

H1 ¼ ð4!mÞ
!
H2

0 þ k
"
1

r
H0 þH0

1

r

#
þ

"
k

r

#
2
$
: (8)

Thus,

en0l0m0jnlm
4!m

¼ ðEnÞ2%nn0 þ kðEn þ En0Þhn0l0m0j 1
r
jnlmi

þ k2hn0l0m0j 1
r2

jnlmi:

It follows from the orthogonality of spherical harmonics
that the above are nonvanishing if and only if l0 ¼ l and
m0 ¼ m. Thus, the first order shift in the ground state wave-
function is given by (in the position representation)

!c 100ð ~rÞ & c 100ð1Þð~rÞ % c 100ð ~rÞ ¼
e200j100
E1 % E2

c 200ð ~rÞ

¼ 928
ffiffiffi
2

p
!mE0

81
c 200ð ~rÞ: (9)

Next, consider the Lamb shift for the nth level of the
hydrogen atom [6]

!En ¼ 4$2

3m2

"
ln
1

$

#
jc nlmð0Þj2: (10)

Varying c nlmð0Þ, the additional contribution due to GUP in
proportion to its original value is given by

!EnðGUPÞ
!En

¼ 2
!jc nlmð0Þj
c nlmð0Þ

: (11)

Thus, for the ground state, using c 100ð0Þ ¼ a%3=2
0 "%1=2

and c 200ð0Þ ¼ a%3=2
0 ð8"Þ%1=2, where a0 is the Bohr radius,

we get

!E0ðGUPÞ
!E0

¼ 2
!jc 100ð0Þj
c 100ð0Þ

¼ 928!mE0

81

) 10!0
m

MPl

E0

MPlc
2 ) 0:47* 10%48!0: (12)

The above result may be interpreted in two ways. First, if
one assumes !0 + 1, then it predicts a nonzero, but vir-
tually unmeasurable effect of quantum gravity–GUP. On
the other hand, if such an assumption is not made, the
current accuracy of precision measurement of Lamb shift
of about 1 part in 1012 [4,7], sets the following upper bound
on !0

!0 < 1036: (13)

This bound is weaker than that set by the electroweak
scale, but not incompatible with it. Moreover, with more
accurate measurements in the future, this bound is ex-
pected to get reduced by several orders of magnitude, in
which case, it could signal a new and intermediate length
scale between the electroweak and the Planck scale.
II. The Landau levels.—Next consider a particle of mass

m and charge e in a constant magnetic field ~B ¼ Bẑ,

described by the vector potential ~A ¼ Bxŷ and the
Hamiltonian

H0 ¼
1

2m
ð ~p0 % e ~AÞ2 (14)

¼ p2
0x

2m
þ

p2
0y

2m
% eB

m
xp0y þ

e2B2

2m
x2: (15)

Since p0y commutes with H, replacing it with its eigen-
value @k, we get

H0 ¼
p2
0x

2m
þ 1

2
m!2

c

"
x% @k

m!c

#
2
; (16)

where !c ¼ eB=m is the cyclotron frequency. This is
nothing but the Hamiltonian of a harmonic oscillator in x
direction, with its equilibrium position given by x0 &@k=m!c. Consequently, the eigenfunctions and eigenval-
ues are given by

c k;nðx; yÞ ¼ eiky&nðx% x0Þ; (17)

En ¼ @!c

"
nþ 1

2

#
; n 2 N; (18)

where &n are the harmonic oscillator wave functions.
Following the procedure outlined in the introduction, the

GUP-corrected Hamiltonian assumes the form

H ¼ 1

2m
ð ~p0 % e ~AÞ2 þ !

m
ð ~p0 % e ~AÞ4 (19)
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We address the precision of the estimation procedures for the minimum length arising from gravitational
theories. In particular, we provide bounds on precision and assess the use of quantum probes to enhance
the estimation performance. At first, we review the concept of minimum length and how it induces a
perturbative term appearing in the Hamiltonian of any quantum system, which itself is proportional to a
parameter depending on the minimum length. We then systematically study the effects of this perturbation
on different state preparations and for several one-dimensional systems, and evaluate the quantum Fisher
information in order to find the ultimate bounds to precision. Eventually, we investigate the role of
dimensionality by analyzing the use of two-dimensional square well and harmonic oscillator systems to
probe the minimal length. Our results show that quantum probes are convenient resources, providing
potential enhancement in precision. Additionally, our results provide a set of guidelines to design future
experiments to detect the minimum length.

DOI: 10.1103/PhysRevD.102.056012

I. INTRODUCTION

In the last decades, various theories of quantum gravity
have been put forward, attempting to jointly describe the
quantum world and the gravitational force. Albeit all of
these theories have different postulates on the fundamental
nature of space and time, they all have a common model-
independent prediction: the existence of a minimum length
[1] commonly associated with the Planck length LP.
Thanks to a device-independent proof [2,3], the physical
reason behind this result is quite clear: if we want to
measure the position of a particle, the more massive is the
particle, the more precise is the estimate. On the other hand,
if the mass exceeds a specific value (established by the laws
of general relativity), we will run in the black hole regime,
thus increasing the uncertaintyΔxi on the position, being xi
the ith position operator. From these considerations, it may
be induced that [1–7]

Δxi ≥ LP: ð1Þ

Overall, we have that upon assuming minimal compati-
bility with general relativity, a momentum-independent
lower bound on the precision of any position measurement
should appear, and any length under this lower bound loses
physical meaning. Of course, in standard quantum mechan-
ics, we do not have an independent lower bound on Δxi,

which should just satisfy the standard uncertainty relations
ΔxiΔpj ≥ δijℏ=2. We may ask how to reproduce such
a minimum length effect in a nonrelativistic quantum
setting. Some solutions have been suggested [1,7], e.g.,
by modifying the particle momentum with an extra ad hoc
parameter-dependent term [1],

p⃗ ¼ p⃗0

!
1þ γ

p⃗2
0

M2
Pc2

"
: ð2Þ

The parameter γ does depend on the minimum length and
may be understood as a self-gravity perturbation [8]. As a
result, the standard commutation relations are modified
[1,4,7,9], leading to the so-called generalized uncertainty
principle (GUP),

ΔxiΔpi ≥
ℏ
2

!
1þ γ

Δp2 þ hpi2

M2
Pc2

þ 2γ
Δp2

i þ hpii2

M2
Pc2

"
; ð3Þ

which replicates the minimum length effect (1).
Furthermore, the momentummodification (2) affects directly
the Hamiltonian of any nonrelativistic system. Indeed, at first
order in γ, we have that H ¼ H0 þH1 þOðγ2Þ, where the
extra term,

H1 ¼
γ

mM2
Pc2

p4 ð4Þ

is the gravity perturbation, and it represents the gravitational
effect on a generic quantum system, due to the modified
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the largest values of QFI are obtained with a quantum probe subject to a harmonic 
potential and initially prepared in a superposition of perturbed energy eigenstates 

QFI is superadditive with the dimenssion of the 
system, which therefore represents a metrological 
resource. The gain in precision is not due to the 
appearance of entanglement of the state but rather 
to the increasing number of superposed states 
generated by the perturbation. 

Eð1Þ
n ¼ 3mℏ2ω2

4ðMPcÞ2
ð1þ 2nþ 2n2Þ: ð46Þ

In the case of unperturbed eigenstates, we know from (26)
that the maximum of QFI is given by

F qðt;ω; nÞ ¼
9t2m2ℏ2ω4n2ð1þ nÞ2

4ðMPcÞ4
; ð47Þ

corresponding to the QFI of the state evolving in time from
the initial superposition 1=

ffiffiffi
2

p
ðj0iþ jniÞ. For superposi-

tions of perturbed eigenstates, we have no close solution for
the probes which maximize the QFI. However, we can try
to evaluate it numerically for different probes to understand
how it behaves. The results are depicted in Fig. 2. We see
that the best superposition is not given by the two states
with maximum separation between the corresponding
correction Eð1Þ

i . The underlying reason lies in the fact that
also the state depends itself on the parameter, and the higher
contribution to the F qðγÞ comes from the perturbation ket

jψ ð1Þ
n i rather than from the phase that arises from the time

evolution. The plots report results obtained by evolving the
superpositions at second order in γ. The first order is
identically 0, with the exception of states containing n ¼ 4.
Also in this last case, however, the more relevant contri-
bution is coming from the second-order term. As it is
apparent from the plot, the dashed lines, corresponding to
higher excitations in the superpositions, are above the solid
one, thus breaking the hierarchy found for unperturbed
superpositions.

E. Comparison of the different systems

Using the results from the previous sections, we can
compare the different values of the quantum Fisher infor-
mation to establish which system has the highest power of
estimate for the parameter γ. To have a faithful comparison,
we choose values of the system’s parameters in a range
of real physical systems, and we plot the F q as a function
of the systems’ energy. For instance, we set the mass
m ¼ 10−27 kg, which is of the order of magnitude of the
hydrogen mass [35]. In the free particle, we set the
momentum pm ¼ 1 MeV=c, and we vary the width of
the wave packet σ in the interval that goes from 0 to
30 MeV=c. For the infinite square well, we vary the width
of the well in the range that goes from 1 nm to 10 nm,
which is the typical scale of quantum dots [36,37].
Analogously, for the finite square well, we choose the
same range of a, and we fix V0 ¼ 50 eV. Finally, for the
harmonic oscillator, we vary the frequency ω from 1013 to
1014, which represents the typical frequencies of a diatomic
molecule [38,39]. The results are shown in Fig. 3. We see
that the most effective probe is provided by the harmonic
oscillator system, whose F q is larger than the F q obtained
from other systems by many orders of magnitude. Please
notice that the rescaling of the dimensionless parameter γ to

FIG. 2. The QFI obtained for t ¼ 1 and ω ¼ 1 for a harmonic
oscillator initially prepared in the superposition of two perturbed
energy eigenstates with ω ¼ 1. The solid lines are for jψγ

0iþ jψγ
ni,

whereas the dashed lines denote results for jψγ
1iþ jψγ

ni. The blue
lines are for n ¼ 2, the orange ones for n ¼ 3, and the green ones
for n ¼ 4. We see that dashed lines, corresponding to higher
excitations in the superpositions, are above the solid one, thus
breaking the hierarchy found for unperturbed superpositions.

FIG. 3. Logarithmic plot of the quantum Fisher information as a
function of the energy in three different systems: the free particle,
the harmonic oscillator, and the infinite square well. For a free
particle, we set pm ¼ 1 MeV=c, and we varied the width σ of
the wave packet; for the harmonic oscillator, we considered the
quantum Fisher information of the time-evolving state
1=

ffiffiffi
2

p
jψγ

1iþ jψγ
4i as well as for the infinite square well, where

our reference state was 1=
ffiffiffi
2

p
ðj1iþ j4iÞ. In all the three numeri-

cal evaluations, t ¼ 1. The grey lines represent the QFI for a
generic value of the energy, while the red lines represent the QFI
for an energy value in the range of real physical systems as
described in Sec. IV E. Differently from the previous plot, in this
one, we used SI values for the fundamental physical constants,
i.e., the mass Planck MP ¼ 2; 176 × 10−8 kg, the reduced Planck
constant ℏ ¼ 1; 054 × 10−34 J:s and the speed of light
c ¼ 2; 99 × 108 m=s. The blue dashed lines show the orders
of magnitude between the minimum of the F q for the harmonic
oscillator and the maximum of the F q for the infinite square well.
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More than one parameter



( ) ◗

The multiparametric case

���0

⇧X

X = {x1, x2, ...}

{X1,X2, ...}



Symmetric and non-symmetric LD



Symmetric and non-symmetric bounds

Neither the SLD nor the RLD bound are  in general achievable.  

The SLD could not be achievable because it corresponds to the bound 
obtained by measuring optimally and simultaneously each single 
parameter, and this is not possible when the optimal measurements do not 
commute.  

The RLD bound could not be achievable because the optimal estimator does 
not always correspond to a proper quantum measurement (that is, a proper 
positive operator valued measure).



The Holevo bound and how not to deal with it



Beyond the Cramer-Rao bound



Back to premises

The classical CR holds under the assumption:

The sample space is independent on 
the parameter to be estimated

p(x|�)

To obtain QCR we added another assumption:

The measurement POVM is independent on 
the parameter to be estimated



Parameter-dependent measurements: no Cramer-Rao



Parameter-dependent measurements

Z
dxm�(x)⇧�(x) = I

Parameter-dependent sample space 
(possible also in classical 
  estimation problem) Parameter-dependent POVM  

(an entirely novel quantum    
 degree of freedom)



New bound for parameter dependent POVMs

- gravimetry with a quantum mechanical oscillator

H(g) = 8m/!3 sin2 !t/2

H = p

2
/2m+ kx

2
/2 +mgx

FH(g) = 2m/!3 measurement of energy 
(Hamiltonian)

- prepare the oscillator in a coherent state

L Seveso, MAC Rossi, MGA Paris, Phys. Rev. A 95, 012111 (2017)



New bound for parameter dependent POVMs

FX(�) =

Z
d⌫

⇢
[tr(⇧�(x)@�⇢�)]2

tr(⇧�(x)⇢�)
+

[tr(@�⇧�(x)⇢�)]2

tr(⇧�(x)⇢�)

+
2 tr(⇧�(x)@�⇢�) tr(@�⇧�(x)⇢�)

tr(⇧�(x)⇢�)

�

FX(�) 
hp

H(�) +
p

KX(�)
i2

(projective POVMs)

KX(�) = 4

Z
dx h@�x|⇢�|@�xi

Achievable ? 
What about optimal 
measurement?  

L Seveso, MAC Rossi, MGA Paris, Phys. Rev. A 95, 012111 (2017)



FH
H

the new bound

t/T

New bound for parameter dependent POVMs



Summary/conclusions

Quantum estimation theory is a relevant tool to design and assess 
quantum enhanced measurements (estimation schemes)

The single parameter QCR provides the ultimate quantum limit to 
precision. More precisely, it bounds precision of schemes exploiting 
quantumness of probes.  

Quantum-based measurements may be further improved by 
exploiting detector dependence on the parameter of interest and thus 
the quantumness of detectors, i.e. quantum-enhanced 
measurements may be more precise than previously thought.

Current research is about joint estimation of more than one 
parameter, e.g. signal and noise to realize self calibrating 
estimation schemes.
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