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we live in 3D (+ time)

why do we live in 3+1 dimensions? 
what would the world look like in 1+1 D? 
in 2+1 D? 
in 4+1 D? 
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strategy
in physics, when a question is too difficult, one simplifies it

usually one only gets partial answers

these answers are often satisfactory (even sufficient fapp)

and one is content with what one gets

new question:
why do we live in 3+1 dimensions? 
what would the world look like in 1+1 D? 
in 2+1 D? 
in 4+1 D? 
…

what would electrodynamics look like in 1 or 2 (+1) D? 



even such a (much) simpler 
question requires attention

what would electrodynamics look like in 1 +1 D? 

1D + time

“1D” + time

what do we mean by 1D? 
do we mean a “line” (with points)? 
or do we mean a limiting procedure by which  
           all other dimensions can be neglected?

(in physics even the most naive questions require some kind of “definition”)



1D + time

“1D” + time

in physics even the most naive questions require some kind of “definition”

we will place “atoms”and charges in our 1D “world”



quantum physics in 1D

quantum emitters in 1D waveguides 

simulations of quantum field theories

quantum  field theory 
T. Giamarchi, Quantum Physics in One Dimension, 2004 
Y. Kuramoto and Y. Kato, Dynamics of One-Dimensional Quantum Systems: 
  Inverse-Square Interaction Models, 2009



nice testbed: Gauss

3D

1D + time

2D

1D

A = circumference = 2⇡r ! E ⇠ q

r
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A = {two points} ! E ⇠ q
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1D + time

A = {two points} ! E ⇠ q
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+q -q

E E=0E=0

dipoles?

+q -q

E E=0E=0
+q -q

E E=0

dipoles do not interact



+q -q

E E=0E=0

“1D” + time            is VERY different

intermezzo

remains valid

+q
-q
+q

-q
this limit to zero can  
be conceived, 
so dipoles can be 
“perpendicular” to the  
“world” (1D line)



(Q)ED in 1D

Schwinger, Coleman, Kogut, Susskind, Casher, ’t Hooft, Parisi 
thinking about confinement mechanisms 

L

+ -

E

(electric field E confined here)

energy =
1

2
L⇥ E2 / volume

E=0E=0



QED in 1D: string breaking

larger L

+ -

E E=0E=0

- +

E E=0

L’L’

energy =
1

2
2L0 ⇥ E2 / volume

}
pair creation



QED HAMILTONIAN 

Gauss law

“Classical” discretization: 
• continuum space replaced by regular lattice 
• fermionic degrees of freedom are defined on lattice 

sites: dim of local Hilbert space is 2 
• e.m. field degrees of freedom are defined on links, and 

are continuous

H =

Z
dx

⇢
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E E †

J. Schwinger



[Ex,x+1, Ay,y+1] = i�x,y

or

Ux,x+1 = e�iAx,x+1 with [Ex,x+1, Uy,y+1] = �x,yUx,x+1

staggered  
fermions

discretize space: lattice

site x site x+1

link x,x+1



⌃ =
1

N

X

x

hEx,x+1i

• Large positive m: GS = filled Dirac sea invariant under C and P 
 

• Large negative m: GS = meson/antimeson state

CP

⌃ = 0

⌃ 6= 0

order parameter



even site, empty

even site, occupied

odd site, empty

odd site, occupied
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meson

antimeson
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Figure 2: Pictorial representation of notable configura-

tions in a Z3 gauge theory. All the represented cases are

consistent with Gauss’s law.

As described in Ref. [41], to which we refer
for further details, it is possible to discretize this
model following two steps:

i) first, we perform a spatial discretization, in
which the space continuum is replaced by a
linear lattice of points with spacing a; in or-
der to avoid the fermion doubling problem
we adopt [7, 8, 4, 5] the staggered fermion
approach [7, 8] applied to the Schwinger
model [4, 5];

ii) second, by following the Schwinger-Weyl
quantization scheme [63, 64], we approxi-
mate the gauge group U(1) with the finite
group Zn; this step is essential in order to
work with a finite number of local degrees of
freedom also for the gauge variables.

The discretized Hamiltonian reads [41]:

H = ≠

ÿ

x

(Â
†
x+1Ux,x+1Âx + h.c.)

+ m

ÿ

x

(≠1)
x
Â

†
xÂx +

g
2

2

ÿ

x

E
2
x,x+1, (4)

with x (1 Æ x Æ N) labelling the sites of a one-
dimensional lattice of spacing a = 1. Here, the
one-component spinor is represented by the cre-
ation and annihilation operators Â

†
x and Âx, de-

fined on each site x and characterized by a stag-
gered mass (≠1)

x
m, while the gauge fields are

defined on the lattice links (x, x + 1) through
the pair of operators Ex,x+1 (electric field) and
Ux,x+1 (unitary comparator). The gauge field op-
erators act on the n-dimensional Hilbert spaces
Hx,x+1, attached to each link and spanned by

the orthonormal bases {|vkÍx,x+1}0ÆkÆn≠1, that
diagonalize the local electric field:

Ex,x+1 =

n≠1ÿ

k=0

Ú
2fi

n

3
k ≠

n ≠ 1

2
+ „

4
|vkÍx,x+1Èvk|.

(5)

Here, a non-zero value of the angle „ entails the
presence of a constant background field, which in
turn corresponds to charges at the boundary of
the chain. The unitary comparator, instead, acts
as a cyclic ladder operator:

Ux,x+1|vkÍx,x+1 = |vk+1Íx,x+1 for k < n ≠ 1,

(6)

Ux,x+1|vn≠1Íx,x+1 = |v0Íx,x+1. (7)

Gauss’s law is implemented by requiring that the
physical states belong to the null space of the
operators

Gx © Â
†
xÂx +

1

2
[(≠1)

x
≠ 1] ≠ (Ex,x+1 ≠ Ex≠1,x),

(8)

for all x.
Let us remark that, in one spatial dimension,

the fermionic density Â
†
xÂx and the local electric

field completely determine each other up to a con-
stant, which corresponds to the value of the elec-
tric field at one boundary. Thus, one can inte-
grate out the gauge field in order to obtain an
effective Hamiltonian in which only the matter
fields appear, corresponding to a spin 1/2 model
with long-range interactions [44]. On the other
hand, one can eliminate the fermionic field to get
an effective Hamiltonian that contains only the
gauge variables. Within this approach, one thus
obtains a local Hamiltonian with a Zn-symmetry,
acting as (4) when restricted to the physical sub-
space. The study of such Hamiltonian will be pre-
sented in a future work. Here, it is worth noticing
that these ideas can be generalized also to higher
dimensions [65, 66].

In order to clarify the relationship between
the discretized Hamiltonian (4) and the QED
Schwinger model in the continuum, we briefly
summarize their scaling properties, referring
to [58] for all the details. The effects of lattice dis-
cretization can be studied by analyzing the scal-
ing properties of the Hamiltonian with respect
to a parameter t that appears in front of the first
term, the gauge invariant hopping. From the cor-
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Figure 12: Z3-model. Real-time dynamics of a string:

evolution of the electric field Ex,x+1(t) on links, for

(a) (m = 0.1, g = 0.1), (b) (m = 0.3, g = 0.8), (c)

(m = 3.0, g = 1.42). As explained in the text, the

plotted value of the electric field is that obtained after

subtracting the e�ects due to spontaneous pair produc-

tion, which tends to blur the dynamics of the string.
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Figure 13: Contour plot in the (m, g) plane of the

asymptotic total value of the electric field at the cen-

ter of the chain. The two white level curves correspond

to 10% (dotted line) and 50% (solid line) of the initial

value, respectively. The three points A, B, C correspond

to the values of the parameters (m, g) chosen for the

three simulations shown in Fig. 12.

(but for small oscillations) in the strong confine-
ment regime.

6 Conclusions
We have investigated the out-of-equilibrium prop-
erties of (1 + 1)-dimensional QED, approximated
via a Zn Schwinger model. By means of sim-
ulations, focusing on the stability of the Dirac
vacuum with respect to particle/antiparticle pair
production and on the string breaking mecha-
nism, we have studied the effects of confinement
on the real-time dynamics of the model. We have
found that confinement is not a feature of the
U(1) Schwinger model only, having a relevant ef-
fect on the dynamical properties of the Zn-model
as well, as it is proved by the enhanced oscillatory
behaviour of the relevant physical observables in
the process of pair production, and by the to-
tal suppression of the breaking and spreading of
string excitations, with a perfect localization of
the latter.

Let us notice that such a reduction of entan-
glement and slow-down of the dynamics have
been observed in other systems. This is the
case not only of models with long-range interac-
tions [84], but also of the Ising and Potts models
with both a transverse and a longitudinal mag-
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see: Pichler, Dalmonte, Rico, Zoller, Montangero  
real-time dynamics (with Tensor Networks)



1D + time

“1D” + time

from
to

Theoretical physics at its zenith! 
Make use of intuitions acquired in the 1D world 
and apply them in “1D” 
Quantum systems confined in effectively  
one-dimensional geometries 



“1D” + time

exercise for students

compute energy levels in 3D box and send one  
(or two)  L ! 0

<latexit sha1_base64="Fl6dO3VGa+UveyeGjrO1IvI4KvE=">AAAB+XicdVC7SgNBFJ2NrxhfUUubwSBYhY0Iahe0sbCIYB6QLOHu5CYOmZ1dZu4KYclH2GplJ7Z+jYX/4u4aIb5OdTjnXs7h+JGSllz3zSksLC4trxRXS2vrG5tb5e2dlg1jI7ApQhWajg8WldTYJEkKO5FBCHyFbX98kfntOzRWhvqGJhF6AYy0HEoBlErtK96jkLv9cqVWdXNw9xf5sipshka//N4bhCIOUJNQYG235kbkJWBICoXTUi+2GIEYwwi7KdUQoPWSvO6UH8QW0tQIDZeK5yLOfyQQWDsJ/PQyALq1P71M/MvrxjQ89RKpo5hQiyyIpMI8yAoj0x2QD6RBIsiaI5eaCzBAhEZyECIV43SY0vwe/5PWUbV2XD27Pq7Uz2fLFNke22eHrMZOWJ1dsgZrMsHG7J49sEcncZ6cZ+fl87TgzH522Tc4rx/LOJNN</latexit>



a pair of two-level (artificial) atoms 
in a waveguide

  

The system

A pair of two-level atoms, fixed at a finite distance, coupled with the 
lowest-energy mode of a linear waveguide: 

A B

● Nontrivial bound states
● Effects of photon exchanges on decay
● Entanglement generation

ONE-EXCITATION

SECTORlowest energy mode, one-excitation sector



start from one atom

  |g ⟩

|e ⟩

ω

ω 0

0

      Dispersion relation

      (massive)

ω (k)=√k2+M 2

Dimensional reduction can induce a low-energy 
cutoff in the continuum 

Coupling with the lowest-energy mode 
in a linear waveguide

M

The excited state 
can decay...

k

Hindered decay

  |g ⟩

|e ⟩

ω

ω 0

0

      Dispersion relation

      (massive)

ω (k)=√k2+M 2

Dimensional reduction can induce a low-energy 
cutoff in the continuum 

Coupling with the lowest-energy mode 
in a linear waveguide

M

The excited state 
can decay...

|g ⟩

|e ⟩

ω

ω 0

0

M

...or not!

k

Hindered decay



+ mirror

  

In some cases, decay can be hindered even when energetically allowed

1. Coupling with a semi-infinite waveguide 

The mirror at one end of the guide 
selects the longitudinal modes with 
E = 0 on the boundary

γ∝|⟨g ; k̄|H int|e ⟩|
2
∝sin

2
k̄ L

ω (k̄ )=(ω 0)

Fermi golden rule:

No decay above threshold: two examples

Dorner and Zoller (2002), Tufarelli, Ciccarello, Kim (2013)

two main ingredients: 
1) artificial dimensional reduction 
2) E=0 at mirror

  

In some cases, decay can be hindered even when energetically allowed
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∝sin

2
k̄ L

ω (k̄ )=(ω 0)

Fermi golden rule:

No decay above threshold: two examples
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Dorner & Zoller 2002 

Shen & Fan 2005 

Gonzales-Tudela, , Martin-Cano, Moreno, Martin-
Moreno, Tejedor & Garcia-Ripoll, Vidal 2011 

Tufarello, Ciccarello & Kim 2013

Half-Cavity
Dressed States
Cavity Qubits

Setup
Open Quantum Systems

Setup

The Quantum Dot is described using Bloch’s formalism in a
bidimensional Hilbert space H :

|gi =

✓
0
1

◆
|ei =

✓
1
0

◆

by a Rotating Wave Hamiltonian:

Ĥ =Ĥ0 + d
⇣
Ê †(L)�̂� + �̂+Ê (L)

⌘

=Ĥ0 +

Z
dk g(k)(â†k �̂� + �̂+âk)

whose coupling is subject to the selection of the sinus harmonic
component, endowed with !k obeying !k � !0 = v(k � k0):

g(k) =

r
�v

⇡
sin(kL)

where � is the empty space spontaneous emission rate.
Domenico Pomarico Entangled states in Cavity QED

Quantum emitter in a (semi-infinite) waveguide 

Dorner, Zoller (2002) 
Shen, Fan (2005)  
Gonzalez-Tudela, et al. (2011) 
Tufarelli, Ciccarello, Kim (2013)

I. Mazets @ ATI
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II. THE MODEL

We describe the dynamics of two two-level atoms A
and B, situated in an infinite waveguide of rectangular
cross section, with sides Ly < Lz, see Fig. 1. When lon-
gitudinal propagation occurs with long wavelength com-
pared to the transverse size, interaction between atoms
and field can be reduced to a coupling with the lowest-
cuto↵-energy TE1,0 mode, in which the electric field vi-
brates along the z direction and has a sine modulation
in the y direction [37]. In this situation, the electromag-
netic field is e↵ectively scalar and massive. The inter-
acting atoms and photons are described, in dipolar and
rotating wave approximations, by the Hamiltonian

H = H0 + �V

= !0(|eAiheA|+ |eBiheB |) +

Z
dk !(k)b†(k)b(k)

+�

Z
dk

!(k)1/2

h
|eAihgA|b(k) + |gAiheA|b

†(k)

+|eBihgB |b(k)e
ikd + |gBiheB |b

†(k)e�ikd
i
, (1)

where !0 is the bare energy separation between the
atomic ground |gi and first-excited states |ei, d is the A-
B distance, !(k) =

p
k2 +M2 is the photon dispersion

relation, characterized by the mass M / L�1
y , and b(k)

(b†(k)) is the annihilation (creation) field operator, satis-
fying the canonical commutation relation [b(k), b†(k0)] =
�(k�k0). Natural units for energy are fixed by ~v, where
v is the phase velocity in the waveguide medium, which
is assumed linear, isotropic and nondispersive. The ef-
fective mass M provides a natural cuto↵ to the coupling.
The Hamiltonian (1) commutes with the excitation num-
ber

N = Nat +

Z
dk b†(k)b(k), (2)

where Nat = |eAiheA| + |eBiheB | is the atomic excita-
tion number. The N = 0 sector is 1-dimensional and is
spanned by the bare ground state |gA, gB ; vaci. We shall
focus instead on the dynamics in the N = 1 sector, where
the states read

| i =
�
cA|eA, gBi+ cB |gA, eBi

�
⌦ |vaci+ |gA, gBi ⌦ |'i

(3)
where |'i :=

R
dk '(k)b†(k)|vaci is a one-photon state,

and |cA|2 + |cB |2 +
R
dk|'(k)|2 = 1.

In the small-coupling regime, an isolated excited atom
with !0 & M would decay to the ground state. We
shall demonstrate that, when two atoms are considered,
a resonance e↵ect emerges, yielding a bound state. Using
the expansion (3) the eigenvalue equation, H| i = E| i,

reads

EcA = !0cA + �

Z
dk

'(k)

!(k)1/2
, (4)

EcB = !0cB + �

Z
dk
'(k)eikd

!(k)1/2
, (5)

'(k) =
�

!(k)1/2
cA + cBe�ikd

E � !(k)
. (6)

The field amplitude '(k) has two simple poles at k =
±k̄ = ±

p
E2 �M2. Thus, when E > M , the integrals

in (4)-(5) are finite only if cA+cBe±ik̄d = 0, yielding k̄d =
n⇡ for positive integers n. This implies that a bound
state can exist only for discrete values of the interatomic
distance d. Moreover, in the first component of such an
eigenstate (3), the atoms are in a maximally entangled
(singlet or triplet) state, namely cA = (�1)n+1cB . To
determine the distances at which the bound state exists,
let us first compute the energy eigenvalue, which after
the resonance condition is the solution of

E = !0 + �2
Z

dk
1� (�1)ne�ikd

!(k)(E � !(k))

= !0 +
2�2

M


1 +O

✓
E �M

M

◆
+O

✓
e�Md

p
Md

◆�
. (7)

Corrections in the second line are negligible if !0 ⌧ M .
This will result as a special case of the ensuing analysis
of the complex poles of the resolvent. [See Eq. (30) and
following ones.] Thus for large M , a bound state with
E > M is present only if the distance d takes one of the
discrete and equally spaced values

dn =
n⇡

k̄
, with k̄ :=

s✓
!0 +

2�2

M

◆2

�M2, (8)

and if the wavenumber k̄ is real (!0 > M � 2�2/M).
We shall discuss in the following the properties of states
with E < M , to which an imaginary wavenumber can be
associated.
To complete the characterization of the bound state,

we shall analyze the atomic populations and the field
energy density. The former can be immediately obtained
using the normalization condition on the states (3) as

1 = 2|c(n)A |
2

✓
1 + �2

Z
dk

1� (�1)n cos(kdn)

!(k)(E � !(k))2

◆
. (9)

Retaining only the highest order in M and defining pn :=

|c(n)A |
2+ |c(n)B |

2 as the probability associated to the Nat =
1 sector, one gets

pn '

✓
1 + n⇡

2⇡�2M2

k̄3

◆�1

. (10)

Notice that, despite being apparently of order �2, the
correction to unity is given by the ratio between pow-
ers of two small quantities, namely the e↵ective coupling

System and Hamiltonian
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We describe the dynamics of two two-level atoms A
and B, situated in an infinite waveguide of rectangular
cross section, with sides Ly < Lz, see Fig. 1. When lon-
gitudinal propagation occurs with long wavelength com-
pared to the transverse size, interaction between atoms
and field can be reduced to a coupling with the lowest-
cuto↵-energy TE1,0 mode, in which the electric field vi-
brates along the z direction and has a sine modulation
in the y direction [37]. In this situation, the electromag-
netic field is e↵ectively scalar and massive. The inter-
acting atoms and photons are described, in dipolar and
rotating wave approximations, by the Hamiltonian

H = H0 + �V

= !0(|eAiheA|+ |eBiheB |) +

Z
dk !(k)b†(k)b(k)

+�

Z
dk

!(k)1/2

h
|eAihgA|b(k) + |gAiheA|b

†(k)

+|eBihgB |b(k)e
ikd + |gBiheB |b

†(k)e�ikd
i
, (1)

where !0 is the bare energy separation between the
atomic ground |gi and first-excited states |ei, d is the A-
B distance, !(k) =

p
k2 +M2 is the photon dispersion

relation, characterized by the mass M / L�1
y , and b(k)

(b†(k)) is the annihilation (creation) field operator, satis-
fying the canonical commutation relation [b(k), b†(k0)] =
�(k�k0). Natural units for energy are fixed by ~v, where
v is the phase velocity in the waveguide medium, which
is assumed linear, isotropic and nondispersive. The ef-
fective mass M provides a natural cuto↵ to the coupling.
The Hamiltonian (1) commutes with the excitation num-
ber

N = Nat +

Z
dk b†(k)b(k), (2)

where Nat = |eAiheA| + |eBiheB | is the atomic excita-
tion number. The N = 0 sector is 1-dimensional and is
spanned by the bare ground state |gA, gB ; vaci. We shall
focus instead on the dynamics in the N = 1 sector, where
the states read

| i =
�
cA|eA, gBi+ cB |gA, eBi

�
⌦ |vaci+ |gA, gBi ⌦ |'i

(3)
where |'i :=

R
dk '(k)b†(k)|vaci is a one-photon state,

and |cA|2 + |cB |2 +
R
dk|'(k)|2 = 1.

In the small-coupling regime, an isolated excited atom
with !0 & M would decay to the ground state. We
shall demonstrate that, when two atoms are considered,
a resonance e↵ect emerges, yielding a bound state. Using
the expansion (3) the eigenvalue equation, H| i = E| i,

reads

EcA = !0cA + �

Z
dk

'(k)

!(k)1/2
, (4)

EcB = !0cB + �

Z
dk
'(k)eikd

!(k)1/2
, (5)

'(k) =
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!(k)1/2
cA + cBe�ikd

E � !(k)
. (6)

The field amplitude '(k) has two simple poles at k =
±k̄ = ±

p
E2 �M2. Thus, when E > M , the integrals

in (4)-(5) are finite only if cA+cBe±ik̄d = 0, yielding k̄d =
n⇡ for positive integers n. This implies that a bound
state can exist only for discrete values of the interatomic
distance d. Moreover, in the first component of such an
eigenstate (3), the atoms are in a maximally entangled
(singlet or triplet) state, namely cA = (�1)n+1cB . To
determine the distances at which the bound state exists,
let us first compute the energy eigenvalue, which after
the resonance condition is the solution of

E = !0 + �2
Z

dk
1� (�1)ne�ikd

!(k)(E � !(k))

= !0 +
2�2

M
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. (7)

Corrections in the second line are negligible if !0 ⌧ M .
This will result as a special case of the ensuing analysis
of the complex poles of the resolvent. [See Eq. (30) and
following ones.] Thus for large M , a bound state with
E > M is present only if the distance d takes one of the
discrete and equally spaced values
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n⇡

k̄
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◆2

�M2, (8)

and if the wavenumber k̄ is real (!0 > M � 2�2/M).
We shall discuss in the following the properties of states
with E < M , to which an imaginary wavenumber can be
associated.
To complete the characterization of the bound state,

we shall analyze the atomic populations and the field
energy density. The former can be immediately obtained
using the normalization condition on the states (3) as
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. (9)
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II. THE MODEL

We describe the dynamics of two two-level atoms A
and B, situated in an infinite waveguide of rectangular
cross section, with sides Ly < Lz, see Fig. 1. When lon-
gitudinal propagation occurs with long wavelength com-
pared to the transverse size, interaction between atoms
and field can be reduced to a coupling with the lowest-
cuto↵-energy TE1,0 mode, in which the electric field vi-
brates along the z direction and has a sine modulation
in the y direction [37]. In this situation, the electromag-
netic field is e↵ectively scalar and massive. The inter-
acting atoms and photons are described, in dipolar and
rotating wave approximations, by the Hamiltonian

H = H0 + �V

= !0(|eAiheA|+ |eBiheB |) +

Z
dk !(k)b†(k)b(k)

+�

Z
dk

!(k)1/2

h
|eAihgA|b(k) + |gAiheA|b

†(k)

+|eBihgB |b(k)e
ikd + |gBiheB |b

†(k)e�ikd
i
, (1)

where !0 is the bare energy separation between the
atomic ground |gi and first-excited states |ei, d is the A-
B distance, !(k) =

p
k2 +M2 is the photon dispersion

relation, characterized by the mass M / L�1
y , and b(k)

(b†(k)) is the annihilation (creation) field operator, satis-
fying the canonical commutation relation [b(k), b†(k0)] =
�(k�k0). Natural units for energy are fixed by ~v, where
v is the phase velocity in the waveguide medium, which
is assumed linear, isotropic and nondispersive. The ef-
fective mass M provides a natural cuto↵ to the coupling.
The Hamiltonian (1) commutes with the excitation num-
ber

N = Nat +

Z
dk b†(k)b(k), (2)

where Nat = |eAiheA| + |eBiheB | is the atomic excita-
tion number. The N = 0 sector is 1-dimensional and is
spanned by the bare ground state |gA, gB ; vaci. We shall
focus instead on the dynamics in the N = 1 sector, where
the states read

| i =
�
cA|eA, gBi+ cB |gA, eBi

�
⌦ |vaci+ |gA, gBi ⌦ |'i

(3)
where |'i :=

R
dk '(k)b†(k)|vaci is a one-photon state,

and |cA|2 + |cB |2 +
R
dk|'(k)|2 = 1.

In the small-coupling regime, an isolated excited atom
with !0 & M would decay to the ground state. We
shall demonstrate that, when two atoms are considered,
a resonance e↵ect emerges, yielding a bound state. Using
the expansion (3) the eigenvalue equation, H| i = E| i,

reads

EcA = !0cA + �

Z
dk

'(k)

!(k)1/2
, (4)

EcB = !0cB + �

Z
dk
'(k)eikd

!(k)1/2
, (5)

'(k) =
�

!(k)1/2
cA + cBe�ikd

E � !(k)
. (6)

The field amplitude '(k) has two simple poles at k =
±k̄ = ±

p
E2 �M2. Thus, when E > M , the integrals

in (4)-(5) are finite only if cA+cBe±ik̄d = 0, yielding k̄d =
n⇡ for positive integers n. This implies that a bound
state can exist only for discrete values of the interatomic
distance d. Moreover, in the first component of such an
eigenstate (3), the atoms are in a maximally entangled
(singlet or triplet) state, namely cA = (�1)n+1cB . To
determine the distances at which the bound state exists,
let us first compute the energy eigenvalue, which after
the resonance condition is the solution of

E = !0 + �2
Z

dk
1� (�1)ne�ikd

!(k)(E � !(k))

= !0 +
2�2

M


1 +O

✓
E �M

M

◆
+O

✓
e�Md

p
Md

◆�
. (7)

Corrections in the second line are negligible if !0 ⌧ M .
This will result as a special case of the ensuing analysis
of the complex poles of the resolvent. [See Eq. (30) and
following ones.] Thus for large M , a bound state with
E > M is present only if the distance d takes one of the
discrete and equally spaced values

dn =
n⇡

k̄
, with k̄ :=

s✓
!0 +

2�2

M

◆2

�M2, (8)

and if the wavenumber k̄ is real (!0 > M � 2�2/M).
We shall discuss in the following the properties of states
with E < M , to which an imaginary wavenumber can be
associated.
To complete the characterization of the bound state,

we shall analyze the atomic populations and the field
energy density. The former can be immediately obtained
using the normalization condition on the states (3) as

1 = 2|c(n)A |
2

✓
1 + �2

Z
dk

1� (�1)n cos(kdn)

!(k)(E � !(k))2

◆
. (9)

Retaining only the highest order in M and defining pn :=

|c(n)A |
2+ |c(n)B |

2 as the probability associated to the Nat =
1 sector, one gets

pn '

✓
1 + n⇡

2⇡�2M2

k̄3

◆�1

. (10)

Notice that, despite being apparently of order �2, the
correction to unity is given by the ratio between pow-
ers of two small quantities, namely the e↵ective coupling
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constant �/
p
M , and the wavenumbers ratio k̄/M . The

resulting number can be of order one, even at small cou-
pling constants. Let us finally analyze the energy den-
sity of the electromagnetic fields. Neglecting the expo-
nentially suppressed contribution of the square-root cuts,
the energy density turns out to be related to the Fourier
transform of the photon amplitude,

e'n(x) =

Z
dk

2⇡
'n(k)e

ikx

'
�c(n)A 2M
p
2⇡E

Z
dk

1� (�1)ne�ikdn

k̄2 � k2
eikx, (11)

as

En(x) ' E|e'n(x)|
2
'

⇣2
p
⇡�M

k̄

⌘2
pn sin(k̄x)

2, (12)

for x 2 [0, dn], and En(x) ' 0 outside. Thus, the field
is confined between the two atoms, and modulated with
periodicity ⇡/k̄, with nodes at the positions of the atoms
which act as mirrors. This explains the occurrence of
such bound states for discrete values (8) of the inter-
atomic distance.

Moreover, the structure of the bound state is

| ni =
p
pn| 

s
i ⌦ |vaci+ |gA, gBi ⌦ |'ni, (13)

where s = (�1)n+1 and | ±
i = (|eA, gBi± |gA, eBi)/

p
2

are (maximally entangled) Bell states. This is a key
feature which enables entanglement generation by atom-
photon interaction. Indeed, suppose that d = dn: a fac-
torized initial state, say | (0)i = |eA, gBi ⌦ |vaci, can be
expanded into a “stable” and a “decaying” part as

|eA, gB ; vaci =

r
pn
2
| ni+

r
1�

pn
2
| ?

n i, (14)

with h ?
n | ni = 0. After a transient of the order of | ?

n i’s
lifetime (see discussion in the following), the atomic den-
sity matrix ⇢at(t) := Trfield| (t)ih (t)| approaches

⇢at(1) =
p2n
2
| s

ih s
|+

⇣
1�

p2n
2

⌘
|gA, gBihgA, gB |, (15)

in which the atoms have a finite probability, determined
by (10), to be maximally entangled. The concurrence of
the asymptotic state is displayed in Figure 2. However,
one could also measure the photon state and obtain, with
a finite probability, a maximally entangled atomic state.
The strategy is therefore the following: one prepares a
factorized state, and measures whether a photon is emit-
ted. If (after a few lifetimes) no photon has been ob-
served, the atomic state is projected over the maximally
entangled Bell state | s

i. This can be achieved with
higher probabilities for larger values of !0.

III. TIME EVOLUTION AND BOUND STATE
STABILITY

Let us now study the general evolution of an initial
state in the atomic sector Nat = 1. We will use the re-
solvent formalism [38] to show that the system will relax
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Figure 2. Behavior of the concurrence C = p2n/2 of the asymp-
totic states ⇢at(1) as a function of the atomic excitation en-
ergy, for �2 = 0.1M and a factorized initial state. The solid
(blue) line, dashed (red) line and dotted (black) line are re-
ferred to the resonant states with n = 1, 2, 3, respectively.

towards the bound state, and we will also show that the
bound state is robust to small variations in the parame-
ters (such as the A-B distance). However, the usefulness
of the resolvent formalism goes beyond the analysis of
the stable states. Indeed, the entanglement-by-relaxation
protocol described in the previous section relies on the
fast decay of the unstable Bell state. The analysis of the
resolvent enables to determine the lifetime of this unsta-
ble state, that must be much faster that the timescale of
waveguide losses to ensure the e↵ectiveness of the pro-
tocol. The resolvent G(z) = (z �H)�1 has singularities
only on the real axis (on the first Riemann sheet) and the
study of additional singularities (on the other Riemann
sheets) yields crucial information about the dynamical
stability of the system: in particular, a pole with a non-
vanishing imaginary component signals a decay process.
For � = 0, the free resolvent G0(z) = (z � H0)�1 has a
pole on the real axis, at z = !0, corresponding to the ex-
cited states of atoms A or B. When interaction is turned
on, this singularity splits into two simple poles, which
generally migrate into the second Riemann sheet. We
shall see from a perturbative analysis that, under reso-
nance conditions, one of the poles falls on the real axis
(and is therefore very long-lived), while the other one has
a very short lifetime. Let G(z) and G0(z) be the restric-
tions to the Nat = 1 sector of the interacting and free
resolvent, respectively. In the basis {|eA, gBi, |gA, eBi}
one gets

G0(z) =
1

z � !0

✓
1 0
0 1

◆
(16)

and G(z) = [G0(z)�1
�⌃(z)]�1 with the self-energy func-
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◆
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resulting number can be of order one, even at small cou-
pling constants. Let us finally analyze the energy den-
sity of the electromagnetic fields. Neglecting the expo-
nentially suppressed contribution of the square-root cuts,
the energy density turns out to be related to the Fourier
transform of the photon amplitude,
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is confined between the two atoms, and modulated with
periodicity ⇡/k̄, with nodes at the positions of the atoms
which act as mirrors. This explains the occurrence of
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atomic distance.
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in which the atoms have a finite probability, determined
by (10), to be maximally entangled. The concurrence of
the asymptotic state is displayed in Figure 2. However,
one could also measure the photon state and obtain, with
a finite probability, a maximally entangled atomic state.
The strategy is therefore the following: one prepares a
factorized state, and measures whether a photon is emit-
ted. If (after a few lifetimes) no photon has been ob-
served, the atomic state is projected over the maximally
entangled Bell state | s

i. This can be achieved with
higher probabilities for larger values of !0.

III. TIME EVOLUTION AND BOUND STATE
STABILITY

Let us now study the general evolution of an initial
state in the atomic sector Nat = 1. We will use the re-
solvent formalism [38] to show that the system will relax
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Figure 2. Behavior of the concurrence C = p2n/2 of the asymp-
totic states ⇢at(1) as a function of the atomic excitation en-
ergy, for �2 = 0.1M and a factorized initial state. The solid
(blue) line, dashed (red) line and dotted (black) line are re-
ferred to the resonant states with n = 1, 2, 3, respectively.

towards the bound state, and we will also show that the
bound state is robust to small variations in the parame-
ters (such as the A-B distance). However, the usefulness
of the resolvent formalism goes beyond the analysis of
the stable states. Indeed, the entanglement-by-relaxation
protocol described in the previous section relies on the
fast decay of the unstable Bell state. The analysis of the
resolvent enables to determine the lifetime of this unsta-
ble state, that must be much faster that the timescale of
waveguide losses to ensure the e↵ectiveness of the pro-
tocol. The resolvent G(z) = (z �H)�1 has singularities
only on the real axis (on the first Riemann sheet) and the
study of additional singularities (on the other Riemann
sheets) yields crucial information about the dynamical
stability of the system: in particular, a pole with a non-
vanishing imaginary component signals a decay process.
For � = 0, the free resolvent G0(z) = (z � H0)�1 has a
pole on the real axis, at z = !0, corresponding to the ex-
cited states of atoms A or B. When interaction is turned
on, this singularity splits into two simple poles, which
generally migrate into the second Riemann sheet. We
shall see from a perturbative analysis that, under reso-
nance conditions, one of the poles falls on the real axis
(and is therefore very long-lived), while the other one has
a very short lifetime. Let G(z) and G0(z) be the restric-
tions to the Nat = 1 sector of the interacting and free
resolvent, respectively. In the basis {|eA, gBi, |gA, eBi}
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by (10), to be maximally entangled. The concurrence of
the asymptotic state is displayed in Figure 2. However,
one could also measure the photon state and obtain, with
a finite probability, a maximally entangled atomic state.
The strategy is therefore the following: one prepares a
factorized state, and measures whether a photon is emit-
ted. If (after a few lifetimes) no photon has been ob-
served, the atomic state is projected over the maximally
entangled Bell state | s

i. This can be achieved with
higher probabilities for larger values of !0.

III. TIME EVOLUTION AND BOUND STATE
STABILITY

Let us now study the general evolution of an initial
state in the atomic sector Nat = 1. We will use the re-
solvent formalism [38] to show that the system will relax
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Figure 2. Behavior of the concurrence C = p2n/2 of the asymp-
totic states ⇢at(1) as a function of the atomic excitation en-
ergy, for �2 = 0.1M and a factorized initial state. The solid
(blue) line, dashed (red) line and dotted (black) line are re-
ferred to the resonant states with n = 1, 2, 3, respectively.

towards the bound state, and we will also show that the
bound state is robust to small variations in the parame-
ters (such as the A-B distance). However, the usefulness
of the resolvent formalism goes beyond the analysis of
the stable states. Indeed, the entanglement-by-relaxation
protocol described in the previous section relies on the
fast decay of the unstable Bell state. The analysis of the
resolvent enables to determine the lifetime of this unsta-
ble state, that must be much faster that the timescale of
waveguide losses to ensure the e↵ectiveness of the pro-
tocol. The resolvent G(z) = (z �H)�1 has singularities
only on the real axis (on the first Riemann sheet) and the
study of additional singularities (on the other Riemann
sheets) yields crucial information about the dynamical
stability of the system: in particular, a pole with a non-
vanishing imaginary component signals a decay process.
For � = 0, the free resolvent G0(z) = (z � H0)�1 has a
pole on the real axis, at z = !0, corresponding to the ex-
cited states of atoms A or B. When interaction is turned
on, this singularity splits into two simple poles, which
generally migrate into the second Riemann sheet. We
shall see from a perturbative analysis that, under reso-
nance conditions, one of the poles falls on the real axis
(and is therefore very long-lived), while the other one has
a very short lifetime. Let G(z) and G0(z) be the restric-
tions to the Nat = 1 sector of the interacting and free
resolvent, respectively. In the basis {|eA, gBi, |gA, eBi}
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U (x)∝sin
2(k̄ x) if x∈[0,dn]

The field amplitude at each n has the same symmetry of the 
excited atomic state; the energy density U is always symmetric

The atoms behave as dynamical mirrors

Resonant bound states: field

U (x)≃0    elsewhere

Field energy

density

U (x) U (x)

x x

n=1 n=2

notice:

retardation effects automatically taken into account if  
we properly handle the underlying effective field theory



0                      d                                    x



Shen, Fan (2005) 
Gonzales-Tudela et al (2011) 

set of N two-level atoms in optical waveguide: presence of bound states affects the 
interactions among atoms  
(Calajo, Ciccarello, Chang, Rabl, PRA 2016) 
(Notice: interaction is waveguide-mediated; slow light) 

moving atoms in 1D photonic waveguide  
(Calajo, Rabl, PRA 2017) 
(strong coupling, slow light) 

circuit QED with single LC resonator: very strong interactions decouples photon mode 
and projects qubits into entangled gs  
(Jaako, Xiang, Garcia-Ripoll, Rabl, PRA 2016) (ultra-strong coupling)



effective photon-photon interactions in waveguide-
QED  
(Zheng, Gauthier, Baranger, PRL 2013) 

atomic degrees of freedom 
(Paulisch, Kimble, Gonzalez-Tudela, NJP 2016)  

Probing vacuum with artificial atom in front of mirror  
(Hoi1, Kockum, Tornberg, Pourkabirian, Johansson, 
Delsing, Wilson Nat. Phys. 2015) 



comments
“toy” models: simple(r) physical theories that are able to 
capture the most salient features of the physics in 
question 

Q. simulators are sometimes able to realize physical 
models that are “unreal” (believed not to be found in 
Nature) 

real-time dynamics and non-perturbative regimes 

one is left to wonder about the meaning of “simulation”



comment on interdisciplinarity

Quantum Technologies blend different physical disciplines 
(in this case high-energy physics, QED, gauge theories  
vs solid state, low energy, circuit QED, optics)  



Maxwell was a religious person. I wonder whether after 
this momentous discovery he had in his prayers asked 
for God’s forgiveness for revealing one of His greatest secrets. 

Chen Ning Yang 
about gauge invariance, Physics Today 2014


