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Motivation

• Quantum observables may be incompatible:
position/momentum, polarisation, spin ...

• In traditional quantum logic approaches these observables are
simply incomparable in the lattice.

• However if one wants to compute with quantum mechanics we
need know how these observables relate to each other.
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Cloning and Deleting

Consider the following maps:

δZ : |i〉 �→ |ii〉 εZ :
∑

i

|i〉 �→ 1

• δZ is the cloning map for the basis |0〉 , |1〉.
• εZ is the uniform deleting of this basis.

Together these maps describe how to embed classical data into the
quantum state space.

Obviously δZ is cannot clone all states:

δZ ◦ ε†Z = δZ(|0〉 + |1〉) = |00〉 + |11〉
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Classical Objects

Represent maps constructed from δZ and εZ as graphs built up from:

δ = ε = δ† = ε† =
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Algebraic Laws

Comonoid laws:

(And their duals, the monoid laws)
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Algebraic Laws

Special Frobenius laws:

6



Spider Theorem

Theorem 1. Any map constructed by composing δZ and εZ , and
their adjoints is uniquely determined by the number of inputs and
outputs.

Therefore the graphical calculus for one classical object is rather
uninteresting.
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Another Classical Structure

Can equally well use the X basis to define a classical structure:

δX : |+〉 �→ |++〉 εX :
√

2 |0〉 �→ 1

These obey all the same algebraic laws as δZ , εZ . Further more:

• √
2 |0〉 = ε†X ;

• δZε†X = δZ |0〉 = |00〉 = ε†X ⊗ ε†X ;

• |+〉 = ε†Z

• δXε†Z = δX |+〉 = |++〉 = ε†Z ⊗ ε†Z
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The Hadamard Map

The Hadamard map H = 1√
2


 1 1

1 −1


 enjoys a number of useful

properties:

• Self adjointness: H = H†; and unitarity: HH = id;

• The Hadamard exchanges the X and Z bases.

Hence:
δX = (H ⊗ H)δZH εX = εZH
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A 2nd Classical Structure

Represent the classical structure induced by H as a red dot:

We can immediately derive a law for changing the colour of dots by
introducing H boxes. What other laws hold?

10



Bialgebraic Laws for Non-commuting observables

Cloning Laws:
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Bialgebraic Laws for Non-commuting observables

Bialgebra Law:
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Bialgebraic Laws for Non-commuting observables

Dimension Law:

The pair of non-commuting observables fails to be a true bialgebra:
every equation has a (hidden) scalar factor. Call this structure a
scaled bialgebra.
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Scaled Bialgebra Laws

14



A Useful Lemma
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A Useful Lemma

Therefore, the scaled bialgebra is in fact a scaled Hopf algebra, whose
antipode is the identity times the dimension of the underlying space.
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Representing Quantum Logic Gates

∧Z =




1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1




=

∧X =




1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0




=

25



Example: ∧Z ◦ ∧Z = id
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Example: ∧Z ◦ ∧Z = id
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Example: ∧Z ◦ ∧Z = id
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Example: 3 × ∧X = swap
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Example: 3 × ∧X = swap
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Incorporating Phases

Let α ∈ (0, 2π); consider the maps:

Zα =


 1 0

0 eiα


 =

Xα = HZαH =
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Incorporating Phases

Zα ◦ Zβ = Zα+β

Q
δ� Q ⊗ Q

Q

Zα

�

δ
� Q ⊗ Q

Zα ⊗ id

�
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Generalised Spider Law
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General unitary U

Proposition 2. If U is a unitary on �2 there exist α, β, γ such that
U = ZαXβZγ.

Here is (part of) a measurement based program to compute this:
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General unitary U
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General unitary U
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General unitary U
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General unitary U
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General unitary U

= ZαXβZγ
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How do phases interact?

Zα |0〉 = |0〉 Zα |1〉 = eiα |1〉 = |1〉
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How do phases interact?
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How do phases interact?
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“Negation”

Xπ = X =


 0 1

1 0


 ::




|0〉 �→ |1〉
|1〉 �→ |0〉

Q
δ� Q ⊗ Q

Q

X

�

δ
� Q ⊗ Q

X ⊗ X

�
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“Negation”
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“Negation”

X :: |0〉 + eiα |1〉 �→ eiα |1〉 + |0〉 = |0〉 + e−iα |1〉
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Representing Controlled Phase

∧Zα =




1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 eiα




=
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Example: Quantum Fourier Transform

Among the most important quantum algorithms, the quantum
fourier transform is a key stage of factoring.

|j0j1 · · · jn〉 �→ (|0〉 + e2πiα0 |1〉)(|0〉 + e2πiα1 |1〉) · · · (|0〉 + e2πiαn |1〉)

where αk = 0.jk · · · jn =
∑n

l=k jl/2k

For 2 qubits:

|00〉 �→ (|0〉 + |1〉)(|0〉 + |1〉) |10〉 �→ (|0〉 + eiπ |1〉)(|0〉 + |1〉)
|01〉 �→ (|0〉 + eiπ/2 |1〉)(|0〉 + eiπ |1〉) |11〉 �→ (|0〉 + ei3π/2 |1〉)(|0〉 + eiπ |1〉)
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Example: Quantum Fourier Transform
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Example: Quantum Fourier Transform
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Example: Quantum Fourier Transform

which is the correct result!
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Conclusions

• Pairs of incompatible observables form a Hopf algebra-like
structure.

• This structure captures a fundamental aspect of quantum
mechanics.

• The axioms are sufficiently strong to derive the properties of
quantum logic gates and prove the correctness of important
quantum algorithms.
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Questions and Further Work

• What about completeness?

– Are two observables sufficient?

– Can we prove that there is another maximally unbiassed basis
for the qubit?

– What about other dimensionalities?

• How special is the choice of the H map?

• Formal properties:

– Confluence? Termination?

– Can this be mechanized?

– Induction principals for reasoning about graphical rewriting?

• We simulated the QFT algorithm: what is the complexity of this
simulation? Can complexity be studied in this setting?
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