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Motivation

e Quantum observables may be incompatible:

position/momentum, polarisation, spin ...

e In traditional quantum logic approaches these observables are

simply incomparable in the lattice.

e However if one wants to compute with quantum mechanics we

need know how these observables relate to each other.



Cloning and Deleting

Consider the following maps:
Sz 1) — |id) ez: Y iy 1

e 0y is the cloning map for the basis |0), |1).
e ¢y is the uniform deleting of this basis.

Together these maps describe how to embed classical data into the

quantum state space.

Obviously dz is cannot clone all states:

6z 0 ¢y = 82(]0) +[1)) = 00) +|11)



Classical Objects

Represent maps constructed from 0z and ez as graphs built up from:

0= ET of = eTi



Algebraic Laws

Comonoid laws:

(And their duals, the monoid laws)




Special Frobenius laws:

Algebraic Laws




Spider Theorem
Theorem 1. Any map constructed by composing 0z and €z, and
their adjoints 1s uniquely determaned by the number of inputs and

OUtPULs.

Therefore the graphical calculus for one classical object is rather

uninteresting.



Another Classical Structure

Can equally well use the X basis to define a classical structure:
Ox t|+) — |[++) ex 1 V2|0) — 1
These obey all the same algebraic laws as 0z, €. Further more:
* V2]0) = ejg(;
o dzel =0710) =1]00) = el @ €l ;
o [+)=¢,

o Oxel =0x|4)=|++) =, ® €,



The Hadamard Map

1 1
The Hadamard map H = = enjoys a number of useful

1 -1

S

properties:

o Self adjointness: H = H'; and unitarity: HH = id;

]

]

e The Hadamard exchanges the X and Z bases.

Hence:
5X:(H®H)52H ex — ez H



A 2nd Classical Structure

Represent the classical structure induced by H as a red dot:

\ /

We can immediately derive a law for changing the colour of dots by
introducing H boxes. What other laws hold?
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Bialgebraic Laws for Non-commuting observables

Y11 Yol

11



Bialgebraic Laws for Non-commuting observables

Bialgebra Law:

X

o 4 Y
/C\
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Bialgebraic Laws for Non-commuting observables

Dimension Law:

The pair of non-commuting observables fails to be a true bialgebra:
every equation has a (hidden) scalar factor. Call this structure a

scaled bialgebra.
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Scaled Bialgebra Laws




A Useful Lemma
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A Useful Lemma
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A Useful Lemma
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A Useful Lemma

Therefore, the scaled bialgebra is in fact a scaled Hopf algebra, whose

antipode is the identity times the dimension of the underlying space.
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Representing Quantum Logic Gates

(100 0 )

oo 0|
001 0 e ¢
\0 00 —1)

(100 0)

oo
000 1 79
\ 0 0 1 0)
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Example: ANZ o ANZ =id

ll
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Example: ANZ o ANZ =id

27



Example: ANZ o ANZ =id
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Example: ANZ o ANZ =id
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Example: NZ o AZ =1id
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Example: AZ o AZ =1id

31



Example: 3 x AX = swap
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Example: 3 x AX = swap
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Example: 3 x AX = swap
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Example: 3 x AX = swap
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Example: 3 x AX = swap

-
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Example: 3 x AX = swap
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Example: 3 x AX = swap

o
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Incorporating Phases

Let o € (0,27); consider the maps:
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Incorporating Phases

Za o Zﬁ = Za+5 =

)
Q Q®Q
Lo 7, ®id
Q QeQ

J
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Generalised Spider Law
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General unitary U

Proposition 2. If U is a unitary on C? there exist o, 3, such that
U=2,XgZ.

Here is (part of) a measurement based program to compute this:
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General unitary U
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General unitary U

44



General unitary U
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General unitary U

\
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General unitary U

= ZoXpZ,
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How do phases interact?

Za |0) = 10) Zo|1) =€ [1) = 1)
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How do phases interact?
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How do phases interact?
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“Negation”

(o 1) {0>H1>
X=X = ::
1 0 1) — |0)

0
Q Q&
X X®X
Q Q&

J
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“Negation”
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“Negation”

X 2 |0) 4 €™ [1) = ™ |1) 4 |0) = |0) + e "> |1)

® - @
@
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Representing Controlled Phase

(100 0 )
o100 | -020Q
oot o |
L0 0 0 e )

(1/2’
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Example: Quantum Fourier Transform

Among the most important quantum algorithms, the quantum

fourier transform is a key stage of factoring.
Jogi - gn) = (10) + €270 [1))(|0) + €™ [1)) -+ (0) + €2 1))

where ag = 0.5k Jn = D1y J1/2"
For 2 qubits:

100) = (]0) + [1))([0) + [1)) 10) — (10) + €™ [1))(10) + [1))
01) = (|0) + €™/ [1))([0) + e [1)) |11} = (|0) + €7/ [1))(|0) + e |1))
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Example: Quantum Fourier Transform
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Example: Quantum Fourier Transform
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Example: Quantum Fourier Transform
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Example: Quantum Fourier Transform
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Example: Quantum Fourier Transform
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Example: Quantum Fourier Transform
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Example: Quantum Fourier Transform
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Example: Quantum Fourier Transform

o—
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Example: Quantum Fourier Transform

o—
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Example: Quantum Fourier Transform

‘7

7t/2

which is the correct result!
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Conclusions

e Pairs of incompatible observables form a Hopf algebra-like

structure.

e This structure captures a fundamental aspect of quantum

mechanics.

e The axioms are sufficiently strong to derive the properties of
quantum logic gates and prove the correctness of important

quantum algorithms.
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Questions and Further Work

What about completeness?
— Are two observables sufficient?

— Can we prove that there is another maximally unbiassed basis
for the qubit?

— What about other dimensionalities?
How special is the choice of the H map?

Formal properties:

— Confluence? Termination?

— Can this be mechanized?

— Induction principals for reasoning about graphical rewriting?

We simulated the QFT algorithm: what is the complexity of this
simulation? Can complexity be studied in this setting?

67



