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The scalability of solid-state quantum computation relies on the ability of connecting the qubits to the
macroscopic world. Quantum chains can be used as quantum wires to keep regions of external control at a
distance. However, even in the absence of external noise their transfer fidelity is too low to assure reliable
connections. We propose a method of optimizing the fidelity by minimal usage of the available resources,
consisting of applying a suitable sequence of two-qubit gates at the end of the chain. Our scheme also allows
the preparation of states in the first excitation sector as well as cooling.
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I. INTRODUCTION

It is often noted that the advantage of solid-state compu-
tation is its scalability. This is because a typical chip can
contain a large amount of qubits and because the fabrication
of many qubits is in principle no more difficult than the
fabrication of a single one. In the last couple of years, re-
markable progress was made in experiments with quantum
dots #1$ and superconducting qubits #2$. It should, however,
be emphasized that for initialization, gating, and readout,
those qubits have to be connected to the macroscopic world.
For example, in a typical flux qubit gate, microwave pulses
are applied onto specific qubits of the sample. This requires
many !classical" wires on the chip, which is thus a compound
of quantum and classical components. Unfortunately, any ex-
tra classical control wire is potentially an independent source
of noise as it adds extra coupling between the quantum com-
puting device and the external world. Consequently the num-
ber of wires is likely to be the bottleneck of the scalability as
a whole: too few will make the device not powerful enough,
too many will make it noisy.

In this situation, quantum chains may turn out to be ex-
tremely useful in the development of solid-state-based quan-
tum computer technology. They consist of lines of coupled
single qubits without external classical control. In many
cases, such permanent couplings are easy to build in solid-
state devices. Indeed the really difficult part usually is to
modulate or to suppress them, as has been clearly pointed out
for fabricated hard-wired couplings between superconduct-
ing qubits #3$ or tunnel coupled quantum dots #4$. Naturally
then the question arises as to whether one can use such quan-
tum chains as nearly perfect channels for quantum commu-
nication despite the lack of classical controllability. If suc-
cessful, it will also be the application of a quantum many-
body system for a useful quantum information processing
task. The setup we have in mind is sketched in Fig. 1. It is a
distributed quantum computing architecture #5$ built out of
blocks of qubits, some of which are dedicated to communi-
cation and therefore connected to another block through a
quantum chain. The block size is essentially determined by
the minimum number of controlling wires necessary to per-
form reliable arbitrary unitary operations on the block spins:
ultimately it depends the ability of implementing fault-toler-

ant gates #6$ with the available current technology. The dis-
tance between the blocks is instead determined by the length
of the quantum chains between them. It should be large
enough to allow for classical control wiring of each block,
but short enough such that the time scale of the quantum
chain communication is well below the time scale of deco-
herence in the system.

Many interesting aspects of quantum chain communica-
tion were investigated in the last years #8–21$, both from a
physics point of view and from a quantum information point
of view. Here, we would like to concentrate on those
schemes #9–12$ which require no further resources than
those outlined in Fig. 1. The chain couplings may be engi-
neered #10,11$ to improve the theoretical communication fi-
delity, but coupling fluctuations and energy mismatches will
lower the fidelity in practice #13–17$. Hence even without
the contribution of external noise #17,18$ the quality of trans-
fer may well be too low to yield a scalable system.

In this paper we will show that the fidelity can be im-
proved easily using the gates available in the regions of

FIG. 1. Small blocks !gray" of qubits !white circles" connected
by quantum chains. Each block consists of !say" 13 qubits, four of
which are connected to outgoing quantum chains !the thick black
lines denote their nearest-neighbor couplings". The blocks are con-
nected to the macroscopic world through classical wires !thin black
lines with black circles at their ends" through which arbitrary uni-
tary operations can be triggered on the block qubits. The quantum
chains require no external control. This architecture is an example
of distributed quantum computation #5$ where the computational
and the communication qubits are the same objects !i.e., the spins":
in this respect no interfacing among different qubits species is re-
quired !compare this with the implementations of Ref. #7$", whose
extreme difficulty in the context of solid-state qubits is discussed,
for example, in Ref. #15$.
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equation (39) again, we can use the same reasoning to see that

〈em|N − 2〉 = · · · = 〈em|1〉 = 0 (40)

and hence |em〉 = 0, which is a contradiction to |em〉 being normalized. We thus conclude
that any nearest-neighbour Hamiltonian that can transfer quantum information with nonzero
fidelity (including the Heisenberg chains analysed in [1, 3]) is capable of efficient and perfect
transfer when used in the context of parallel chains.
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Ferromagnetic Heisenberg coupling *

z-axis component of the total spin preserved

|!j 〉 ≡ |↓↓↓ · · ·↓↑↓ · · ·↓〉 →
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* similar results applies also for XXZ, XX couplings



|ψ〉 = α|0〉 + β|1〉Transferring the qubit state

0) Chain is initialized in the stationary state |!0〉

iii) Bob (instantaneously) disconnects the last spin 
from the chain 

= α|"0〉 + β| "N〉 = |↓ · · · ↓〉 ⊗ (α|↓〉 + β|↑〉)Perfect Transfer if |Ψ(t)〉
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equation (39) again, we can use the same reasoning to see that

〈em|N − 2〉 = · · · = 〈em|1〉 = 0 (40)

and hence |em〉 = 0, which is a contradiction to |em〉 being normalized. We thus conclude
that any nearest-neighbour Hamiltonian that can transfer quantum information with nonzero
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i) At time t=0 Alice prepares (instantaneously) her 
spin in the input state  

|Ψ(0)〉 = (α| ↓〉 + β| ↑〉) ⊗ | ↓ · · · ↓〉 = α|#0〉 + β|#1〉

|Ψ(t)〉 = α|"0〉 + β

N∑

j=1

fj,1(t)|"j〉

ii) The chain freely evolves for a time t
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We demonstrate that the quantum communication between two parties can be significantly improved if
the receiver is allowed to store the received signals in a quantum memory before decoding them. In the
limit of an infinite memory, the transfer is perfect. We prove that this scheme allows the transfer of
arbitrary multipartite states along Heisenberg chains of spin-1=2 particles with random coupling strengths.
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Suppose you want to send an unknown quantum state to
your friend. Which technique should you use? Obviously
you cannot just perform a measurement and call him/her,
because such a measurement would in general reveal only
very limited information about the state. Another possibil-
ity would be to send the full physical system of the state,
but that is difficult if your state is not implemented in a
mobile medium (photons, electrons, etc.) and cannot be
converted to such media easily. This is the typical situation
one has to face in solid state systems, where quantum
information is usually contained in the states of fixed
objects such as quantum dots or Josephson junctions. In
this case, a quantum wire that transports states just like
optical fibers transport photons may be used. If local
control (gates, measurements) is available all along such
a wire, then this state transfer is possible via a series of
swap gates or by entanglement swapping followed by tele-
portation. However, this scenario may be very difficult to
realize in practice. Motivated by such experimental restric-
tions, permanently coupled systems without local access
were suggested [1,2], but because of dispersion the fidelity
of the transfer is in general low. One way of improving this
is by engineering specific Hamiltonians [3] or by coupling
the system only weakly to the communicating parties [4].
Another approach proposed is to make use of gates at the
sender (Alice) and the receiver (Bob) locations and to
encode the states to be sent to yield perfect state transfer
[5–7]. This way the demands on the engineering of the
Hamiltonian could be relaxed. In some sense the effort of
control and engineering has been shifted to the encoding
and decoding by Alice and Bob. Here we would like to go
one step further by proposing to make use of even more
resources of Bob, i.e., to use his quantum memory. We will
show that perfect state transfer can be achieved using a
single permanently coupled quantum chain if Bob pos-
sesses an infinite quantum memory. This is achieved by
swapping the part of the chain that Bob controls to his
memory at equal time intervals. Eventually, the whole
quantum information is contained in his memory and can
be decoded by unitary operations. Since this happens in-
dependently of the initial state of the chain, it is an example

of homogenization [8] and asymptotic completeness [9].
The crucial difference is that in our system the memory is
only interacting with Bob, and the completeness is medi-
ated to the rest of the system through the permanent
couplings. We note that with the ideas in [9] it is also
possible for Bob to send messages to Alice, using the
time-reversed protocol. The main advantage of using a
memory is that—opposed to the schemes in [1,3–7]—
Alice can send arbitrary multiqubit states, including com-
plex entangled states, with a single usage of the channel.
She needs no encoding, all the work is done by Bob. If
Bob’s memory is only finite, he can still use it to improve
the fidelity of the transfer substantially (the fidelity grows
exponentially with the size of the memory). The protocol
proposed here can be used to improve the performances of
the schemes [1,3–7], and it works for a large class of
Hamiltonians, including Heisenberg and XY models with
arbitrary (also randomly distributed) coupling strengths.
Furthermore, the timing of our protocol scales in a reason-
able manner with the length of the chain.

Protocol.—Consider a chain of spin-1=2 particles de-
scribed by a Hamiltonian H which commutes with the total
spin component Sz. The chain is assumed to be divided in
three portions A (Alice), B (Bob), and C (the remainder of
the chain, connecting Alice and Bob) containing, respec-
tively, the first NA spins of the chain, the last NB spins, and
the intermediate NC spins, and the total length of the chain
is N ! NA " NC " NB (see Fig. 1). Bob has access also to
a collection of quantum memories M1; . . . ;Mj . . . , isomor-
phic with B, i.e., each having dimension equal to the
dimension 2NB of B. Without losing generality it will be
useful to represent each of these memories as a noninter-
acting collection of NB spins. The protocol goes then as
follows. Suppose that at time t ! 0 Alice prepares her

FIG. 1. Alice and Bob control the spins NA and NB intercon-
nected by the spins NC. At time j! Bob performs a swap Sj
between his spins and the memory Mj.
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term of (17). But by assumption |En〉 is an eigenstate
of H , so we conclude that b = 0. This argument can
be repeated for the second last spin of section C, the
third last spin, and so on, to finally yield |En〉 = |0〉ACB,
as long as all the nearest neighbor interactions contain
exchange parts. This leads to a contradiction for n ! 1.

Time-scale:— As we have shown above, the com-
municating parties can achieve perfect state transfer in
the limit of infinite time and an infinitely large memory
space. However in practice, Bob’s resources and time
will be limited. If the protocol stops after j operations,
how does the fidelity depend on the number of qubits NA

being transferred, and on the total length of the chain?
This question is clearly strongly depending on the spe-
cific Hamiltonian of the chain. For example, in the case of
engineered couplings [2], a single swap operation would
already suffice. We would like to keep the argument in
this section as general as possible to find a rough esti-
mate of the fidelity based on statistical arguments. If
the system has some special symmetries, the fidelity may
be much higher, as in the case of engineered couplings,
or may also be much lower, but in practice these cases
are extremely unlikely.

Since the transfer of spin-down components occurs nat-
urally in our model, one may argue that the worst case
scenario is when Alice wants to send the state |11 . . . 1〉A.
After an initial time Te that it takes excitations to travel
across the chain, we expect that the NA excitations origi-
nally at Alice’s site are distributed with an average num-
ber of NA/N excitations per site. On average, Bob’s
region of the chain should therefore contain NBNA/N ex-
citations. Of course the expectation value of the number
of excitations is a strongly fluctuating function of time.
However in a slightly modified protocol with optimized
swapping times {τi}i , it should be easy to find a swap-
ping time τ1 ∈ [0, Te] such that after performing the swap
operation, there are on average N1 = (1 − NB/N)NA

excitations left which remain in the part A+C of the
chain. After another time of the order of Te, they will be
spread along the whole chain again, with NBN1/N be-
ing the average number in Bob’s section. More generally,
after a time t ≈ jTe the average number of excitations
in the system after j swap should be of the order Nj =

(1 − NB/N)j NA (we have confirmed this estimate nu-
merically for short Heisenberg spin chains). The fidelity
F of the state transfer is lower bounded by the probabil-
ity of having no excitations in the chain A+C+B. For
Nj " 1 we can lower bound this quantity by 1 − Nj.

Thus for large j one has F ! 1 − (1 − NB/N)j NA. Re-
placing j % t/Te and taking the limit N >> 1 the above
inequality shows that the fidelity F can be reached after
a time t ≈ NTe(lnNA + | ln(1 − F )|)/NB. In transla-
tionally invariant systems the group velocity is typically
independent of the length N of the chain. Therefore in
these systems Te is scaling linearly with N [1] and the

above equation shows that t scales quadratically with N .
A special case of this expression with NA = NB = 1 and
1−F corresponding to a probability of failure was already
considered in the conclusive dual rail schemes [5]. From
the above analysis it follows that the size of Bob’s region
can make the transfer quicker, and that the time-scale
only depends logarithmically on the amount of qubits
that Alice wants to send. It is therefore more efficient
to send many qubits at once rather than repeating the
protocol.

Conclusions:— We have shown that the usage of the
quantum memory of the receiver can strongly increase
the fidelity of quantum state transfer with permanently
coupled quantum chains. In the limit of an infinite mem-
ory, the transfer is perfect. Furthermore this scheme al-
lows to send arbitrary multipartite states rather than just
single qubit states.
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considered in the conclusive dual rail schemes [5]. From
the above analysis it follows that the size of Bob’s region
can make the transfer quicker, and that the time-scale
only depends logarithmically on the amount of qubits
that Alice wants to send. It is therefore more efficient
to send many qubits at once rather than repeating the
protocol.

Conclusions:— We have shown that the usage of the
quantum memory of the receiver can strongly increase
the fidelity of quantum state transfer with permanently
coupled quantum chains. In the limit of an infinite mem-
ory, the transfer is perfect. Furthermore this scheme al-
lows to send arbitrary multipartite states rather than just
single qubit states.

Acknowledgments:— DB acknowledges the sup-
port of the UK EPSRC through the Grant Nr.
GR/S62796/01. DB would like to thank Sougato Bose
for fruitful discussions.

[1] S. Bose, Phys. Rev. Lett. 91, 207901 (2003).
[2] M. Christandl, et al., Phys. Rev. Lett. 92, 187902 (2004);

G. M. Nikolopoulos, D. Petrosyan and P. Lambropoulos,
J. Phys.: Condens. Matter 16, 4991 (2004); M. H. Yung
and S. Bose, Phys. Rev. A 71, 032310 (2005); P. Karbach
and J. Stolze, ibid. 72, 030301 (2005).

[3] M. B. Plenio and F. L. Semiao, New. J. Phys. 7, 73
(2005); Y. Li, et al., Phys. Rev. A 71, 022301 (2005);
A. Wojcik, et al., ibid. 72, 034303 (2005).

[4] T. J. Osborne and N. Linden, Phys. Rev. A 69, 052315
(2004); V. Giovannetti and R. Fazio, ibid. 71, 032314
(2005); H. L. Haselgrove, quant-ph/0404152.

[5] D. Burgarth and S. Bose, Phys. Rev. A 71, 052315
(2005); New. J. Phys. 7, 135 (2005).

[6] D. Burgarth, V. Giovannetti, and S. Bose, J. Phys. A:
Math. Gen. 38 6793 (2005).

[7] M. Ziman et al., Phys. Rev. A 65, 042105 (2002).
[8] T. Wellens et al., Phys. Rev. Lett. 85, 3361 (2000)
[9] The key ingredient to derive (7) from (6) is the relation

σAC(j + 1) = TrB [U(σAC(j) ⊗ |0〉B〈0|)U†] which con-
nects the reduced density matrices of A+C at successive
steps of the protocol. Use this to express σAC(j1 + j) of
Pn(j1 + j) in terms of σAC(j1) and, for D = B, AB, in-
troduce the decompositions 11D =

∑∞
n′=0

ΠD(n′), with
ΠD(n′) defined as in Eq. (6) and 11D being the identity
operator of D. Since U preserves the number of exci-
tation in A + C + B, the expression (6) of Pn(j1 + j)
separates in two contributions: the first includes only
terms of ΠAC(n′)σAC(j1)ΠAC(n′) with n′

! n + 1, and
can be upper bounded by Pj+1(n); the second includes
only ΠAC(n)σAC(j1)ΠAC(n) and can be upper bounded
by Qn(j1 + j, j1) of Eq. (12).

[10] R. A. Horn and C. R. Johnson, Matrix Analysis, Cam-
bridge University Press, 1990.

*



Burgarth, VG, Bose    PRA75 (2007)

BC a single 

quantum memory!

BOB

ALICE

A

≡

End gates protocol



free 
evolution

free 
evolution

free 
evolution

free 
evolution

free 
evolution

replace B 
with all spin
down state

replace B 
with all spin
down state

replace B 
with all spin
down state

replace B 
with all spin
down state

A C B

free 
evolution

replace B 
with all spin
down state

Bob performs
a unitary gate 

on the 
memory

free 
evolution

replace B 
with all spin
down state

Bob performs
a unitary gate 

on the 
memory

free 
evolution

replace B 
with all spin
down state

Bob performs
a unitary gate 

on the 
memory

free 
evolution

replace B 
with all spin
down state

Bob performs
a unitary gate 

on the 
memory

NEW SCHEME

OLD SCHEME (infinite memories)

(finite memories)



BOB

ALICE

|ψ〉 = α|0〉 + β|1〉

ALICE

ALICE

free evolution

ALICE

swap

swap



BOB

ALICE

ALICE

free evolution

ALICE

swap

another round...

ALICE

we can compress the information 
into a single memory element!!!

go for the third one...
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Vittorio Giovannetti
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Claim: our PRL can be modified in such a way that only a finite number of BOB local
memory are needed.

Consider the case in which Alice controls only the first spin of a chain of N spins.
Bob, on the other hand, controls only the last spin of the chain plus TWO qubit memories
initialized in the state |00〉M ≡ |0〉M1 ⊗ |0〉M2 .

The modified protocol goes as follows:

• the chain is initialized in the state |000...000〉 state.

• at time t = 0 Alice replace her spin with the quantum message |ψ〉A = α|0〉A +β|1〉A,
i.e.

|000...000〉 ⊗ |00〉M −→ |ψ00...000〉 ⊗ |00〉M

• Every τ second Bob performs the following operations:

– he first SWAPS the last spin of the chain with the first memory M1,
– then he applies a two-qubit unitary gate Vj on M1 + M2. Here j label the step

of the protocol: as we will see, the unitary transformation Vj depends explicitly
on j.

The easiest way of describing the protocol is by analyzing a couple of consecutive steps:
Step 0: At time τ the chain has been evolved into

α|000...000〉 + β
∑

n0=1,N

γ1,n0 |n〉

where, as usual, |n〉 is the state with one excitation in the n-th spin and where

γn′,n = 〈n′|e−iHτ/!|n〉.

After Bob first SWAP the system evolves into

α|000...000〉 ⊗ |00〉M + β
∑

n0=1,N−1

γ1,n0|n0〉 ⊗ |00〉M + βγ1N |000...000〉 ⊗ |10〉M

= |000...000〉 ⊗ (α|00〉M + βγ1N |10〉M ) + β
∑

n0=1,N−1

γ1,n|n0〉 ⊗ |00〉M , (1)

1
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γij = fi,j(t)

which, as far as concern to M , correspond to an amplitude damping channel of efficiency
η0 = |γ1N |2. Bob transformation V0 is just a SWAP between M1 and M2, which transforms
the state (1) into

|000...000〉 ⊗ (α|00〉M + βγ1N |01〉M ) + β
N−1∑

n0=1

γ1,n|n0〉 ⊗ |00〉M . (2)

Step 1: After a time τ the above state evolves into

|000...000〉 ⊗ (α|00〉M + βγ1N |01〉M ) + β
N−1∑

n0=1

N∑

n1=1

γ1,n0γn0,n1 |n1〉 ⊗ |00〉M , (3)

which, after Bob SWAP between the N -th spin and M1 becomes,

|000...000〉 ⊗
[

α|00〉M + βγ1N |01〉M + β
N−1∑

n0=1

γ1,n0γn0,N |10〉M
]
+ β

N−1∑

n0=1

N−1∑

n1=1

γ1,n0γn0,n1|n1〉 ⊗ |00〉M

= |000...000〉 ⊗
[

α|00〉M + β
√

η1|φ1〉M ] + β
N−1∑

n0=1

N−1∑

n1=1

γ1,n0γn0,n1|n1〉 ⊗ |00〉M , (4)

with η1 = |γ1,N |2 + |
∑N−1

n0=1 γ1,n0γn0,N |2 and |φ1〉M is the normalized vector

|φ1〉M =
[
γ1N |01〉M +

N−1∑

n0=1

γ1,n0γn0,N |10〉M
]
/
√

η1.

Remark 1: η1 is just the success probability after 1 step of our PRL protocol.
Remark 2: If we assume H to be known, the state |φ1〉 is known to BOB.

At this point BOB performs the unitary transformation V1, which, in this case is defined
by the properties

V1|φ1〉M = |01〉M (5)
V1|00〉M = |00〉M . (6)

Notice that since |φ1〉M and |00〉M are orthogonal, such unitary V1 can always be found.
At the end of the day, the system is then in

|000...000〉 ⊗ (α|00〉M + β
√

η1 |01〉M ) + β
N−1∑

n0=1

N−1∑

n1=1

γ1,n0γn0,n1 |n1〉 ⊗ |00〉M , (7)

corresponding to an amplitude damping channel with efficiency η1 ! η0.

2
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N−1∑

n0=1

γ1,n|n0〉 ⊗ |00〉M . (2)

Step 1: After a time τ the above state evolves into

|000...000〉 ⊗ (α|00〉M + βγ1N |01〉M ) + β
N−1∑

n0=1

N∑

n1=1

γ1,n0γn0,n1 |n1〉 ⊗ |00〉M , (3)

which, after Bob SWAP between the N -th spin and M1 becomes,

|000...000〉 ⊗
[

α|00〉M + βγ1N |01〉M + β
N−1∑

n0=1

γ1,n0γn0,N |10〉M
]
+ β

N−1∑

n0=1

N−1∑

n1=1

γ1,n0γn0,n1|n1〉 ⊗ |00〉M

= |000...000〉 ⊗
[

α|00〉M + β
√

η1|φ1〉M ] + β
N−1∑

n0=1

N−1∑

n1=1

γ1,n0γn0,n1|n1〉 ⊗ |00〉M , (4)

with η1 = |γ1,N |2 + |
∑N−1

n0=1 γ1,n0γn0,N |2 and |φ1〉M is the normalized vector

|φ1〉M =
[
γ1N |01〉M +

N−1∑

n0=1

γ1,n0γn0,N |10〉M
]
/
√

η1.

Remark 1: η1 is just the success probability after 1 step of our PRL protocol.
Remark 2: If we assume H to be known, the state |φ1〉 is known to BOB.

At this point BOB performs the unitary transformation V1, which, in this case is defined
by the properties

V1|φ1〉M = |01〉M (5)
V1|00〉M = |00〉M . (6)

Notice that since |φ1〉M and |00〉M are orthogonal, such unitary V1 can always be found.
At the end of the day, the system is then in

|000...000〉 ⊗ (α|00〉M + β
√

η1 |01〉M ) + β
N−1∑

n0=1

N−1∑

n1=1

γ1,n0γn0,n1 |n1〉 ⊗ |00〉M , (7)

corresponding to an amplitude damping channel with efficiency η1 ! η0.

2

Therefore we can define a two-qubit unitary operator which performs the
following transformation:

This is our compression gate



Simplification

phase! by a switchable Heisenberg or XY type coupling be-
tween the Nth and the target qubit. However, in the above,
we have assumed that the gates Wk can be applied instanta-
neously, i.e., in a time scale much smaller than the time scale
of the dynamics of the chain. This corresponds to a switch-
able coupling that is much stronger than the coupling
strength of the chain. Here, we numerically investigate if a
convergence similar to the above results is still possible
when this assumption is not valid. We do, however, assume
that the switching of the interaction is still describable by an
instantaneous switching "i.e., the sudden approximation is
valid!. This assumption is mainly made to keep the numerics
simple. We do not expect qualitative differences when the
switching times become finite as long as the time-dependent
Hamiltonian is still conserving the number of excitations in
the chain. In fact it has recently been shown that the finite
switching time can even improve the fidelity #16$.

We have investigated two types of switching. For the first
type, the coupling itself is switchable, i.e.,

H"t! = J%
n=1

N−1

!n
−!n+1

+ + ""t!!N
−!N+1

+ + H.c., "12!

where ""t! can be 0 or 1. For the second type, the target
qubit is permanently coupled to the remainder of the chain,
but a strong magnetic field on the last qubit can be switched,

H"t! = J%
n=1

N

!n
−!n+1

+ + H.c. + B""t!!N+1
z , "13!

where again ""t! can be 0 or 1 and B#1. This suppresses the
coupling between the Nth and N+1th qubit due to an energy
mismatch.

For the purposes of the present discussion it is sufficient
to focus on a specific choice of control pulses ""t!: this will
not give us the best achievable performances but it will
prove our point. Therefore in both cases, we first numerically
optimize the times for unitary evolution tk over a fixed time
interval such that the probability amplitude at the Nth qubit
is maximal. The algorithm then finds the optimal time inter-
val during which ""t!=1 such that the probability amplitude
at the target qubit is increased. In some cases the phases are
not correct, and switching on the interaction would result in
probability amplitude floating back into the chain. In this
situation, the target qubit is left decoupled and the chain is
evolved to the next amplitude maximum at the Nth qubit.
Surprisingly, even when the time scale of the gates is com-
parable to the dynamics, near-perfect transfer remains pos-
sible "Fig. 4!. In the case of the switched magnetic field, the
achievable fidelity depends on the strength of the applied
field. This is because the magnetic field does not fully sup-
press the coupling between the two last qubits. A small
amount of probability amplitude is lost during each time evo-
lution Uk, and when the gain by the gate is compensated by
this loss, the total success probability no longer increases.

IV. CONCLUSIONS

We found an optimal strategy for achieving arbitrarily
perfect state transfer and state preparation "including cool-
ing! by applying a sequence of two-qubit operations at the
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FIG. 3. Even with a finite number ! of two-qubit operations, the
success probability of the transfer can be improved significantly. We
give a numerical example of a Heisenberg chain of length N=23,
where the gate times are equidistant. In particular, the plots show
the transfer fidelity achievable after a time t has elapsed from the
initial condition assuming that in the time interval #0, t$, ! two-
qubit operations Wk have being performed at times t1= t /!; t2
=2t /! , . . . ,t!−1= "!−1!t /!, and t!= t. For !=1 only a single two-
qubit gate is performed to transfer the information and our result
coincides with the original protocol #9$. Already for !=10 we find
an improvement of approximately 50% within the same time scale.
For !=N we obtain a near-perfect transfer. Notice that starting to
extract information from the chain too early causes a small quantum
Zeno effect "e.g., see the case !=23 which for t&10/J is outper-
formed by the original protocol #9$!.
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FIG. 4. Numerical example for the convergence of the success
probability. Simulated is a quantum chain of length N=20 with the
Hamiltonian from Eq. "12! "dashed line! and Eq. "13! with B /J
=20 "solid line!. Using the original protocol #9$, the same chain
would only reach a success probability of 0.63 in the above time
interval.
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mismatch.

For the purposes of the present discussion it is sufficient
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evolved to the next amplitude maximum at the Nth qubit.
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field. This is because the magnetic field does not fully sup-
press the coupling between the two last qubits. A small
amount of probability amplitude is lost during each time evo-
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phase! by a switchable Heisenberg or XY type coupling be-
tween the Nth and the target qubit. However, in the above,
we have assumed that the gates Wk can be applied instanta-
neously, i.e., in a time scale much smaller than the time scale
of the dynamics of the chain. This corresponds to a switch-
able coupling that is much stronger than the coupling
strength of the chain. Here, we numerically investigate if a
convergence similar to the above results is still possible
when this assumption is not valid. We do, however, assume
that the switching of the interaction is still describable by an
instantaneous switching "i.e., the sudden approximation is
valid!. This assumption is mainly made to keep the numerics
simple. We do not expect qualitative differences when the
switching times become finite as long as the time-dependent
Hamiltonian is still conserving the number of excitations in
the chain. In fact it has recently been shown that the finite
switching time can even improve the fidelity #16$.

We have investigated two types of switching. For the first
type, the coupling itself is switchable, i.e.,
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where again ""t! can be 0 or 1 and B#1. This suppresses the
coupling between the Nth and N+1th qubit due to an energy
mismatch.

For the purposes of the present discussion it is sufficient
to focus on a specific choice of control pulses ""t!: this will
not give us the best achievable performances but it will
prove our point. Therefore in both cases, we first numerically
optimize the times for unitary evolution tk over a fixed time
interval such that the probability amplitude at the Nth qubit
is maximal. The algorithm then finds the optimal time inter-
val during which ""t!=1 such that the probability amplitude
at the target qubit is increased. In some cases the phases are
not correct, and switching on the interaction would result in
probability amplitude floating back into the chain. In this
situation, the target qubit is left decoupled and the chain is
evolved to the next amplitude maximum at the Nth qubit.
Surprisingly, even when the time scale of the gates is com-
parable to the dynamics, near-perfect transfer remains pos-
sible "Fig. 4!. In the case of the switched magnetic field, the
achievable fidelity depends on the strength of the applied
field. This is because the magnetic field does not fully sup-
press the coupling between the two last qubits. A small
amount of probability amplitude is lost during each time evo-
lution Uk, and when the gain by the gate is compensated by
this loss, the total success probability no longer increases.
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intervals two-qubit gates at the receiving end of the chain.
The resulting sequence is determined a priori by the Hamil-
tonian of the system. As we shall see, the maximal fidelity
that can be reached this way is limited only by external
noise, and not by the spatial fluctuations of the couplings !cf.
"17#$. This is similar in spirit to the dual-rail "17# and
memory protocols "19#, but here we give a protocol that is
optimal in the resources used: a single spin chain and a two-
qubit gate at the each end. It is optimal because two-qubit
gates at the sending and receiving end are required in order
to connect the chain to the blocks in all above protocols
!though often not mentioned explicitly$. Our scheme has
some similarities with "12#, but the gates used here are much
simpler, and arbitrarily high fidelity is guaranteed by a con-
vergence theorem for arbitrary coupling strengths and all
non-Ising coupling types that conserve the number of exci-
tations. Furthermore, we show numerically that our protocol
could also be realized by a simple switchable interaction.
This means that quantum state transfer experiments with our
protocol could be performed well before the realization of
the blocks from Fig. 1.

The paper is organized as follows. In Sec. II we introduce
the protocol and we present an analytical proof of the asymp-
totical convergence of the associated transfer fidelity. To do
so we restrict ourselves to a regime in which the two-qubit
gates applied at the end of the chain act instantaneously, i.e.,
they are activated over time intervals which are much shorter
than the typical time scale of the free spin evolution. This
hypothesis is not fundamental but it allows us to simplify the
math: we will drop it in Sec. III where, by using numerical
techniques, we generalize the convergence analysis to cases
in which the timing of the end gates are comparable with
those of the free dynamical evolution of the chain. The
manuscript ends with the conclusions in Sec. IV.

II. ARBITRARILY PERFECT STATE TRANSFER

Here we present an analytical proof of the convergence of
our transferring protocol. For the sake of simplicity we will
focus on a single chain from the setup of Fig. 1. In this case,
as in Ref. "9#, the left end side of the chain plays effectively
the role of a sender of quantum information while the right
end side plays the role of a receiver. Within this framework
we will show that the receiving block !gray area of Fig. 2$
can improve the transmission fidelity to an arbitrarily high
value by applying suitable two-qubit gates Wk !see below$
between the end of the chain and a “target qubit” of the
block. As mentioned in the Introduction, in order to get ana-

lytical results, we will restrict the analysis to the case in
which the gates Wk act instantaneously on the system.

A. Notation

Before entering into the details of the derivation let us fix
some notation and define the property of the system. We
label the qubits of the chain by 1,2 , . . . ,N and the target
qubit by N+1. We also define the states

%0& ' %00 ¯ 0& ,

%n& ' !n
+%0&, n = 1,2, . . . ,N + 1,

where !n
+ is the Pauli !+ operator acting on the nth qubit.

With these definitions the typical initial configuration of our
communication protocol will be described by vectors of the
form

%"initial& = #%0& + $%1& , !1$

where all the qubits from 2 to N+1 are in the reference state
%0& while the first qubit has been prepared into the logical
state #%0&+$%1&. This the quantum bits that one would like to
propagate along the chain.

The free evolution of the system is described by a Hamil-
tonian H which couples all the qubits but the target. Our
main assumption on H is that it has %0& as eigenstate with
eigenvalue 0, i.e., H%0&=0, and a N-dimensional invariant
subspace spanned by the vectors (%n& ;n=1,2 , . . . ,N). Under
this condition H corresponds to a Hamiltonian that conserves
the number of excitations along the chain, which would be
the case, for example, of the Heisenberg or XY chains
considered in most of the protocol proposed so far
"8,9,11,12,17,19#. Thanks to this property the analysis
of the protocol can be restricted to the N+2-dimensional
Hilbert H=span(%n& ;n=0,1 ,2 , . . . ,N+1). Our final assump-
tion about H is that there exists a time t such that
*N%exp(−itH)%1&!0. Physically this means that the Hamil-
tonian has the capability of transporting excitations !and
hence information$ from the first to the last qubit of the
chain. As mentioned in the Introduction, the fidelity of this
transport may be very bad in practice.

We denote the unitary evolution operator for a given time
tk as Uk'exp(−itkH) and introduce the projector

P = 1H − %0&*0% − %N&*N% − %N + 1&*N + 1% .

A crucial ingredient to our protocol is the unitary transfor-
mation

W!c,d$ ' P + %0&*0% + d%N&*N% + d*%N + 1&*N + 1%

+ c*%N + 1&*N% − c%N&*N + 1% , !2$

where c and d are complex normalized amplitudes. One can
easily verify that W acts as the identity on all but the last two
qubits, and can hence be realized by a local two-qubit gate
on the qubits N and N+1. Furthermore, we have WP= P and

W!c,d$"(c%N& + d%N + 1&)# = %N + 1& . !3$

The operator W!c ,d$ has the role of moving probability am-
plitude c from the Nth qubit to the target qubit. It can be
applied locally by the receiving block.

FIG. 2. A quantum chain !qubits 1 ,2 , . . . ,N$ and a target qubit
!N+1$. By applying a sequence of two-qubit unitary gates Wk on
the last qubit of the chain and the target qubit, arbitrarily high
fidelity can be achieved for the transmission of quantum informa-
tion from the left-hand side to the right-hand side of the chain.
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Transferring quantum information between two qubits is a basic requirement for many applications in
quantum communication and quantum-information processing. In the iterative quantum-state transfer proposed
by Burgarth et al. #Phys. Rev. A 75, 062327 !2007"$, this is achieved by a static spin chain and a sequence of
gate operations applied only to the receiving end of the chain. The only requirement on the spin chain is that
it transfers a finite part of the input amplitude to the end of the chain, where the gate operations accumulate the
information. For an appropriate sequence of evolutions and gate operations, the fidelity of the transfer can
asymptotically approach unity. We demonstrate the principle of operation of this transfer scheme by imple-
menting it in a nuclear magnetic resonance quantum-information processor.
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I. INTRODUCTION

Quantum-state transfer !QST", i.e., the transfer of an ar-
bitrary quantum state ! %0&+" %1& from one qubit to another,
is an important element in quantum computation and quan-
tum communication #1–5$. The most direct method to imple-
ment QST is based on SWAP operations #6$. This approach
consist of a series of SWAP operations between neighboring
qubits until the quantum state arrives at the target qubit. In a
general-purpose quantum register, these quantum gates re-
quire the application of single- as well as two-qubit opera-
tions. For longer distances, the number of such operations
can become quite large; it may then be advantageous to rely
on quantum teleportation instead #7$, which requires fewer
gate operations, but shared entanglement between sender and
receiver.

For specific systems, it is possible to transfer quantum
information without applying gate operations, but instead re-
lying on a static coupling network #2,3$. The main difficulty
with this approach is the required precision with which the
couplings have to be realized in order to generate a transfer
with high fidelity.

This requirement can be relaxed significantly, without
compromising the fidelity of the transfer, by applying gate
operations to the receiving end of the spin chain that effects
the transfer #5$. The capability for applying such gate opera-
tions is not an additional requirement, since such operations
are required anyway if the spin chain is to be used for com-
munication between quantum registers. This gate accumu-
lates any amplitude of the initial state that is transferred
along the chain. The protocol allows one, in principle, to
obtain unit fidelity for the transfer, even if the couplings
along the chain have arbitrary fluctuations, as long as a finite
amplitude reaches the end of the chain. Obtaining a large
transfer amplitude requires multiple iterations, each of which
includes the evolution of the spin chain and the two-qubit
gate operation. The fidelity for transfer increases with the

number of the iterations and can approach 1 asymptotically.
Hence we refer to this protocol as the iterative quantum state
transfer !IQST". In this paper we implement the protocol in
an NMR quantum-information processor and demonstrate its
basic feasibility.

II. ITERATIVE TRANSFER ALGORITHM

A. System

We illustrate the IQST proposed in Ref. #5$ using a sys-
tem of three spins coupled by Heisenberg XY interactions, as
shown in Fig. 1. The spin chain consists of spins 1 and 2,
which are coupled by a constant !time-independent" interac-
tion. Spin 3 is the target spin used to receive the transferred
quantum state. The interaction between spins 2 and 3 can be
switched on and off. Our purpose is to transfer an arbitrary
quantum state ! %0&+" %1& from spin 1 to 3, where ! and "
are two complex numbers normalized to %!%2+ %"%2=1.

The Hamiltonian of the spin chain without the end qubit is

H12 =
1
2

#J12!$x
1$x

2 + $y
1$y

2" , !1"

where J12 denotes the coupling strength. The Hamiltonian of
spins 2 and 3 is

*Corresponding author. zhangjfu2000@yahoo.com;
Jingfu@e3.physik.uni-dortmund.de

†Corresponding author. Dieter.Suter@uni-dortmund.de

FIG. 1. The spin chain including the target spin !3" used for
implementing the IQST. The XY interactions in the spin chain, de-
noted by the solid line, is always active, while the XY interaction
between spins 2 and 3, denoted by the dashed line, can be switched
on and off. W23 denotes the end gate applied to spins 2 and 3. U12

denotes the evolution of the spin chain.
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!k = Tk!iniTk
† = !1 − Fk

2"y
1I2I3 + Fk"z

1"z
2"y

3 "15#

after k iterations.

III. IMPLEMENTATION

For the experimental implementation, we chose the 1H,
19F, and 13C spins of ethyl 2-fluoroacetoacetate as qubits.
The chemical structure of ethyl 2-fluoroacetoacetate is
shown in Fig. 2, where the three qubits are denoted as H1,
F2, and C3, respectively. The strengths of the J couplings are
J12=48.5 Hz, J23=−195.1 Hz, and J13=160.8 Hz. T1 and T2
values for these three nuclei are listed in the right table in
Fig. 2. In the rotating frame, the Hamiltonian of the three-
qubit system is $9–11%

HNMR =
#

2
"J12"z

1"z
2 + J23"z

2"z
3 + J13"z

1"z
3# . "16#

The sample consisted of a 3:1 mixture of unlabeled ethyl
2-fluoroacetoacetate and d6-acetone. Molecules with a 13C
nucleus at position 2, which we used as the quantum register,
were therefore present at a concentration of about 1%. They
were selected against the background of molecules with 12C
nuclei by measuring the 13C signal. We chose H1 as the input
qubit and C3 as the target qubit. Figure 3"a# shows the 13C
NMR spectrum obtained by applying a readout pulse to the
system in its thermal equilibrium state. Each of the reso-
nance lines is associated with a specific spin state of qubits 1
and 2.

A. Initial-state preparation

The initial pseudopure state &000' is prepared by spatial
averaging $12%. The following radio-frequency "rf# and mag-
netic field gradient pulse sequence transforms the system
from the equilibrium state

!eq = $1"z
1 + $2"z

2 + $3"z
3 "17#

to

&000': $%1%y
1-$%2%y

2-$grad%z-$#/2%x
1-$1/2J13%-$− #/2%y

1-

$#/4%x
3-$− 1/2J23%-$− #/4%y

3-$grad%z-$#/4%x
1-

$1/2J13%-$− #/4%y
1-$grad%z.

Here, $1, $2, and $3 denote the gyromagnetic ratios of H1,
F2, and C3, respectively, and cos %1=2$3 /$1 and cos %2
=$3 /2$2. $grad%z denotes a gradient pulse along the z axis.
$# /2%x

1 denotes a # /2 pulse along the x axis acting on the H1
qubit. Overall phase factors have been ignored.

The coupled-spin evolution between two spins, for in-
stance, $1/2J13%, can be realized by the pulse sequence
1/4J13-$#%y

2-1 /4J13-$−#%y
2, where 1/4J13 denotes the evolu-

tion caused by HNMR for a time 1/4J13 $13%.
The target state can be prepared directly from the state

&000' by applying a $# /2%y
3 pulse. It corresponds to &00'"&0'

− &1'# /!2, i.e., to transverse magnetization of the target spin,
with the first two qubits in state &00'. If we measure the free
induction decay "FID# of this state and calculate the Fourier
transform of the signal, we obtain the spectrum shown in
Fig. 3"b#. This spectrum serves as the reference to which we
scale the data from the IQST experiment.

The input state for the IQST is &&in'= &'"(#' &00'. We gen-
erate this state by rotating H1 by an angle ( around the y
axis: &&in'=ei("y

1/2 &000'. After k iterations of the IQST algo-
rithm, &&in' is transferred to

Tk&&in' = $"1 − Fk#cos"(/2#&0' − !1 − Fk
2 sin"(/2#&1'%&00'

+ &00'Fk&'"(#' . "18#

Here, we have used Eqs. "8# and "9# and assumed C12)0,
without loss of generality. Hence the state transfer can be
observed through measuring carbon spectra.

FIG. 2. "Color online# Chemical structure of ethyl
2-fluoroacetoacetate. The three spins in the dashed oval are the
three qubits for implementing IQST. The strengths "in Hz# of the J
couplings between the relevant nuclear spins and the relaxation
times are listed in the left and right tables, respectively.

|01>|00>|11>|10>

NMR Frequency

−200 −100 1000 Hz

a

b

|00>

FIG. 3. "a# 13C NMR spectrum obtained by applying a selective
readout pulse to the system in its thermal equilibrium state. The
four resonance lines correspond to specific states of the spin-chain
qubits H1 and F2, as indicated by the labels above the resonance
lines. The assignment takes into account that J13*0 and J23+0. "b#
13C NMR spectrum of the state &00'"&0'− &1'# /!2, which was ob-
tained by applying a $# /2%y

3 pulse to &000'.
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I. INTRODUCTION

Quantum-state transfer !QST", i.e., the transfer of an ar-
bitrary quantum state ! %0&+" %1& from one qubit to another,
is an important element in quantum computation and quan-
tum communication #1–5$. The most direct method to imple-
ment QST is based on SWAP operations #6$. This approach
consist of a series of SWAP operations between neighboring
qubits until the quantum state arrives at the target qubit. In a
general-purpose quantum register, these quantum gates re-
quire the application of single- as well as two-qubit opera-
tions. For longer distances, the number of such operations
can become quite large; it may then be advantageous to rely
on quantum teleportation instead #7$, which requires fewer
gate operations, but shared entanglement between sender and
receiver.

For specific systems, it is possible to transfer quantum
information without applying gate operations, but instead re-
lying on a static coupling network #2,3$. The main difficulty
with this approach is the required precision with which the
couplings have to be realized in order to generate a transfer
with high fidelity.

This requirement can be relaxed significantly, without
compromising the fidelity of the transfer, by applying gate
operations to the receiving end of the spin chain that effects
the transfer #5$. The capability for applying such gate opera-
tions is not an additional requirement, since such operations
are required anyway if the spin chain is to be used for com-
munication between quantum registers. This gate accumu-
lates any amplitude of the initial state that is transferred
along the chain. The protocol allows one, in principle, to
obtain unit fidelity for the transfer, even if the couplings
along the chain have arbitrary fluctuations, as long as a finite
amplitude reaches the end of the chain. Obtaining a large
transfer amplitude requires multiple iterations, each of which
includes the evolution of the spin chain and the two-qubit
gate operation. The fidelity for transfer increases with the

number of the iterations and can approach 1 asymptotically.
Hence we refer to this protocol as the iterative quantum state
transfer !IQST". In this paper we implement the protocol in
an NMR quantum-information processor and demonstrate its
basic feasibility.

II. ITERATIVE TRANSFER ALGORITHM

A. System

We illustrate the IQST proposed in Ref. #5$ using a sys-
tem of three spins coupled by Heisenberg XY interactions, as
shown in Fig. 1. The spin chain consists of spins 1 and 2,
which are coupled by a constant !time-independent" interac-
tion. Spin 3 is the target spin used to receive the transferred
quantum state. The interaction between spins 2 and 3 can be
switched on and off. Our purpose is to transfer an arbitrary
quantum state ! %0&+" %1& from spin 1 to 3, where ! and "
are two complex numbers normalized to %!%2+ %"%2=1.

The Hamiltonian of the spin chain without the end qubit is

H12 =
1
2

#J12!$x
1$x

2 + $y
1$y

2" , !1"

where J12 denotes the coupling strength. The Hamiltonian of
spins 2 and 3 is

*Corresponding author. zhangjfu2000@yahoo.com;
Jingfu@e3.physik.uni-dortmund.de

†Corresponding author. Dieter.Suter@uni-dortmund.de

FIG. 1. The spin chain including the target spin !3" used for
implementing the IQST. The XY interactions in the spin chain, de-
noted by the solid line, is always active, while the XY interaction
between spins 2 and 3, denoted by the dashed line, can be switched
on and off. W23 denotes the end gate applied to spins 2 and 3. U12

denotes the evolution of the spin chain.
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amplitude reaches the end of the chain. Obtaining a large
transfer amplitude requires multiple iterations, each of which
includes the evolution of the spin chain and the two-qubit
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number of the iterations and can approach 1 asymptotically.
Hence we refer to this protocol as the iterative quantum state
transfer !IQST". In this paper we implement the protocol in
an NMR quantum-information processor and demonstrate its
basic feasibility.
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A. System

We illustrate the IQST proposed in Ref. #5$ using a sys-
tem of three spins coupled by Heisenberg XY interactions, as
shown in Fig. 1. The spin chain consists of spins 1 and 2,
which are coupled by a constant !time-independent" interac-
tion. Spin 3 is the target spin used to receive the transferred
quantum state. The interaction between spins 2 and 3 can be
switched on and off. Our purpose is to transfer an arbitrary
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FIG. 1. The spin chain including the target spin !3" used for
implementing the IQST. The XY interactions in the spin chain, de-
noted by the solid line, is always active, while the XY interaction
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denotes the evolution of the spin chain.
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For the mixed input state, !ini !Eq. "14#$ can be generated
from !eq through the pulse sequence !14$

%"

2
&

x

3

− %"

2
&

x

2

− !grad$z − %"

2
&

x

1

. "19#

B. Effective XY interactions

The IQST algorithm requires XY interactions, while the
natural Hamiltonian contains ZZ couplings. To convert the
ZZ interactions into XY type, we decompose the evolution
e−i#"$x

k
$x

l +$y
k
$y

l # into e−i#$x
k
$x

l
e−i#$y

k
$y

l
!15$ using !$x

k$x
l ,$y

k$y
l $

=0, where # denotes an arbitrary real number. These trans-
formations can be implemented by a combination of radio-
frequency pulses and free evolutions under the J couplings
!16$

e−i#$x
k$x

l
= e±i"$y

k/4e±i"$y
l /4e−i#$z

k$z
l
e%i"$y

k/4e%i"$y
l /4, "20#

e−i#$y
k$y

l
= e±i"$x

k/4e±i"$x
l /4e−i#$z

k$z
l
e%i"$x

k/4e%i"$x
l /4. "21#

Figure 4 shows the complete pulse sequence for imple-
menting the IQST, starting from '&in(. The subscript n indi-
cates that the pulses in the square brackets have to be re-
peated for every iteration. The duration of each W23 segment
varies, since tn=−arctan"icn /dn# /"J23.

For the initial state !ini in Eq. "12#, the propagators n can
be simplified: since the density operator commutes with $x

1$x
2

and $y
2$y

3 at all times, it is sufficient to generate the propa-
gator

e−i"J23tn$x
2$x

3/2e−i"J12'$y
1$y

2/2.

Similarly, for the initial state in Eq. "14#, iteration n can be
replaced by e−i"J23tn$y

2
$y

3/2e−i"J12'$x
1
$x

2/2. We use these simpli-
fied versions to shorten the duration of the experiment and
thereby increase the fidelity.

C. Results for state transfer

When '=1/2J12, the transfer can be implemented in a
single step with a theoretical fidelity of 100%. The state
transfer from H1 to C3 can be observed by measuring 13C
spectra. The experimental result for '&in(= '("" /4#( '00( is
shown in Fig. 5"a#. Comparing with Fig. 3"b#, one finds that
the output state is '00("'0(− '1(# /)2, i.e., the state '("" /4#( is
transferred from H1 to C3.

Figure 5"b# shows the corresponding result for the transfer
of $y

1 from H1 to C3 in a single step, with qubits 2 and 3
initially in the completely mixed state. For this experiment,
the receiver phase was shifted by " /2 with respect to the
upper spectrum. Since this experiment implements the trans-
fer for all possible states of the other qubits in parallel, we
observe four resonance lines corresponding to the states

FIG. 4. "Color online# Pulse sequence for implementing the
IQST. The two blocks that implement U12"'# and W23"cn ,dn# are
separated by the dash-dotted line and “!¯$n” indicates iteration n.
The delays tn are given by Eq. "11#. The narrow rectangles denote
" /2 pulses, and the wide ones denote " pulses, where x, −x, y, or
−y denotes the direction along which the pulse is applied. The "
pulses are applied in pairs with opposite phases to reduce experi-
mental errors !17$. The durations of the pulses are so short that they
can be ignored.

−200 −100 1000 Hz

NMR Frequency

a

b

|00>

|01>|10>

|11> |00>

FIG. 5. Experimental results for quantum-state transfer with '
=1/2J12. The initial states are "'0(− '1(# '00( /)2 and $y

1, corre-
sponding to "a# and "b#, respectively. In the first experiment, the
receiver phase was set to x, in the second experiment it was set to y.
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FIG. 6. "Color online# Experimental results for demonstrating
the IQST when the initial state is !cos") /2# '0(−sin") /2# '1($ '00(.
Two cases for '=1/5J12 and '=1/6J12 are shown in "a# and "b#. For
each case three iterations are implemented. The experimental data
after the completion of iteration 1, 2, and 3 are marked by *, +, and
*, respectively. The data can be fitted as sine functions of which
amplitudes represent the measured fidelities experimentally. The
dashed curves show sin")#.
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!00,01,10,11" of qubits 1 and 2. For the states with odd
parity, the transfer adds an overall phase factor of −1, which
is directly visible as a negative amplitude in the spectrum.

To demonstrate that iterative transfer works for a range of
coupling strengths or #equivalently$ evolution periods, we
chose !=1/5J12 and !=1/6J12. For the case of pseudopure
input states, three iterations are implemented for either case.
When " changes from 0 to 2# the experimental results ob-
tained from these transfer experiments are summarized in
Fig. 6, where the vertical axis denotes the amplitude of the
NMR spectrum. For each input state, the amplitude increases
with the number of iterations. The increase of the amplitude
shows the increase of the fidelity for the state transfer. The
dependence on the input state parameter " has the expected
sin#"$ dependence.

The experimental data obtained for the mixed input states
are summarized in Figs. 7#a$ and 7#b$, for !=1/5J12 and !
=1/6J12, respectively. The positive lines indicate that the
transfer occurs with positive sign if qubits 1 and 2 are in
state %00& or %11&, and with negative sign for the states %01& or
%10&, in agreement with Eq. #15$. Obviously, the amplitude of
the signals increases with the number of iterations. Accord-
ing to Eq. #15$, the increase of the amplitudes is a direct
measure for the progress of the quantum-state transfer.

IV. DISCUSSION AND CONCLUSION

Our results clearly demonstrate the validity of the iterative
state transfer algorithm of Burgarth et al. In principle, it is

possible to iterate the procedure indefinitely, always improv-
ing the fidelity of the transfer. In practice, every iteration also
increases the amount of signal loss, either through decoher-
ence or through experimental imperfections.

According to Eq. #15$, the fidelity of the transfer is

Fk = %Tr'#$z
1$z

2$y
3$%k(% . #22$

The experimental measurement corresponds to a summation
of the amplitudes of the resonance lines. We normalized the
experimental values to the amplitudes obtained by direct
preparation of the target states 'see Fig. 3#a$(. In Fig. 8, we
show the experimentally measured fidelities of the transfer of
the state $y for 1–5 iterations. As expected, the experimental
data points are below the theoretical curves #full lines$.

The experimental points can be fitted quite well if we
include a decay parameter for each iteration. The dashed
curves in Fig. 8 represent the function Fke−kr with r=0.087
and r=0.079 for !=1/5J12 and !=1/6J12, respectively. Each
iteration thus adds imperfections #experimental plus decoher-
ence$ of about 8%. Larger numbers of iterations are mean-
ingful only if this error rate can be reduced.

In conclusion, we have implemented the iterative
quantum-state transfer in a three-qubit NMR quantum-
information processor. The result shows that it is indeed pos-
sible to accumulate the quantum state at the end of a Heisen-
berg spin chain, whose couplings are always active.
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FIG. 7. #Color online$ 13C NMR spectra demonstrating the
IQST of the state $y

1 for !=1/5J12 and !=1/6J12. For each case, the
spectra after the completion of iterations 1, 2, and 3 are shown as
the blue, black, and red curves, respectively. The resonance lines
corresponding to the %00& state of the spin chain are enlarged in the
inset. The dashed curves are the corresponding sections of the ref-
erence spectrum in Fig. 3#a$.
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iterative state transfer as a function of the number of iteration steps
when !=1/5J12 and 1/6J12. The experimental data are fitted to the
function Fke−kr with r=0.087 and 0.079 for the two cases, respec-
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a quantum memory and must be at least as large as the
system CC̄. As sketched in Fig. 1 we can imagine it to
be split into sectors M!, HM =

⊗L
!=1

HM!
with the HM!

being isomorphic to HC (i.e. dimHM!
= dimHC).

For downloading we assume that the memory M is
initialized in |e〉M ≡

⊗

! |e〉M!
with the vectors |e〉 to be

defined in the following. To download an arbitrary initial
state |ψ〉CC̄ of CC̄ into the memory M we perform a
sequence of unitary gates between M and C, intermitted
by the time evolution U = exp[−iHt] on CC̄ for some
fixed time interval t. More specifically, at step " of the
protocol we perform a unitary swap S! between system C
and system M!. The protocol stops after the Lth swap
operation. The resulting global transformation is thus
represented by the unitary operator

W ≡ USLUSL−1 · · ·US! · · ·US1. (1)

As we will see in the next section, the reduced evolution
of the system C̄ under the protocol can be expressed in
terms of the completely positive trace preserving (CPT)
map τ defined in Eq. (4). Our main assumption is that
the system C̄ is relaxing [12] under repetitive application
of τ, i.e. limn→∞ τn(ρ) = ρ∗ for all initial states ρ. This
behavior is also called mixing [10, 11] or absorbing [6]. In
what follows we will focus on the case in which ρ∗ is a
pure state |E〉C̄〈E|. When this happens it is possible to
show that, for sufficiently large L, the transfer of |ψ〉 from
CC̄ into M can be done with arbitrarily high fidelity [5]
and the transformation which allows one to recover |ψ〉
from M can be explicitly constructed.

For uploading an arbitrary input state |ψ〉 from M to
CC̄ one is tempted to revert the downloading protocol.
Roughly speaking, the idea is to initialize the memory in
the state that it would have ended up in after applying
W if system CC̄ had started in the state we want to
initialize. Then we apply the inverse of W given by

W † = S1U
† · · ·S!U

† · · ·SL−1U
†SLU † . (2)

We will see that indeed this induces a unitary coding on
M such that arbitrary and unknown states can be initial-
ized on CC̄. The reader has probably noticed however
that the transformation (2) is generally unphysical in the
sense that it requires backward time evolution of CC̄, i.e.
one has to wait negative time steps between the swaps.
For this reason, even though the transformation origi-
nated from W † is coherently defined at a mathematical
level, it cannot be considered as a proper uploading al-
gorithm for transferring states from M to CC̄: to stress
this we will call the transformation associated to Eq. (2)
the reverse-downloading protocol. A proper uploading
algorithm will be defined in the final part of the paper
by imposing an extra hypothesis on the CC̄ couplings
and by adopting a simple change of perspective. For
the moment we neglect this point and simply focus on
the convergence properties of the downloading and the

reverse-downloading algorithms associated with Eqs. (1)
and (2).

Cooling: – We start by showing that the action of
W on CC̄ is effectively equivalent to a cooling pro-
cess which transfers any initial state into |e〉C |E〉C̄ .Let
|ψ〉CC̄ ∈ HCC̄ be an arbitrary state. We notice that the
C component of W |ψ〉CC̄ |e〉M is always |e〉C . Therefore
we can write

W |ψ〉CC̄ |e〉M = |e〉C
[√

η|E〉C̄ |φ〉M +
√

1 − η|∆〉C̄M

]

(3)

with |∆〉C̄M being a normalized vector of C̄M which sat-
isfies the identity C̄〈E|∆〉C̄M = 0. It is worth stressing
that the decomposition (3) is unique and that η, |φ〉M
and |∆〉C̄M are typically complicated functions of the in-
put state |ψ〉CC̄ . The quantity η plays an important role:
it gives us the fidelity between the initial state of CC̄ and
the target state |e〉C |E〉C̄ of the cooling process. An ex-
pression for η can be obtained by focusing on the reduced
density matrix of the subsystem C̄. From our definitions
it follows that after the first step of the protocol this is

τ(ρC̄) ≡ trCM

[

US1 (|ψ〉C̄C〈ψ|⊗ |e〉M 〈e|)S1U
†
]

= trC

[

U (ρC̄ ⊗ |e〉C〈e|)U †
]

, (4)

with ρC̄ ≡ trC [|ψ〉C̄C〈ψ|] being the reduced density ma-
trix associated with the initial state |ψ〉C̄C . Reiterating
this expression we notice that the state of C̄ after L steps
can be obtained by successive application of the map (4).
Consequently Eq. (3) gives η = C̄〈E|τL (ρC̄) |E〉C̄ , which,
according to the mixing properties of τ given at the be-
ginning of the section, shows that η → 1 for L → ∞.
Specifically we can use [12] to claim that for all input
states |ψ〉 the following inequality holds

|η − 1| ! ‖τL (ρC̄) − |E〉C̄〈E|‖1 ! K κL LdC̄ , (5)

where K is a constant which depends upon dC̄ ≡ dimHC̄

and κ ∈]0, 1[ is the second largest of the moduli of eigen-
values of the map τ .

Coding transformation:– Let us now derive the de-
coding/encoding transformation that relates states on
the memory M to the states of CC̄. The idea is to ap-
ply the decomposition (3) to each element of a given or-
thonormal basis {|ψk〉CC̄} of HCC̄ , and to define the lin-
ear operator D on HM which, for all k, performs the
transformation

D|ψk〉M = |φk〉M . (6)

In this expression |ψk〉M are orthonormal vectors of M
used to represent the states |ψk〉CC̄ of HCC̄ on M (for-
mally they are obtained by a partial isometry from C̄C
to M). The vectors |φk〉M instead are connected to the
|ψk〉CC̄ through Eq. (3). Typically, for finite values of L,
the |φk〉M will not be orthogonal. However it is possible
to show that they become asymptotically orthogonal in

network memory

2

a quantum memory and must be at least as large as the
system CC̄. As sketched in Fig. 1 we can imagine it to
be split into sectors M!, HM =

⊗L
!=1

HM!
with the HM!

being isomorphic to HC (i.e. dimHM!
= dimHC).

For downloading we assume that the memory M is
initialized in |e〉M ≡

⊗

! |e〉M!
with the vectors |e〉 to be

defined in the following. To download an arbitrary initial
state |ψ〉CC̄ of CC̄ into the memory M we perform a
sequence of unitary gates between M and C, intermitted
by the time evolution U = exp[−iHt] on CC̄ for some
fixed time interval t. More specifically, at step " of the
protocol we perform a unitary swap S! between system C
and system M!. The protocol stops after the Lth swap
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CC̄ into M can be done with arbitrarily high fidelity [5]
and the transformation which allows one to recover |ψ〉
from M can be explicitly constructed.

For uploading an arbitrary input state |ψ〉 from M to
CC̄ one is tempted to revert the downloading protocol.
Roughly speaking, the idea is to initialize the memory in
the state that it would have ended up in after applying
W if system CC̄ had started in the state we want to
initialize. Then we apply the inverse of W given by
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† · · ·S!U

† · · ·SL−1U
†SLU † . (2)
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isfies the identity C̄〈E|∆〉C̄M = 0. It is worth stressing
that the decomposition (3) is unique and that η, |φ〉M
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†
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= trC
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]

, (4)
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Josephson junction arrays can be used as quantum channels to transfer quantum information between distant

sites. In this paper we discuss simple protocols to realize state transfer with high fidelity. The channels do not

require complicated gating but use the natural dynamics of a properly designed array. We investigate the

influence of static disorder both in the Josephson energies and in the coupling to the background gate charges,

as well as the effect of dynamical noise. We also analyze the readout process, and its back action on the state

transfer.
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The transmission of a quantum state through a channel

between distant parties is an important issue in quantum

communication. In optical systems photons can be trans-

ferred coherently over large distances.1 However, it is also

highly desirable to have similar protocols for quantum infor-

mation transfer in solid-state environments. A possible solu-

tion would be to interface solid-state quantum hardware to

optical systems.2 Another possibility is to use flying qubits,

i.e., to transfer the physical qubits along leads.3 Inspired by

the paper of Bose4 we developed the idea to construct a

genuine quantum transmission line using a Josephson junc-

tion array.

Recently, a spin chain with ferromagnetic Heisenberg in-

teractions has been proposed for quantum communication.4

It was shown that Heisenberg chains can be used to transfer

unknown quantum states over appreciable distances !#102
lattice sites" with high fidelity.4–7 By preparing the state to be
transferred at one end of the chain and waiting for a well-

defined time interval, one can reconstruct the state at the

other end of the chain. Even perfect transfer could be

achieved over arbitrary distances in spin chains.8 Quantum

state transport through harmonic chains was considered in

Ref. 9.

Josephson qubits are among the most promising candi-

dates as building blocks of quantum information

processors.10,11 In this Rapid Communication, we extend

their application range to quantum communication and show

that a one-dimensional Josephson array is a natural transmis-

sion line for systems with superconducting charge qubits. We

calculate the transmission fidelity and investigate the effect

of static inhomogeneities and dynamical noise. We also ana-

lyze the readout process by a single-electron transistor !SET"
at the end of the array. To our knowledge, this is the first

realizable and concrete implementation of a solid-state quan-

tum communication protocol following the idea of Bose.4

The model that we want to study is schematically

illustrated in Fig. 1 and described by the Hamiltonian

H=HJJ+Hqp+Hcoup, where

HJJ =
1

2
$
ij

L

!Qi ! Qxi"Cij
!1!Qj ! Qxj" ! EJ$

i

L!1

cos !i,i+1 !1"

is the Hamiltonian of a one-dimensional Josephson junction
array12 of length L, and !i,i+1=!i!!i+1. The other terms of
the Hamiltonian describe the measurement apparatus and
will be discussed later. The charge Qi and phase !i are ca-
nonically conjugated. The first term in Eq. !1" is the charging
energy, Cij is the capacitance matrix; the second is due to
Josephson tunneling. An external gate voltage Vxi gives
a contribution to the energy via the induced charges
Qxi=2eqxi=VxiCii. This external voltage can be either applied
to the ground plane or unintentionally caused by trapped
charges in the substrate !in this case Qxi will be a random
variable". We assume that each island is coupled to its near-
est neighbors by junction capacitances C and to the ground
by a capacitance C0. In this case, the charging interaction has
a range given by %C /C0 in units of the lattice spacing of the
array.12 In the following we put "=kB=1.
In the charge regime e2C00

!1#EJ, the system is approxi-
mately described by only two charge states for each island.

FIG. 1. Dashed box: one-dimensional Josephson array proposed

for the transmission of quantum states. The crossed rectangles de-

note the Josephson junctions between the islands. The state pre-

pared on the left-most island is transfered to the right-most island

by the time evolution generated by the Hamiltonian. Left: the

Cooper-pair box !charge qubit" used to prepare the state. Right: the
SET transistor used as measurement device.
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Fig. 2 A schematic plot of the resistance of a Joseph-
son array as a function of temperature for different sam-
ples.At the critical value of EJ/EC the system becomes
insulating.

Adding the Josephson coupling, which describes the Cooper pair tunneling, and the interaction of Cooper
pair charges we arrive at the Quantum Phase Model (QPM) Hamiltonian:

H =
1
2

∑

i,j

(qi − qx) Uij (qj − qx) − EJ

∑

〈i,j〉

cos
(
φi − φj

)
. (4)

Here 2eqi is the net charge on the i-th island. An external gate voltage Vx contributes to the energy via the
induced charge qx =

∑
j CijVx/2e. Quantum mechanics enters through the commutation relation between

charge and phase operators

[qi, eiφj ] = δijeiφj . (5)

The connection between the Bose-Hubbard and the Quantum Phase model can be seen by writing the
field bi in terms of its amplitude and phase and subsequently approximating the amplitude by its average
(the mapping becomes more accurate as the average number of bosons per site increases). This procedure
leads to the following identification of the quantities in the two formulations: bi → exp(−iφi), 〈n〉 t → EJ ,
ni → qi, and µ + U →

∑
j Uijqx,j .

The two contributions in the Hamiltonian Eq. (4) favor different types of ground states. The Josephson
energy tends to establish phase coherence. On the other hand, the charging energy favors charge localization
on each island and therefore tends to suppress superconducting coherence. This interplay becomes evident
if one recalls the Josephson relation

dφi

dt
=

2e

! Vi =
2e

! C−1
ij Qj . (6)

A constant charge (in time) on the islands implies strong fluctuations in the phases. On the other hand, phase
coherence leads to strong fluctuations in the charge.

The properties of Josephson arrays in the quantum regime have been reviewed in [7]. Here we recall
some characteristics of the superconductor-insulator transition. The transition is marked by a differing be-
havior of the resistance as a function of temperature for different values of the ratio EJ/EC . A schematic
plot is given in Fig. 2. Samples for which the Josephson coupling dominates undergo at finite tempera-
ture a transition to a superconducting state. Below this critical temperature the array is globally coherent.
However, on lowering the ratio EJ/EC at some critical value the resistance increases when lowering the
temperature. This upturn of the resistance signals the existence of an insulating state at zero temperature.
The striking fact is that the whole array is insulating despite the fact that each island is still superconducting!

Charge-vortex duality. The properties of a Josephson array are to a large extent characterized by its
topological excitations: charges and vortices. A powerful way to highlight their role is to map the QPM,

c© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

Quantum Phase Model Hamiltonian

H =
∑

ij

Uijσ
i
zσ

z
j −

EJ

2

∑

i

(σi
xσj

x + σi
yσj

y)−
∑

j

hjσ
j
z

XXZ model 
(anisotropic 
Heisenberg

 model)
long range interaction

Josephson tunneling

charging energy
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charge regime

inverse capacitance matrix



The chain Hamiltonian HJJ is equivalent to an anisotropic

XXZ spin-1 /2 Heisenberg model,13,14 the Josephson chain is

thus different from the XY and Heisenberg cases.4 It is char-

acterized by a strong anisotropy between the z direction and

the xy plane. Moreover the z coupling has a range that de-

pends on the electrostatic energy and can extend over several

lattice constants.

At t=0, the chain is initialized in the state !!0"
= !! ,000. . .0", where !0" #!2"$ denotes the state of an

island without #with$ an excess Cooper pair, and !!"
=cos#" /2$!0"+ei# sin#" /2$!2" is the state that has been pre-
pared in the left-most island. This initial state is not an eigen-

state of the Hamiltonian; it will evolve as a function of time.

In fact, as the total charge Q=%iQi is a conserved quantity,

the dynamics is restricted to the L+1-dimensional space

H=H0! H2 of total charge zero, H0, and charge two,

H2=span&!j"', where !j", 1$ j$L is the state with an excess

Cooper pair on the jth site. In this basis the Hamiltonian

reads

HJJ!j" = 2e2(Cjj
!1
! 2%

i=1

L

Cij
!1
qxi)!j" !

EJ

2
*#1 ! % jL$!j + 1"

+ #1 ! % j1$!j ! 1"+ . #2$

We first calculate the fidelity of transmission and the time

required for the transfer of information as a function of the

coupling constants of the Josephson chain. The quality of the

transmission is quantified by the fidelity of the #mixed$ state
&L of the right-most island #site L$ to the initial state

FL#t$ =
1

4'
, -!!&L#t$!!"d( . #3$

This definition gives the fidelity averaged over all possible

initial states on the Bloch sphere, 1 /2$FL$1.
The fidelity is a strongly oscillating function of time. Only

at well-defined times the state is transferred faithfully

through the chain. This does not necessarily correspond to

the time in which a Cooper pair has been transferred, since

also the relative phases of the state have to be reconstructed.

In Fig. 2 we show the value of the first fidelity maximum and

the time at which it is reached as a function of the length L of

the array and for different values of the ratio C /C0. For the

parameters considered, the fidelity is never smaller than

75%. For longer chains, or if the condition C0)C is re-

leased, the first maximum of the fidelity is considerably re-

duced. Another option is to fix a threshold for the fidelity of

transmission and seek for the first local maximum above the

threshold. The time at which these maxima occur increases

exponentially with the chain length. The value of the fidelity

does not necessarily decrease on increasing L, and for larger

arrays a higher fidelity can be achieved #although at larger
times$, see Fig. 3. The results of Figs. 2 and 3 are encourag-
ing since they indicate that faithful state transmission using

Josephson chains is already possible with present-day tech-

nology.

Since experimental arrays are never completely homoge-

neous, we now consider the case in which a small amount of

static disorder is present. In general, imperfections will re-

duce the fidelity. In Fig. 4 we show both the effects of bond

disorder #Josephson couplings distributed around an average
value$ and site disorder #mimicking the effect of static back-

FIG. 2. #Color online$ Maximum value of the fidelity as a func-
tion of the length of the chain for two different values of C /C0
*1 and #2e$2 / #EJC0$=10. Inset: The time at which the maximum is
reached.

FIG. 3. #Color online$ Maximum value of the fidelity as a func-
tion of the length of the chain for three different values of C /C0
+1 and #2e$2 / #EJC0$=10. Inset: The time at which the maximum is
reached.

FIG. 4. #Color online$ Fidelity as a function of time for an array
of length L=7, #2e$2 / #EJC0$=10 and C=0, i.e., a junction capaci-
tance much smaller than the ground capacitance. Disorder param-

eters: relative variance ,EJ /EJ=0.1 for bond disorder; absolute
variance ,Qx /2e=0.025 for site disorder. Dotted line #right axis$:
variance of the fidelity for the case without disorder.
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Figure 2. Capacitively coupled qubits.

capacitances (not shown in the figure) are equal to γC. The Hamiltonian of the qubit

H0 = −"0σ
x − Bσz (1)

is the same as that of a spin-1
2 particle in a magnetic field. The eigenstates |0〉 ≡ |↓〉 and |1〉 ≡ |↑〉

of σz correspond to clockwise and counterclockwise currents. The coefficient "0 is a tunnelling
amplitude between these states and B depends on the flux through the qubit $ and the modulus
of the circulating current Ip

B = Ip($)
(
$ − 1

2$0
)
, (2)

where, $0 = h/(2e) is the flux quantum. The circulating current Ip depends on the magnetic
frustration, i.e. the amount of external magnetic flux in the loop in units of the flux quantum [11].
The effective magnetic field B is determined by the qubit parameters and the external magnetic
flux.

We assume, that the temperature is low enough, i.e. kBT is smaller than the energy of the
state |1〉, so we can neglect thermal fluctuations.

Persistent-current qubits can be capacitively coupled (with coupling capacitance βC, see
figure 2) to form a one-dimensional array, that for β & 1 has the Hamiltonian

H = −
N∑

i=2

[Jxy(σ
+
i σ−

i−1 + σ−
i σ+

i−1) + Jzσ
z
i σ

z
i−1] −

N∑

i=1

("σx
i + Bσz

i ). (3)

The terms Jzσ
z
i σ

z
i+1 are due to the small inductive coupling between adjacent qubits. Here,

Jz = 2Mq,qI
2
p, where Mq,q is their mutual magnetic inductance. The coupling constant Jz could

in principle be increased by a common Josephson junction between two neighbouring qubits
[9]. The tunnelling amplitude " between the states |0〉 and |1〉 of the coupled qubits differs
from the value "0 for individual non-coupled qubits, because coupling suppresses independent
tunnelling events, in which only one qubit changes its state. Also, simultaneous tunnelling
events |11〉 ←→ |00〉 for two neighbouring qubits are suppressed and therefore we neglect
such processes in our model. Correlated tunnelling events |10〉 ←→ |01〉 are unaffected by the
coupling.

The Hamiltonian (3) contains a term "
∑

i σ
x
i , i.e. it does not conserve the z-component of

the total spin (which is equivalent to the number of sites in the excited state |1〉). Therefore, the
theory proposed in [1] is not valid in our case. However, if β & 1 " is much less than Jxy [9] and
we can neglect this term at first. Later, we will use perturbation theory to analyse how nonzero
values of " affect the results.
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Penning Traps

and the efficiency of our system as a channel for quantum-
information transmission. Finally, the results of our analysis
are summarized and discussed in Sec. V. The more technical
details, concerning the derivation of the fidelity, are pre-
sented in the Appendix.

II. LINEAR ARRAY OF TRAPPED ELECTRONS

We consider a linear array of N electrons in micro-
Penning traps !15". According to the different geometry of
the electrode arrangement, the microtrap array can be either
parallel to the direction of the confining magnetic field—i.e.,
along the z axis as shown in Fig. 1#a$—or orthogonal to this
field—for example, along the x axis as shown in Fig. 1#b$. To
confine electrons in an array along the z direction we can use
a closed cylindrical electrode structure !9,10" or an open wire
arrangement !12". This latter structure can also accommodate
the electrons in an array aligned along the x axis. An orderly

set of microtraps, orthogonal to the trapping magnetic field,
can be likewise realized by means of a planar electrode sys-
tem !13". As we will see, the different orientation of the
linear array of particle affects the form of the resulting inter-
action Hamiltonian. Hence, we first derive the expression of
the effective Hamiltonian in the case of microtraps aligned
along the z axis. Then we will show how this expression
modifies in the case of an array directed along the x axis.

The Hamiltonian of a system of N electrons confined in an
array of Penning traps can be written as

H = %
i=1

N

Hi
NC + %

i!j
Hi,j

C , #1$

where

Hi
NC =

#pi − eAi$2

2me
+ eVi −

ge"

4me
!i · Bi #2$

represents the single-electron dynamics inside each trap and

Hi,j
C =

e2

4#$0&ri − rj&
#3$

describes the Coulomb interaction between electrons i and j.
In Eqs. #2$ and #3$ me, e, g, and !i are, respectively, the
electron mass, charge, gyromagnetic factor, and Pauli spin
operators. As shown in Fig. 1#a$, we assume that the mi-
crotraps are aligned along the z axis and that zi,0 is the posi-
tion of the center of the ith trap. The electrostatic potential

Vi#xi,yi,zi$ ' V0
#zi − zi,0$2 − #xi
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cillators of the ith electron. The frequencies of these oscilla-
tors,

FIG. 1. Schematic drawing illustrating two different geometries
for a linear array of micro-Penning traps. The traps are represented
by sketching the electrostatic potential along the z axis. #a$ The
electrons are aligned along the z axis, parallel to the confining mag-
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and the efficiency of our system as a channel for quantum-
information transmission. Finally, the results of our analysis
are summarized and discussed in Sec. V. The more technical
details, concerning the derivation of the fidelity, are pre-
sented in the Appendix.

II. LINEAR ARRAY OF TRAPPED ELECTRONS

We consider a linear array of N electrons in micro-
Penning traps !15". According to the different geometry of
the electrode arrangement, the microtrap array can be either
parallel to the direction of the confining magnetic field—i.e.,
along the z axis as shown in Fig. 1#a$—or orthogonal to this
field—for example, along the x axis as shown in Fig. 1#b$. To
confine electrons in an array along the z direction we can use
a closed cylindrical electrode structure !9,10" or an open wire
arrangement !12". This latter structure can also accommodate
the electrons in an array aligned along the x axis. An orderly

set of microtraps, orthogonal to the trapping magnetic field,
can be likewise realized by means of a planar electrode sys-
tem !13". As we will see, the different orientation of the
linear array of particle affects the form of the resulting inter-
action Hamiltonian. Hence, we first derive the expression of
the effective Hamiltonian in the case of microtraps aligned
along the z axis. Then we will show how this expression
modifies in the case of an array directed along the x axis.

The Hamiltonian of a system of N electrons confined in an
array of Penning traps can be written as
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represents the single-electron dynamics inside each trap and

Hi,j
C =

e2

4#$0&ri − rj&
#3$

describes the Coulomb interaction between electrons i and j.
In Eqs. #2$ and #3$ me, e, g, and !i are, respectively, the
electron mass, charge, gyromagnetic factor, and Pauli spin
operators. As shown in Fig. 1#a$, we assume that the mi-
crotraps are aligned along the z axis and that zi,0 is the posi-
tion of the center of the ith trap. The electrostatic potential
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and the efficiency of our system as a channel for quantum-
information transmission. Finally, the results of our analysis
are summarized and discussed in Sec. V. The more technical
details, concerning the derivation of the fidelity, are pre-
sented in the Appendix.
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linear array of particle affects the form of the resulting inter-
action Hamiltonian. Hence, we first derive the expression of
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In Eqs. #2$ and #3$ me, e, g, and !i are, respectively, the
electron mass, charge, gyromagnetic factor, and Pauli spin
operators. As shown in Fig. 1#a$, we assume that the mi-
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Interaction among 
electrons: coulomb 

repulsion

− 2!"i,j!az,i + az,i
† −

g

2
#$i

z"!az,j + az,j
† −

g

2
#$ j

z" . #29$

Expression #29$ contains a term which represents an effec-
tive spin-spin coupling between different electrons in the ar-
ray. This effect was already pointed out in Ref. %11&. More-
over, we note that the unitary transformation enforces a
coupling between the axial motion of the jth electron and the
spin of the ith electron. This effect is smaller by a factor of
"i,j /%z&1 than the corresponding coupling %see Eq. #15$&
between internal #spin$ and external #axial motion$ degrees
of freedom of the same particle. The error introduced by
neglecting these terms is estimated in the Appendix.

The remaining term in the Hamiltonian #19$ transforms
into
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$ j

#+$"
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%̃c
$i

#+$"
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g

4
#

%z

%a
'%z

%̃c
$ j

#−$" . #30$

From Eq. #30$ we see that the unitary transformation pro-
duces the term

!"i,j#
2g2

8

%z
4

%a
2%̃c

2 #$i
#−$$ j

#+$ + $i
#+$$ j

#−$$

= !"i,j#
2 g2

16

%z
4

%a
2%̃c

2 #$i
x$ j

x + $i
y$ j

y$ , #31$

which represents a direct coupling between the spin motion
of different particles. Also in this case, there are additional
terms in expression #30$ that couple the spin of an electron to
the cyclotron motion of the other electrons in the chain. In
comparison with the spin-cyclotron interaction for the same
particle %see Eq. #15$&, this coupling is reduced by a factor of
"i,j%z / %̃c%a, which, in the range of the parameters considered
here, is typically much less than 1. For an estimate of the
errors introduced by these terms we refer to the Appendix.

Hence, summarizing the results of our derivation, we have
an effective spin-spin coupling between the electrons with
the spatial dynamics substantially decoupled from the spin
dynamics. Consequently the spin part of the system Hamil-
tonian can be written, in the case of a linear array of elec-
trons along the z axis, as

Hs! ( )
i=1

N
!

2
%s$i

z − !)
i(j

N

#2Ji,j
z $i

z$ j
z − Ji,j

xy$i
x$ j

x − Ji,j
xy$i

y$ j
y$ ,

#32$

where

Ji,j
z = !g

2
"2

"i,j#
2 = !g

2
"2 !e4b2

16)*0me
4%z

4di,j
3 , #33$

Ji,j
xy = !g

4
"2

"i,j#
2 %z

4

%a
2%̃c

2 ( 106!g

4
"2 !e4b2

16)*0me
4%c

4di,j
3 . #34$

In Eq. #34$ we used the relations %a(10−3%c and %̃c(%c.
We obtain a spin-spin interaction that is antiferromagnetic
#ferromagnetic$ if it is transmitted by the cyclotron #axial$
motion.

The situation is completely different when the linear array
of electrons is aligned along the x axis:

Hs! ( )
i=1

N
!

2
%s$i

z +
!

2 )
i+j

N

#2Ji,j
z $i

z$ j
z − Ji,j

xy$i
x$ j

x − Ji,j
xy$i

y$ j
y$ .

#35$

In this case, the sign of the Heisenberg-like coupling is re-
versed. The ferromagnetic #antiferromagnetic$ interaction is
associated with the cyclotron #axial$ motion. Similar results
were also found in the case of ions, in a Paul trap, driven by
six counterpropagating laser beams %14&.

IV. CHANNEL FOR QUANTUM COMMUNICATION

The Hamiltonians #32$ and #35$ describe a system of N
spins coupled through Heisenberg-like interactions. These
Hamiltonians can transmit an unknown spin state from the
electron placed at one end of the linear array to the electron
placed at the other end of the array. The remarkable fact is
that this quantum-information transfer is realized only by
means of the free dynamical evolution of the system, without
requiring any external action by the experimenter during the
transfer.

Therefore, let us analyze the potentialities of our system
as a quantum communication channel. In our scheme, the
dependence of the spin-spin coupling strength on the system
parameters is shown in Eqs. #33$ and #34$. In particular, Ji,j

z

and Ji,j
xy are proportional to 1/di,j

3 ; that is, they decrease with
the distance between the particles i and j according to the
dipolar decay law. They also depend on the applied magnetic
field gradient and on the characteristic frequencies of the
electron motion. More specifically, the value of Ji,j

xy #Ji,j
z $ de-

pends on the cyclotron #axial$ frequency %c #%z$. As a con-
sequence of this fact we can neglect Ji,j

xy with respect to Ji,j
z

when the value of the ratio %c /%z is sufficiently large, as in
the case considered in %11&. Differently, in this paper, we
choose smaller values for the ratio %c /%z #generally about 20
or less$, so that Ji,j

xy is of the same order of magnitude of Ji,j
z

or even larger. Indeed, one can easily check, from Eqs. #33$
and #34$, that when %c /%z(18.8 it is possible to obtain an
isotropic Heisenberg-like interaction with 2 Ji,j

z =Ji,j
xy.

Generally the time required to transfer a qubit, encoded in
the spin state, along a Heisenberg chain depends on the val-
ues of Ji,j

xy, so that the larger the value of Ji,j
xy, the faster the

transfer. Indeed, the state transfer time tex in a Heisenberg
chain, consisting of just two spins, is equal to

tex *
)

4Jxy . #36$

SPIN CHAINS WITH ELECTRONS IN PENNING TRAPS PHYSICAL REVIEW A 75, 032348 #2007$

032348-5

long range interactions

Jij ∝ d−3
ij

“effective” spins-spins coupling
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