Quantum memories and
error correction

By Farzeh Kimiace

Based on:
James R. Woottom Journal of Modern Optics, 59 (2012) 1717.

Contents

㘳勧炎 Toric code model
Toric code with open boundary condition

Holes coding

Toric code model

$$
\begin{aligned}
H & =-J \sum_{S} A_{S}-K \sum_{P} B_{P} \\
A_{s} & =\prod_{j \in \text { star }}^{S} \sigma_{j}^{x}=\sigma_{1}^{x} \sigma_{2}^{x} \sigma_{3}^{x} \sigma_{4}^{x} \\
B_{p} & =\prod_{j \in \text { plaquetere } p} \sigma_{j}^{x}=\sigma_{a}^{z} \sigma_{b}^{2} \sigma_{c}^{2} \sigma_{d}^{2}
\end{aligned}
$$

$$
\left[A_{s}, B_{P}\right]=0, \quad A_{S}^{2}=B_{P}^{2}=1, \quad \prod_{s} A_{s}=\prod_{p} B_{P}=1
$$

\# qubits $=2 \mathrm{~N}$
\# independent stabilizers $=2 \mathrm{~N}-2$
A. Y. Kitaer Ann. Phys. 303, 2 (2003)

Degeneracy $=\frac{2^{2 \mathrm{~N}}}{2^{2 \mathrm{~N}-2}}=4$

3

Ground state

$$
|g . s .\rangle=\frac{1}{\sqrt{2^{N_{S}}}}\left[\prod_{\text {sur } S}\left(A_{S}+1\right)\right]|o\rangle^{\otimes 2 N}
$$

$$
\left.\left.\left.A_{S} \mid \text { g.s. }\right\rangle=|g . s .\rangle, \quad B_{P} \mid \text { g.s. }\right\rangle=\mid \text { g.s. }\right\rangle
$$

$$
\begin{aligned}
& H=-J \sum_{S} A_{S}-K \sum_{P} B_{P} \rightarrow H|g . s .\rangle=\left(-J N_{S}-K N_{P}\right)|g . s .\rangle
\end{aligned}
$$

Excitations

$A_{s} S_{c}^{z}=-S_{c}^{z} A_{s}$ for $S \in 1,2 \rightarrow A_{s} S_{c}^{z} \mid g$. ..$\rangle=-S_{c}^{z}|g . s$.
Eigenstate of eigenvalue -1 for thoes 2

Statistics of the Excitations

$$
\begin{aligned}
\left|\psi_{i}\right\rangle & =S_{t}^{Z} S_{s}^{X}|g . s .\rangle \\
\left|\psi_{f}\right\rangle & =S_{t_{1}^{Z}}\left|\psi_{i}\right\rangle \\
& =S_{t_{1}^{Z}}^{Z} S_{t}^{Z} S_{s}^{X}|g . s\rangle \\
& =-S_{t}^{Z} S_{s}^{X} S_{\hbar_{1}}^{Z}|g . s .\rangle \\
& =-\left|\psi_{i}\right\rangle
\end{aligned}
$$

Toric code with open boundary condition

$$
\begin{gathered}
H=-\sum_{S} A_{S}-\sum_{S^{\prime} \in \partial m} A_{S^{\prime}}-\sum_{P^{\prime} \in \partial o m} B_{P^{\prime}}-\sum_{P} B_{P} \\
{\left[A_{S}, B_{P}\right]=0, \quad A_{S}^{2}=B_{P}^{2}=1,} \\
\prod A_{s} \neq 1, \quad \prod_{p} B_{p} \neq 1
\end{gathered}
$$

\# quits $=2 \mathrm{~N}$
\# independent stabilizers $=2 \mathrm{~N}-1$

$$
\longrightarrow \text { Degeneracy }=\frac{2^{2 N}}{2^{2 N-1}}=2
$$

Degeneracy!

$\mathrm{N}=18$
Hilbert space: 2^{18}
\# Plaquett=8
\# Star=9

$$
\longrightarrow 2^{17}
$$

Ground states and coding

$$
|\xi\rangle=\frac{1}{\sqrt{2^{N_{s}}}}\left[\prod_{\text {Suur }}\left(A_{S}+1\right)\right]|0\rangle^{\otimes 2 N}
$$

$|1\rangle=T_{X} \mid$ g.s. $\rangle=\begin{array}{ll} & \ddots \ddots \ddots \\ & \ddots \ddots \ddots\end{array}$

What about top and bottom boundaries ?!

$$
\begin{array}{ll}
\mid \text { g.s. }\rangle=\frac{1}{\sqrt{2^{* S}}} \prod_{S}\left(A_{s}+1\right)|0\rangle^{82 N}, & \left.\mid \text { g.s. }\rangle=T_{x} \mid \text { g.s. }\right\rangle \\
|\Phi\rangle=\frac{1}{\sqrt{2^{4 P}}} \prod_{P}\left(B_{P}+1\right)|+\rangle^{\otimes 2 N}, & \left|\Phi^{\prime}\right\rangle=T_{z}|\Phi\rangle
\end{array}
$$

$$
\left.\left.|\Phi\rangle=\alpha \mid \text { g.s. }\rangle+\beta \mid \text { g.s. }\rangle,\left|\Phi^{\prime}\right\rangle=\alpha^{\prime} \mid \text { g.s. }\right\rangle-\beta^{\prime} \mid \text { g.s. }{ }^{\prime}\right\rangle
$$

$$
\langle\text { g.s. } \mid \Phi\rangle=\frac{1}{\sqrt{2^{\# s} 2^{\# P}}}{ }^{\otimes 2 N}\langle 0| \prod_{S}\left(A_{S} \stackrel{\longrightarrow 1) \prod_{P}\left(B_{P}\right.}{\longleftrightarrow}+1\right)|+\rangle^{\otimes 2 N}
$$

$$
=\frac{1}{\sqrt{2^{\# S} 2^{\# P}}} 2^{\# S} 2^{\# P} \otimes 2 N\langle 0 \mid+\rangle^{\otimes 2 N}=\frac{1}{\sqrt{2}}=\alpha
$$

$$
\text { Coding: }|\Phi\rangle \rightarrow|+\rangle, \quad T_{Z}|\Phi\rangle \rightarrow|-\rangle
$$

Excitations!

Some strings are able to create a single anyon!

Stabilizer measurements

Barbara M. Terhal, arxiv:1302.3428v2

Creation of holes

\% We first choose a selection of plaquette stabilizers that we no longer wish to enforce.

Creation of holes...

* Measuring in the x basis

$$
\begin{aligned}
& \frac{\left(1+\sigma_{1}^{x}\right)}{2}|\xi\rangle=\ldots\left(1+\sigma_{2,3,4}^{x}\right)\left(1+\sigma_{5,6,7}^{x}\right) \ldots|+\rangle_{1}|0\rangle^{\otimes 2 N-1} \\
& \frac{\left(1-\sigma_{1}^{x}\right)}{2}|\xi\rangle=\ldots\left(1-\sigma_{2,3,4}^{x}\right)\left(1-\sigma_{5,6,7}^{x}\right) \ldots|-\rangle_{1}|0\rangle^{\otimes 2 N-1}
\end{aligned}
$$

Creation of holes...

15

Expansion of holes

Expansion is simply achieved through more creation.

Contract a hole

$$
\begin{aligned}
& \left|\Psi>=C_{1 p} C_{4 p}\right| K>\mid 0>_{p} \\
& \left.x_{1} x_{2} x_{3} x_{p}|\Psi>=| \Psi\right\rangle \quad\left|x_{4} x_{5} x_{6} x_{p}\right| \Psi>=\mid \Psi>
\end{aligned}
$$

Rough holes

Hole coding

Smooth hole
(smooth qubit)

Rough hole (rough qubit)

Hole coding

CNOT gate

CNOT

Converting a rough qubit to a smooth qubit

Converting a smooth qubit into a rough qubit

Converting a rough qubit to a smooth qubit

Universal gates!

S. Bravyi and A. Kitaev, Phys. Rev. A 71, 022316 (2005).

Thank you

