

كانالهاي كوانتومي اكستريم با استفاده از شبکههای عصبی لاله معمارزاده اصفهاني

تشخيص

محمد مهدي ماستري فراهاني

آبان ۲ه۱۴

فهرست مطالب

صرح مسئله

• حل مسئله به صورت الگوریتمی (ەشبكەھاى عصبى (ەنتايج حل مسئله با روش شبکههای عصبی
آینده پژوهی

Quantum Evolutions, Quantum Simulations, Extreme Quantum Channels

Quantum Evolutions (PTP maps)

$$\rho \longrightarrow \phi(\rho)$$

$$\begin{cases} \phi(\rho) > 0 & \forall \rho \in \mathcal{D}(\mathcal{H}) \\ \operatorname{Tr}(\rho) = \operatorname{Tr}(\phi(\rho)) = 1 \end{cases}$$

Quantum Evolutions (CPTP maps)


```
Representations of CPTPs (Choi Matrix)
```

$$C_{\phi} = (\phi \otimes I_d) |\Gamma\rangle \langle \Gamma| = \frac{1}{d} \sum_{i,j=0}^{d-1} \phi(|i\rangle \langle j|) \otimes |i\rangle \langle j|$$

$$\phi \text{ is } CPTP \quad \Leftrightarrow \quad \boxed{C_{\phi}} \ge 0$$

Choi, M. (1975). Completely positive linear maps on complex matrices. Linear Algebra and Its Applications, 10(3), 285-290.

Representations of CPTPs (Kraus Operators)

$$\phi \text{ is } CP \iff \phi(\rho) = \sum_{i=1}^{K} A_i \rho A_i^{\dagger}$$

Kraus, K. (1983). States, effects, and operations: Fundamental Notions of Quantum Theory. Springer.

Representations of CPTPs (Affine)

Representations of CPTPs (Affine)

$$r \in S^{d^2-2} \cup \{\text{inside of } S^{d^2-2}\}$$

Bengtsson, I., & Życzkowski, K. (2017). Geometry of quantum states: An Introduction to Quantum Entanglement. Cambridge University Press.

```
Representations of CPTPs (Affine)
```

$$\rho' = \phi(\rho) \qquad \begin{array}{c} Rep \\ \rightarrow \end{array} \qquad r' = T_{\phi}r$$

$$\boldsymbol{T_{\phi}} = \begin{pmatrix} 1 & 0 \\ \boldsymbol{t_{\phi}} & \boldsymbol{M_{\phi}} \end{pmatrix}$$

Nielsen, M.A., & Chuang, I.L. (2010). Quantum computation and quantum information: 10th Anniversary Edition. Cambridge University Press.

The Problem

d = 2

Wolf, M. M., Eisert, J., Cubitt, T. S., & Cirac, J. I. (2008). Assessing Non-Markovian quantum dynamics. Physical Review Letters, 101(15).

The Problem

The Main Problem

حل مسئله به صورت الگوريتمي

Choi Theorem, Unital and non-Unital Extreme Qubit Channels

Choi Theorem

$$\phi(\rho) = \sum_{i=1}^{K} A_i \rho A_i^{\dagger}$$

$$\left\{A_i^{\dagger}A_j\right\}_{i,j=1}^K$$

Linear Independence of $\{A_i^{\dagger}A_j\}_{i,i=1}^{K} \Leftrightarrow \phi \text{ is Extreme}$

Choi, M. (1975). Completely positive linear maps on complex matrices. Linear Algebra and Its Applications, 10(3), 285-290.

Complexity

 $O(d^6) + O(d^{4.6}) \sim O(d^6)$ Find $\{A_i\}_{i=1}^K$ Linear Independence of $\{A_i^{\dagger}A_j\}_{i,i=1}^{K}$ (Numerical)

حل مسئله با روش شبکههای عصبی

Neural Networks

Extreme Classifier

Extreme Classifier

 ${\mathcal X}$

Training Loss

 $\mathcal{L} = \left\| f_{\theta_1, \cdots, \theta_m}(x, y) - L(x, y) \right\|$

 $(x, y) \in \text{Train set}$

Learning (Optimization)

$\mathcal{L} \to 0 \quad \Leftrightarrow$

https://www.aic.fel.cvut.cz/research-areas/optimization

Evaluation

https://www.aic.fel.cvut.cz/research-areas/optimization

A Neuron

$n(\mathbf{x}) \in \mathbb{R}$

A Neuron (Mathematical Description)

Mehta, P., Bukov, M., Wang, C., Day, A. G. R., Richardson, C. C., Fisher, C. G., & Schwab, D. J. (2019). A high-bias, low-variance introduction to Machine Learning for physicists. Physics 27 Reports, 810, 1–124.

Possible non-linear activation function

Mehta, P., Bukov, M., Wang, C., Day, A. G. R., Richardson, C. C., Fisher, C. G., & Schwab, D. J. (2019). A high-bias, low-variance introduction to Machine Learning for physicists. Physics 28 Reports, 810, 1–124.

A Neural Network (NN)

A Neural Network (NN)

$$x'_{i} = a(\boldsymbol{w}_{i} \cdot \boldsymbol{x}_{i} + b_{i}) \iff \boldsymbol{x}' = a(\boldsymbol{w}\boldsymbol{x} + \boldsymbol{b})$$
$$w = \begin{pmatrix} \boldsymbol{w}_{1} \\ \vdots \\ \boldsymbol{w}_{n_{2}} \end{pmatrix}_{n_{2} \times n_{1}} \qquad \boldsymbol{b} = \begin{pmatrix} b_{1} \\ \vdots \\ b_{n_{2}} \end{pmatrix}_{n_{2} \times 1}$$

https://tikz.net/neural_networks/

 $f_{w_i,b_i}(x_{in})$

 \Leftrightarrow

Learn a NN

Universal Approximation Theorem

• A neural network with a single hidden layer can approximate any continuous, multi-input/multi-output function with arbitrary accuracy.

Complexity for Training a NN

$$O\left(n_{train} \times n_{epoch} \times \sum_{i=0}^{l-1} n_i n_{i+1}\right)$$

Mehta, P., Bukov, M., Wang, C., Day, A. G. R., Richardson, C. C., Fisher, C. G., & Schwab, D. J. (2019). A high-bias, low-variance introduction to Machine Learning for physicists. Physics 34 Reports, 810, 1–124.

حل مسئله با روش شبکههای عصبی (نتایج)

 \longrightarrow

Qubit Extreme Detection, Qutrit Extreme Detection

Architecture of our NN:

parameters = 106 115

Qubit Extreme Channels

Extremal Qubit Channels (d=2)

Extremal Qubit Channels (d=2) Unital

$\mathcal{U}(\rho) = U\rho U^{\dagger}$

$U \in SU(2)$

Ruskai, M. B., Szarek, S. J., & Werner, E. M. (2002). An analysis of completely-positive trace-preserving maps on M2. Linear Algebra and Its Applications, 347(1-3), 159–187. Mendl, C. B., & Wolf, M. S. (2009). Unital Quantum Channels – convex structure and revivals of Birkhoff's Theorem. Communications in Mathematical Physics, 289(3), 1057–1086.

Extremal Qubit Channels (d=2)

Detection of Extremal Qubit Channels using NN

Training set

Test Accuracy = 99.6%

Test Accuracy Of Non-unital = 12.6% Extreme

Detection of Extremal Qubit Channels using NN

Training set

Test Accuracy = 100%

Test Accuracy Of Non-unital = 17.7% Extreme

Detection of Extremal Qubit Channels using NN

Training set

Test Accuracy = 100%

Test Accuracy Of Non-unital = 100% Extreme Comparison of Complexities

Algorithmic

 $O(d^6) \sim O(2^6)$

 $O(d^4) \sim O(2^4)$

Qutrit Extreme Channels

Extremal Qudit Channels (d>2)

Extremal Qutrit Channels (d=3)

$$A_{1} = \begin{pmatrix} 0 & 0 & 0 \\ \sqrt{\alpha} & 0 & 0 \\ \sqrt{\beta} & 0 & 0 \end{pmatrix}, \qquad A_{2} = \begin{pmatrix} \sqrt{1 - \alpha - \beta} & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$B_1 = \begin{pmatrix} 0 & \sqrt{\alpha} & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \qquad B_2 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \sqrt{1 - \alpha} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$C_1 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & \sqrt{\alpha} & 0 \end{pmatrix}, \qquad C_2 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \sqrt{1 - \alpha} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$\begin{array}{c} \text{Training set} \\ A_{1} = \begin{pmatrix} 0 & 0 & 0 \\ \sqrt{\alpha} & 0 & 0 \\ \sqrt{\beta} & 0 & 0 \end{pmatrix}, \quad A_{2} = \begin{pmatrix} \sqrt{1 - \alpha - \beta} & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \\ B_{1} = \begin{pmatrix} 0 & \sqrt{\alpha} & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad B_{2} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \sqrt{1 - \alpha} & 0 \\ 0 & 0 & 1 \end{pmatrix} \\ C_{1} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & \sqrt{\alpha} & 0 \end{pmatrix}, \quad C_{2} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \sqrt{1 - \alpha} & 0 \\ 0 & 0 & 1 \end{pmatrix} \end{array}$$

Test Accuracy = 100%

$$\frac{\text{Test Accuracy}}{\text{Of C}} = 100\%$$

$$\begin{array}{l} \text{Training set} \\ A_{1} = \begin{pmatrix} 0 & 0 & 0 \\ \sqrt{\alpha} & 0 & 0 \\ \sqrt{\beta} & 0 & 0 \end{pmatrix}, \quad A_{2} = \begin{pmatrix} \sqrt{1 - \alpha - \beta} & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \\ B_{1} = \begin{pmatrix} 0 & \sqrt{\alpha} & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad B_{2} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \sqrt{1 - \alpha} & 0 \\ 0 & 0 & 1 \end{pmatrix} \\ C_{1} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & \sqrt{\alpha} & 0 \end{pmatrix}, \quad C_{2} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \sqrt{1 - \alpha} & 0 \\ 0 & 0 & 1 \end{pmatrix} \end{array}$$

Test Accuracy = 100%

$$\frac{\text{Test Accuracy}}{\text{Of B}} = 100\%$$

Training set

$$A_{1} = \begin{pmatrix} 0 & 0 & 0 \\ \sqrt{\alpha} & 0 & 0 \\ \sqrt{\beta} & 0 & 0 \end{pmatrix}, \qquad A_{2} = \begin{pmatrix} \sqrt{1 - \alpha - \beta} & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \\B_{1} = \begin{pmatrix} 0 & \sqrt{\alpha} & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \qquad B_{2} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \sqrt{1 - \alpha} & 0 \\ 0 & 0 & 1 \end{pmatrix}, \\C_{1} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & \sqrt{\alpha} & 0 \end{pmatrix}, \qquad C_{2} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \sqrt{1 - \alpha} & 0 \\ 0 & \sqrt{1 - \alpha} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Test Accuracy = 100%

 $\frac{\text{Test Accuracy}}{\text{Of A}} = 0.8\%$

$$\begin{array}{c} \text{Training set} \\ A_{1} = \begin{pmatrix} 0 & 0 & 0 \\ \sqrt{\alpha} & 0 & 0 \\ \sqrt{\beta} & 0 & 0 \end{pmatrix}, \quad A_{2} = \begin{pmatrix} \sqrt{1 - \alpha - \beta} & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \\ B_{1} = \begin{pmatrix} 0 & \sqrt{\alpha} & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad B_{2} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \sqrt{1 - \alpha} & 0 \\ 0 & 0 & 1 \end{pmatrix} \\ C_{1} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & \sqrt{\alpha} & 0 \end{pmatrix}, \quad C_{2} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \sqrt{1 - \alpha} & 0 \\ 0 & 0 & 1 \end{pmatrix} \end{array}$$

Test Accuracy = 100%

$$\frac{\text{Test Accuracy}}{\text{Of B}} = 73.2\%$$

Test Accuracy = 94.5%

Extremal G-covariant Qutrit Channels

Detection of Extremal G-covariant Qutrit Channels

Detection of Extremal G-covariant Qutrit Channels

Detection of Extremal G-covariant Qutrit Channels

Comparison of Complexities

Algorithmic

 $O(d^6) \sim O(3^6)$

 $O(d^4) \sim O(3^4)$

آينده پژوهي

دادن وابستگی بُعد به لایههای پنهان و بررسی عملکرد شبکهی عصبی در بُعدهای بالاتر

• توليد كانالهاى اكستريم با استفاده از شبكههاى عصبى مولد

تشكر از توجه شما!

FIG. 1: Schematic depiction of the (12-dimensional) convex set of qubit channels. The (dark grey) subset of Markovian channels is non-convex and contains 2% of the channels. The larger still non-convex set of time-dependent Markovian channels (17%) contains all extremal channels. All sets, including the measure zero set of indivisible channels (black line) can be found in the neighborhood of the identity (dotted circle).

Extremal Qubit Channels (d=2) Non-Unital

$$T_{\phi} = \begin{pmatrix} 1 & 0_{1 \times 3} \\ t_{\phi} & M_{\phi} \end{pmatrix} \to M_{\phi} = \begin{pmatrix} \lambda_{1} & 0 & 0 \\ 0 & \lambda_{2} & 0 \\ 0 & 0 & \lambda_{3} \end{pmatrix} , t_{\phi} = \begin{pmatrix} 0 \\ 0 \\ t_{3} \end{pmatrix}$$
$$\lambda_{3} = \lambda_{1}\lambda_{2} \qquad \qquad 1 \to 2 \\ t_{3}^{2} = (1 - \lambda_{1}^{2})(1 - \lambda_{2}^{2}) , t_{1} = t_{2} = 0 \qquad \qquad \lambda_{3} \checkmark$$

Ruskai, M. B., Szarek, S. J., & Werner, E. M. (2002). An analysis of completely-positive trace-preserving maps on M2. Linear Algebra and Its Applications, 347(1-3), 159–187. Mendl, C. B., & Wolf, M. S. (2009). Unital Quantum Channels – convex structure and revivals of Birkhoff's Theorem. Communications in Mathematical Physics, 289(3), 1057–1086.